Informatica — 2016-09-09

Nota: Scrivete su tutti i fogli nome e matricola.

Esercizio 1. Si forniscano le regole della semantica "big step" di IMP, senza commentarle.

Esercizio 2. Si considerino le regole di inferenza:

$$\frac{s}{\epsilon}[S0] \qquad \frac{s}{x:s}(x \in \mathbb{Z})[S1] \qquad \frac{s R s'}{\epsilon R \epsilon}[R0] \qquad \frac{s R s'}{(x:s) R (5-x:s')}[R1]$$

Sopra, con x indichiamo un intero. Con s, s' indichiamo sequenze di interi, il cui insieme S è definito (induttivamente) da [S0, S1]. La relazione $R \in \mathcal{P}(S \times S)$ è definita ricorsivamente da [R0, R1].

- 1. [20%] Si enunci il principio di induzione su S.
- 2. [80%] Data la sequente proprietà p sulle sequenze $s \in S$

$$p(s): \forall s_1, s_2. \ s \ R \ s_1 \land s_1 \ R \ s_2 \implies s = s_2$$

si dimostri $\forall s \in S$. p(s) per induzione su s.

Soluzione (bozza).

Parte 1. Se valgono

- 1) $p(\epsilon)$
- 2) $\forall s, x \in \mathbb{Z}.p(s) \implies p(x:s)$ allora vale $\forall s \in S. \ p(s)$.

Parte 2. Caso [S0].

Bisogna dimostrare $p(\epsilon)$, ovvero

$$\forall s_1, s_2. \ \epsilon \ R \ s_1 \ \land \ s_1 \ R \ s_2 \implies \epsilon = s_2$$

Assumiamo $IP1: \epsilon R s_1 \in IP2: s_1 R s_2$, e dimostriamo $\epsilon = s_2$.

Invertendo IP1, osserviamo che può essere ricavato solo da [R0], e quindi $s_1 = \epsilon$.

Invertendo $IP2: s_1 = \epsilon \ R \ s_2$, come sopra, otteniamo $s_2 = \epsilon$ da cui la tesi.

Caso [S1].

Per ipotesi induttiva assumiamo p(s), ovvero:

$$IP1: \quad \forall s_1, s_2. \ s \ R \ s_1 \land s_1 \ R \ s_2 \implies s = s_2$$

e dimostriamo p(x:s), ovvero:

$$\forall z_1, z_2. \ x : s \ R \ z_1 \ \land \ z_1 \ R \ z_2 \implies n : s = z_2$$

Assumiamo quindi $IP2: (x:s) R z_1 e IP3: z_1 R z_2$, e dimostriamo la tesi $(x:s) = z_2$.

Invertendo IP2, osserviamo che può essere ricavato solo da [R1], da cui otteniamo $IP4: sRs', IP5: z_1 = (5-x:s')$.

Invertendo $IP3: z_1 = (5-x:s') R z_2$, osserviamo che può essere ricavato solo da [R1], da cui otteniamo IP6: s'Rs'', $IP7: z_2 = (5-(5-x):s'') = (x:s'')$.

Da IP1, scegliendo $s_1 = s'$ e $s_2 = s''$ si ha

$$s R s' \wedge s' R s'' \implies s = s''$$

L'antecedente segue da IP4 e da IP6, quindi otteniamo s=s''. Da questo segue la tesi in quanto $(x:s)=(x:s'')=z_2$ per IP7.

Esercizio 3. Sia σ_0 lo stato che associa ad ogni variabile il valore 0, e sia c il comando sequente:

$$c =$$
 (while $x + 1 \neq 0$ do $x := x + 1$)

Si dimostri formalmente che vale la proprietà

$$P: \quad \nexists \sigma'. \langle c, \sigma_0 \rangle \rightarrow_b \sigma'$$

seguendo la traccia seguente:

- 1. [25%] Si definiscano due asserzioni Q, R in modo che la validità della tripla di Hoare $\{Q\}$ c $\{R\}$ implichi la proprietà P di sopra.
- 2. [45%] Si dimostri che se $\{Q\}$ c $\{R\}$ è valida, allora P vale.
- 3. [30%] Si dimostri la validità di $\{Q\}$ c $\{R\}$.

