Informatica — 2016-01-20

Nota: Scrivete su tutti i fogli nome e matricola.

Esercizio 1. Si dimostri la monotonia di $\hat{\mathcal{R}}$.

Esercizio 2. Si consideri il predicato/relazione ternaria $R \in \mathcal{P}(\mathbb{N} \times \mathbb{N} \times \mathbb{N})$ induttivamente definito da

$$\frac{R(n,(n+1)\cdot m,r)}{R(n+1,m,r)}[R1]$$

- 1. [10%] Per ogni naturale $0 \le n \le 4$, si trovi un valore $r \in \mathbb{N}$ tale che valga R(n, 1, r).
- 2. [20%] Definire una funzione f(n) tale per cui R(n,1,f(n)) valga per ogni $n \in \mathbb{N}$ (non si chiede di dimostrarlo). Dopo, si generalizzi tale risultato definendo una funzione g(n,m) tale per cui R(n,m,g(n,m)) valga per ogni $n,m \in \mathbb{N}$ (non si chiede di dimostrarlo).
- 3. [70%] Usando la g precedentemente definita, si dimostri che

$$\forall n, m, r \in \mathbb{N}. \ R(n, m, r) \implies r = g(n, m)$$

procedendo per induzione su R(n, m, r), e menzionando esplicitamente i risultati teorici che si applicano nel ragionamento.

Soluzione (bozza).

Parte 1 Si ha R(0,1,1), R(1,1,1), R(2,1,2), R(3,1,6), R(4,1,24).

Parte 2 Basta prendere f(n) = n! e $g(n, m) = n! \cdot m$.

Parte 3 Consideriamo la proprietà / relazione p(n, m, r) = "r = g(n, m)". L'enunciato da dimostrare si riscrive quindi come $R \subseteq p$. Si ha che R, per definizione, è il minimo punto fisso di $\hat{\mathcal{R}}$ (dove \mathcal{R} sono le regole fornite). Quindi, per il principio di induzione, per potere avere $R \subseteq p$ basta dimostrare che $\hat{\mathcal{R}}(p) \subseteq p$, cioè che p è preservata da ogni regola di R.

Caso [**R0**]. Dobbiamo dimostrare p(0, m, m), cioè che g(0, m) = m, e infatti $0! \cdot m = 1 \cdot m = m$.

Caso [R1]. Per ipotesi induttiva, assumiamo $p(n, (n+1) \cdot m, r)$, cioè che $r = g(n, (n+1) \cdot m) = n! \cdot (n+1) \cdot m$. Dobbiamo fare vedere che p(n+1, m, r), cioè che $r = g(n+1, m) = (n+1)! \cdot m$. Ma questo segue dall'ipotesi induttiva siccome $(n+1)! = n! \cdot (n+1)$.

Esercizio 3. Si estenda IMP con il comando (dove $1 \le n \in \mathbb{N}$)

select
$$e$$
 in $(e_1, e'_1) \to c_1$, $(e_2, e'_2) \to c_2$, \cdots , $(e_n, e'_n) \to c_n$

avente la seguente semantica intuitiva. All'inizio si valutano tutte le espressioni e, e_i, e'_i . Se esiste un $j \in \{1...n\}$ tale per cui il valore di e si trova nell'intervallo $[e_j, e'_j]$ si esegue il comando c_j , dove j è il minimo siffatto indice, e poi si riesegue tutto il select da capo. Se non esiste nessun j, il comando select non ha effetto.

- 1. [50%] Si formalizzi la semantica big-step \rightarrow_b del select con opportune regole di inferenza. (Sopra le regole, potete usare i puntini \cdots per indicare una sequenza o insieme di elementi analoghi)
- 2. [30%] Si traduca il generico select di sopra in un comando equivalente in IMP non esteso. Potete supporre che i c_i siano comandi di IMP, e che si possano usare condizioni complesse ϕ nel while e if (e non solo quelle della forma $e \neq 0$). Giustificate informalmente la traduzione.
- 3. [20%] Si definisca una o più regole da aggiungere al sistema deduttivo per le triple di Hoare per il select, che ne preservi la correttezza. Se ne dia una descrizione breve ed informale.

Soluzione (bozza).

