Formal Techniques – 2019-07-11

Exercise 1. Let $\alpha : \mathcal{C} \xrightarrow{\leftarrow} \mathcal{A} : \gamma$ be a Galois connection between the CLs \mathcal{C} and \mathcal{A} . Let $f : \mathcal{C} \to \mathcal{C}$ and $g : \mathcal{A} \to \mathcal{A}$ be continuous functions. Assume that g is a correct approximation of f, prove that

$$\operatorname{fix}(f) \sqsubseteq \gamma(\operatorname{fix}(g))$$

Exercise 2. Formalize the following cryptographic protocol fragment using the applied-pi notation.

Initially, a symmetric key k_1 is shared between Alice and Bob. Alice also knows keys k_2, k_3 and a message m.

1) Alice sends k_3 to Bob, encrypting it using k_2 . Alice also sends k_2 to Bob, encrypting it using k_1 , and sends m, encrypting it using k_3 .

2) After receiving the messages, Bob generates a fresh key J, and sends to Alice the hash of m, encrypting it using J. He also sends J, encrypting it using k_2 .

3) Alice receives the messages, and checks that the hash of m is correct. If so, it sends ok back to Bob.

Exercise 3. Consider the following tree automaton

and the rewriting rule

$$\mathsf{dec}(\mathsf{enc}(M,K),K) \Rightarrow M$$

Apply the completion algorithm to the above automaton, building an overapproximation for the languages associated to its states which is closed under rewriting. Assuming @a models the set of messages being exchanged over a public channel, state what can be concluded about the secrecy of message m.

Exercise 4. Formally prove the following formula exploiting the Curry-Howard isomorphism.

 $\forall p, q, r : \mathsf{Prop.} \ (p \to q) \to [(q \to r) \to ((r \to p) \to [(p \to q) \land (q \to p)])]$

Exercise 5. Prove that the distributivity law $x \sqcap (y \sqcup z) = (x \sqcap y) \sqcup (x \sqcap z)$ does not always hold in a CL A, for all elements $x, y, z \in A$. Then, prove that the law $x \sqcap (x \sqcup y) = x$ instead always holds in any CL A, for all $x, y \in A$.

Exercise 6. An " ω -chain of DCPOs" is a sequence $D = (D_i, f_i : D_{i+1} \rightarrow D_i)_{i \in \mathbb{N}}$ where each D_i is a DCPO and each f_i is a continuous function. Given any such D, we define its limit as the following DCPO, ordered pointwise, and having pointwise suprema (you do not have to prove this claim):

$$\lim_{i} D_{i} = \left\{ d \in \prod_{i \in \mathbb{N}} D_{i} \mid \forall i \in \mathbb{N}. \ d_{i} = f_{i}(d_{i+1}) \right\}$$

Two DCPOs X, Y are said to be isomorphic $(X \cong Y)$ iff there is a continuous bijection $X \to Y$ having a continuous inverse $Y \to X$. Prove that, for any DCPO A and any ω -chain of DCPOs D (as above), there exists an isomorphism

$$A \times (\lim_{i} D_i) \cong \lim_{i} (A \times D_i)$$

where the last limit refers to the ω -chain of DCPOs defined as the sequence $(A \times D_i, g_i : A \times D_{i+1} \to A \times D_i)_{i \in \mathbb{N}}$ with $g_i(a, x) = (a, f_i(x))$.