Soluzione (bozza).

Parte 1. Scegliamo $Q: x \geq 0$ e R: falso.

Parte 2. Supponiamo che sia valida $\{x \ge 0\}$ c $\{falso\}$ e che quindi

$$\forall \sigma, \sigma'. \ \sigma \models (x \ge 0) \land \langle c, \sigma \rangle \rightarrow \sigma' \implies \sigma' \models \mathsf{falso}$$

Si nota che $\sigma \models (x \geq 0)$ è equivalente a $\sigma(x) \geq 0$, mentre $\sigma' \models$ falso è equivalente a falso (infatti nessuno stato σ' può rendere vera l'asserzione falso). Riscriviamo il tutto come:

$$IP1: \quad \forall \bar{\sigma}, \bar{\sigma}'. \ \bar{\sigma}(x) \geq 0 \land \langle c, \bar{\sigma} \rangle \rightarrow_b \bar{\sigma}' \implies \mathsf{falso}$$

Per dimostrare P, assumiamo per assurdo che esista un σ' tale che $IP2: \langle c, \sigma_0 \rangle \to_b \sigma'$, e ricaviamo un assurdo. Infatti, da IP1, scegliendo $\bar{\sigma} = \sigma_0$ e $\bar{\sigma}' = \sigma'$, si ha

$$\sigma_0(x) \ge 0 \land \langle c, \sigma_0 \rangle \to_b \sigma' \implies \mathsf{falso}$$

L'antecedente segue da $\sigma_0(y) = 0$ (per ogni $y \in Var$) e da IP2, per cui otteniamo il conseguente falso, l'assurdo cercato.

Parte 3.

$$\begin{aligned} \{Q: x \geq 0\} \\ \{INV: x \geq 0\} \ (1) \\ \text{while } x+1 \neq 0 \ \text{do} \\ \{INV \ \land \ x+1 \neq 0\} \\ \{x+1 \geq 0\} \ (2) \\ x:=x+1 \\ \{INV \ \land \ \lnot(x+1 \neq 0)\} \\ \{R: \text{falso}\} \ (3) \end{aligned}$$

La PrePost (1) è banale. Per la (2), dall'invariante $x \ge 0$ si ha $x+1 \ge 0$. Per la (3), da x+1=0 si ricava x=-1 che contraddice l'invariante $x \ge 0$, da cui la tesi falso.

Nome	Matricola
	ri formalmente la validità della tripla di Hoare se dee sottostanti con opportune asserzioni.
$\{x = 2^K\}$	
$\overline{n := 1;}$	
y := 0;	
while $n \neq x$ do	
n := n * 2;	
$\overline{y := y + 1};$	
$\overline{\{y = K\}}$ Giustificare qui sotto eve	entuali usi della regola $PrePost$.

Soluzione (bozza).

$$\begin{cases} x = 2^K \\ 1 = 2^0 \land x = 2^K \\ 1 = 2^0 \land x = 2^K \\ x = 1; \\ n = 2^0 \land x = 2^K \\ y := 0; \\ NV : n = 2^y \land x = 2^K \\ while n \neq x \text{ do} \\ NV \land n \neq y \\ n * 2 = 2^{(y+1)} \land x = 2^K \\ n := n * 2; \\ n = 2^{(y+1)} \land x = 2^K \\ y := y + 1; \\ NV \land \neg (n \neq x) \\ y = K \end{cases}$$

Per le PrePost:

La (1) è banale aritmetica.

Per la (2), da $n = 2^y$ segue $n * 2 = 2^{(y+1)}$, mentre $x = 2^K$ è in INV.

Per la (3), abbiamo n = x e quindi da INV $2^y = 2^K$ da cui y = K.