Parte 1

Sotto, sia
$$s = (\text{select } e \text{ in } (e_1, e'_1) \rightarrow c_1, \cdots, (e_n, e'_n) \rightarrow c_n).$$

$$\begin{array}{c}
\langle e, \sigma \rangle \to_{e} v \\
\langle e_{1}, \sigma \rangle \to_{e} v_{1} & \langle e'_{1}, \sigma \rangle \to_{e} v'_{1} \\
& \cdots \\
\langle e_{n}, \sigma \rangle \to_{e} v_{n} & \langle e'_{n}, \sigma \rangle \to_{e} v'_{n} \\
v \notin [v_{1}, v'_{1}] \cdots v \notin [v_{n}, v'_{n}] \\
\hline
\langle s, \sigma \rangle \to_{b} \sigma
\end{array} [S - False]$$

$$\begin{array}{c}
\langle e, \sigma \rangle \to_{e} v \\
\langle e_{1}, \sigma \rangle \to_{e} v_{1} & \langle e'_{1}, \sigma \rangle \to_{e} v'_{1} \\
& \cdots \\
\langle e_{n}, \sigma \rangle \to_{e} v_{n} & \langle e'_{n}, \sigma \rangle \to_{e} v'_{n} \\
v \notin [v_{1}, v'_{1}] \cdots v \notin [v_{j-1}, v'_{j-1}] & v \in [v_{j}, v'_{j}] \\
& \frac{\langle c_{j}; s, \sigma \rangle \to_{b} \sigma'}{\langle s, \sigma \rangle \to_{b} \sigma'} [S - True]
\end{array}$$

Parte 2

Una possibile soluzione è:

while
$$(e_1 \leq e \wedge e \leq e'_1) \vee \cdots \vee (e_n \leq e \wedge e \leq e'_n)$$
 do if $(e_1 \leq e \wedge e \leq e'_1)$ then c_1 else if $(e_2 \leq e \wedge e \leq e'_2)$ then c_2 ... else if $(e_n \leq e \wedge e \leq e'_n)$ then c_n else skip

Parte 3

Sotto, sia
$$s = (\text{select } e \text{ in } (e_1, e'_1) \rightarrow c_1, \cdots, (e_n, e'_n) \rightarrow c_n).$$

$$\{P \land e_1 \le e \le e'_1\} \ c_1 \ \{P\}
 \{P \land \neg(e_1 \le e \le e'_1) \land e_2 \le e \le e'_2\} \ c_2 \ \{P\}
 \dots
 \{P \land (\nexists j \in [1 \dots n-1]. \ e_j \le e \le e'_j) \land e_n \le e \le e'_n\} \ c_n \ \{P\}
 \{P\} \ s \ \{P \land \nexists j \in [1 \dots n]. \ e_j \le e \le e'_j\}$$

La regola sopra può essere vista come un adattamento delle regole dell'if e del while alla traduzione del select data sopra. \Box

Nome	Matricola
Esercizio 4. Si dimostri formalmente la validità della tripla di Hoari eguente riempiendo le linee sottostanti con opportune asserzioni. $\{x=5 \land y=7\}$	
x := x + 1;	
$\overline{y := y * 2 + n};$	
$\overline{n := n - 1}$	
Siustificare qui sotto eventu	ali usi della regola $PrePost$.

Soluzione (bozza).

```
 \begin{cases} x = 5 \wedge y = 7 \\ \{INV : 0 \leq x < y \} \ (1) \\ \text{while } n > 0 \text{ do} \\ \{0 \leq x < y \wedge n > 0 \} \\ \{0 \leq x + 1 < 2y + n \} \ (2) \\ x := x + 1; \\ \{0 \leq x < 2y + n \} \\ y := y * 2 + n; \\ \{0 \leq x < y \} \\ n := n - 1 \\ \{0 \leq x < y \} \ (3) \end{cases}
```

Per le PrePost:

La (1) è immediata.

Per la (2), $0 \le x + 1$ segue da $0 \le x$. Inoltre, dalle ipotesi si ha 0 < y quindi $1 \le y$ e quindi $x + 1 \le x + y < y + y < 2y + n$, usando anche n > 0. La (3) è immediata: la tesi è parte dell'ipotesi.