Type Theory – A few exercises

Exercise 1. Fill the holes in the following judgments so that they hold in the Calculus of Constructions.

$$\begin{array}{l} \alpha:*\vdash\overbrace{?}:\alpha\rightarrow\alpha\\ \alpha:*\vdash\alpha\rightarrow\overbrace{?}:\Box\\ \alpha:*,a:\alpha,\beta:*,b:\beta,x:\overbrace{?}\vdash\langle x[?]a,x[?]b\rangle:\alpha\times\beta\\ \vdash\overbrace{?}:\prod_{\alpha:*}\prod_{\beta:*}(\alpha\rightarrow\beta)\rightarrow(\alpha\times\alpha)\rightarrow(\beta\times\beta)\\ \alpha:*,f:\alpha\rightarrow\alpha,P:\alpha\rightarrow*\vdash\fbox{?}:\\ (\prod_{a:\alpha}Pa\rightarrow P(fa))\rightarrow\prod_{x:\alpha}Px\rightarrow P(f(fx))\\ \vdash\fbox{?}:\prod_{\alpha:*}(((\alpha\rightarrow\bot)\rightarrow\bot)\rightarrow\bot)\rightarrow\alpha\rightarrow\bot\\ \alpha:*,x:\alpha,h:\prod_{P:\alpha\rightarrow*}(Px\rightarrow\bot)\rightarrow\bot\vdash\fbox{?}:\bot \end{array}$$

where $\bot = \prod_{\alpha:*} \alpha$

Exercise 2. Prove that, in a cartesian closed category, 1×1 is final.

Exercise 3. Prove that, in a category with an initial object 0, if $X \simeq 0$, then X is initial.

Exercise 4. Refute the following, using a counterexample. In every category with products, 1 + 1 is final.

Exercise 5. Let C be a category with binary products and coproducts, and an object A. Consider the following functors $C \to C$:

$$FX = X \times X$$
 $GX = X + X$ $HX = X \times A$ $LX = X + A$

Define how they act on morphisms, using $\langle -, - \rangle$ and [-, -] suitably.

Exercise 6. In a bicartesian closed category, prove that, for any objects A, B, C:

$$A \times (B + C) \simeq (A \times B) + (A \times C)$$

Hint: for direction \rightarrow , start by defining a morphism

$$B + C \rightarrow ((A \times B) + (A \times C))^A$$

Exercise 7. Consider a polymorphic λ calculus with a list (or finite sequence) type α^* . Let f be a term satisfying

$$\vdash f: \forall \alpha. (\alpha \times \alpha^*) \to \alpha$$

and consider the interpretation of f in a parametric model.

Denote with $\langle \rangle$ the empty list in α^* . Prove that, in the model, $f_{\alpha}x\langle \rangle = x$, for any α and any value x in the interpretation of α .

Exercise 8. Prove that in any category with binary products, define a natural isomorphism $f: A \times B \simeq B \times A$. Then, verify that f is indeed an isomorphism (for any A, B), and that it is indeed natural.

Exercise 9. Let $F : \mathcal{C} \to \mathcal{D}$ be a functor. Prove that F maps isomorphic objects (in \mathcal{C}) into isomorphic objects (in \mathcal{D}).

Assuming F is fully faithful (recall the definition from the course notes), prove that the opposite implication holds as well: if $FA \simeq FB$, then $A \simeq B$.

Exercise 10. In a cartesian closed category, let $f, g : A \times B \to C$. Assuming $\Lambda f = \Lambda g$, prove f = g.

Exercise 11. In a category with binary products, let $f_1, f_2 : A \to B, g_1, g_2 : A \to C$. Assuming $\langle f_1, g_1 \rangle = \langle f_1, g_1 \rangle$, prove $f_1 = f_2$ and $g_1 = g_2$.

Exercise 12. In a cartesian closed category, prove that for any object A,

$$\langle \Lambda(\langle \pi_2^{A \times A^A}, \pi_1^{A \times A^A} \rangle; \mathsf{apply}^{A^A}), \Lambda \pi_2^{A \times A} \rangle; \mathsf{apply}^{A^{(A^A)}} = id_A$$

Exercise 13. Consider the standard interpretation of the simply-typed λ calculus in a cartesian closed category C. Define the morphism in C associated to the following typing judgment, where τ is a basic type.

$$f: \tau \to \tau, x: \tau \vdash f(fx): \tau$$

Exercise 14. Let C be a category with an object A. Formally define the slice category C/A, informally described as follows, and prove it is indeed a category. The objects of C/A are the morphisms $X \to A$ in C, for some object X. The morphisms between $f : X \to A$ and $g : Y \to A$ are those morphisms $h : X \to Y$ making the obvious triangle commute.

Exercise 15. Prove that, in a slice category C/A (see above for the definition), the following holds.

- C/A always has a final object.
- If C has an initial object, so does C/A.
- If A is final in C, then $C/A \simeq C$.