Exercise 1. Provide the typing rules for the Simply Typed Lambda Calculus related to $\rightarrow \cdot$ and $\cdot \times \cdot$ types.

Exercise 2. Replace the placeholders below so to make the following typing judgments correct, in the Calculus of Constructions.

1)
$$\alpha : *, \beta : *, P : \beta \to *,$$

 $h : \prod_{f:\alpha \to \beta} \prod_{a:\alpha} \prod_{b:\beta} ((P(fa) \to Pb) \to Pb)$
 $\vdash [?] : \alpha \to \prod_{b:\beta} Pb$
2) $\alpha : *, x : [?] \vdash x [?](x [?]) : \alpha$

Exercise 3.

- 1. In a cartesian closed category C, let A be an object and take $F(X) = X^A$. Extend F so to form a functor $F : C \to C$. You can omit the verification of the functor laws.
- 2. Then, consider System F extended with coproducts. Let τ, σ two types with no free occurrence of α , and let:

$$f: \forall \alpha. \ (\tau + \alpha) \to (\sigma \to \alpha)$$

Provide the naturality law associated to the interpretation of f in a parametric model. Simplify this law so that it only involves the categorical constructs $[-, -], in_1, in_2, (;), \Lambda$, apply and variables.

Exercise 4. Let C be a cartesian closed category with an object A. Prove that

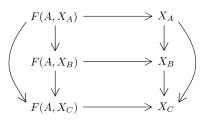
$$\langle !^A; \Lambda(\pi_2; \mathsf{apply}^{A^A}), \langle !^A; \Lambda \pi_2, id_A \rangle \rangle; \mathsf{apply}^{A^{(A^A \times A)}} = id_A$$

Exercise 5. Let C be a category such that for every endofunctor $G : C \to C$ there exists an initial G-algebra $(X \in |\mathcal{C}|, f : GX \to X)$.

Let F be a functor $\mathcal{C} \times \mathcal{C} \to \mathcal{C}$. For every object $C \in |\mathcal{C}|$, we have that G = F(C, -) is an endofunctor $\mathcal{C} \to \mathcal{C}$, hence admitting an initial algebra $(X_C, f_C : F(C, X_C) \to X_C)$.

Prove that $X_{-}: \mathcal{C} \to \mathcal{C}$ is a functor, following these steps:

- Obviously X_− maps objects to objects. Define the other half of the functor, showing how to map any g : A → B to a morphism X_g : X_A → X_B. This can be done by crafting a F(A, −)-algebra of the form (X_B,??), and exploiting initiality. This also forms a commutative square, providing a useful commuting property involving X_g. Simplify this equation so that it contains a single occurrence of F.
- 2. Prove that, for any $A \in |\mathcal{C}|$, we have $X_{id_A} = id_{X_A}$, exploiting initiality.
- 3. Prove that, for any $A, B, C \in |\mathcal{C}|, g : A \to B, h : B \to C$ we have $X_{q;h} = X_q; X_h$. For this, reason on the following diagram:



- (a) Find the morphisms above. Choose the three rightmost morphisms so that, if such triangle commutes the thesis follows. Then, make the <u>upper</u> square an F(A, -)-algebra morphism. Similarly, make the <u>largest</u> square an F(A, -)-algebra morphisms. Guess the last morphism F(A, X_B) → F(A, X_C) so that the <u>lower</u> square could be an F(A, -)-algebra morphism.
- (b) Prove that the lower square is indeed an F(A, -)-algebra morphism. For this, recall the commuting property seen at step 1 above for X_h and its F(B, -)-algebra. (Warning: this is F(B, -), not F(A, -).)
- (c) Conclude by initiality of (X_A, f_A) .