Type Theory – 2020-06-16

Exercise 1. Let C be a category, and $F : C \to C$ be a functor. Prove that, if $(A, a : FA \to A)$ is an initial F-algebra, then a is an isomorphism.

Exercise 2. Replace the placeholders below so to make the following typing judgments correct according to the Calculus of Constructions.

1) $C: * \to * \to *, \ f: \prod_{\alpha:*} \prod_{\beta:*} \prod_{a:\alpha} \prod_{b:\beta} C\alpha\beta,$ $\tau: *, \ \sigma: *, \ g: (C\tau(\tau \to \tau)) \to \sigma$ $\vdash \fbox{?}: \tau \to \sigma$ 2) $P: * \to *, \ Q: * \to *, \ g: \prod_{\beta:*} \prod_{\gamma:*} (\beta \to \gamma) \to P\beta \to Q\gamma,$ $\tau: *, \ x: \prod_{\alpha:*} (\tau \to \alpha) \to P\alpha \vdash \fbox{?}: Q\tau$

Exercise 3. Consider the following typing judgments in the simply-typed λ calculus. Show how to interpret them in a cartesian closed category C. Below, τ, σ are basic types.

$$\begin{split} f: \tau \to (\sigma \times \tau) \vdash (\lambda x: \tau. \ \pi_1(fx)): \tau \to \sigma \\ g: ((\tau \to \tau) \times \tau) \to \sigma, \ x: \tau \vdash g \langle (\lambda y: \tau. \ x), \ x \rangle: \sigma \end{split}$$

Exercise 4. Consider the category $Set^2 = Set \times Set$.

- 1. Prove that Set^2 has a final object $1_{Set^2} = (1_{Set}, 1_{Set})$.
- 2. Prove that Set^2 has binary coproducts, where

$$(A, B) +_{Set^2} (A', B') = (A +_{Set} A', B +_{Set} B')$$

3. Prove that, in Set² we have exactly four morphisms $1 \rightarrow 1+1$.

Exercise 5. Let C and D be two locally small categories, and $F : C \to D$ be a functor.

1. Consider the following functors $\mathcal{C}^{op} \times \mathcal{C} \to Set$:

$$G(A, B) = C(A, B)$$
 $H(A, B) = D(FA, FB)$

Describe how G and H act on morphisms of $\mathcal{C}^{op} \times \mathcal{C}$.

2. Consider the following family of functions, indexed over $A, B \in |\mathcal{C}|$:

$$\eta_{A,B} : \mathcal{C}(A,B) \to \mathcal{D}(FA,FB)$$

 $\eta_{A,B}(f) = Ff$

Prove that η is a natural transformation $\eta: G \to H$.