Type Theory – 2018-06-27

Exercise 1. State the Yoneda lemma, in any one of the forms seen during the course. Provide a proof for it (or at least a solid sketch).

Exercise 2. Replace the placeholders below so to make the following typing judgments correct according to the Calculus of Constructions.

1) $\alpha : *, \beta : *, h : \prod_{\gamma : *} \prod_{\delta : *} ? \rightarrow ? \rightarrow ?$ $\vdash h\alpha\beta? : \alpha \rightarrow \beta$ 2) $\alpha : *, a : \alpha, R : \alpha \rightarrow \alpha \rightarrow *, s : \prod_{x:\alpha} \prod_{y:\alpha} Rxy \rightarrow Ryx,$ $t : \prod_{x:\alpha} \prod_{y:\alpha} \prod_{z:\alpha} Rxy \rightarrow Ryz \rightarrow Rxz$ $\vdash ? : \prod_{x:\alpha} Rax \rightarrow Rxx$

Exercise 3. Consider the interpretation of System F in a parametric model. Let τ be a type not depending on type variable α .

- 1. Define $\sigma(\alpha) \equiv (\tau \to \alpha)$, and verify that it is functorial on α by providing a λ -term of type $\forall \beta, \gamma$. $(\beta \to \gamma) \to \sigma(\beta) \to \sigma(\gamma)$. (Omit the verification of the functor laws.)
- 2. Prove that, in the model, the type $\forall \alpha.((\tau \to \alpha) \times \tau) \to \alpha$ is isomorphic to $\tau \to \tau$.

Exercise 4. Consider the standard interpretation of the simply-typed λ calculus in a cartesian closed category C. Provide a definition for the morphisms in C associated to the following typing judgments, where τ, σ are basic types.

$$\begin{split} f:(\tau \to \tau) \to \sigma \vdash f(\lambda y:\tau. \ y):\sigma \\ f:(\tau \to \tau) \to \sigma, \ g:\tau \to \tau \vdash f(\lambda y:\tau. \ g(g \, y)):\sigma \end{split}$$

Exercise 5. Let C a category with binary products and coproducts, with two endofunctors $F, G : C \to C$. Define the functors $H, L : C \to C$ as $HX = FX \times GX$ and LX = FX + GX.

Assume that $(A, a : HA \to A)$ is an initial H-algebra, $(B, b : LB \to B)$ is an initial L-algebra, and $(C, c : FC \to C)$ is an initial F-algebra.

Prove that there exists a morphism $f : A \to C$ such that f can be expressed in the form ...; Hf;... where the dots do not depend on f.

Prove that there exists a morphism $g: C \to B$ such that g can be expressed in the form ...; Fg;... where the dots do not depend on g.