Formal Techniques – 2019-06-17

Exercise 1. State and prove the result relating the least prefixed point and the least fixed point of a suitable function $f : A \to A$ on a poset A.

Exercise 2. Consider the following protocol excerpt written in the applied-pi notation.

 $(! \cdot in X \cdot out h(X) \cdot ! \cdot in Y \cdot out f(X,Y) \cdot ()) \mid out a \cdot ()$

Apply the control flow analysis to the protocol above, generating a tree automaton to over-approximate the message flow, as done by function gen(...). Provide a list of states for such automaton and the transitions among them. Make each state clearly related to a part of the protocol above.

Exercise 3. Formalize the following cryptographic protocol fragment using the applied-pi notation.

Initially, two symmetric keys k_1, k_2 are shared between Alice and Bob. Alice also knows a key k_3 and a message m.

1) Alice sends k_3 to Bob, encrypting it using k_1 . Alice also sends m to Bob, encrypting it using k_2 .

2) After receiving the messages, Bob generates a fresh nonce N, and sends the pair (m, N) back to Alice, encrypting it using k_3 .

3) Alice receives the pair, and answers with the hash of N.

4) Bob checks the received hash, and then answers with the hash of m.

Exercise 4. Formally prove the following formula exploiting the Curry-Howard isomorphism.

$$\forall p, q, r, s : \mathsf{Prop.} \ (p \to (q \lor r)) \to ((q \to (r \land s)) \to (p \to r))$$

Exercise 5.

- 1. [1%] Provide the statement of the adjunction property satisfied by the functions α, γ forming a Galois connection.
- [99%] Let A be a poset, and let B = A × A be the poset given by the pointwise ordering. Define the function α : A → B as α(a) = (a, a). Assume that γ : B → A is a function satisfying, with α, the same adjunction property above. (Note: we do not require that A, B are CLs only posets. We also do not require that functions α, γ satisfy further conditions, e.g. continuity.)

Prove that A must have all binary infima: if $x, y \in A$, then there exists $x \sqcap y$ (i.e., $\prod \{x, y\}$) in A.

Exercise 6. Let A be a poset with a \perp element. Prove the equivalence between the following:

- A is an ω -CPO. (Recall than an ω -CPO is a poset where every ω -chain $x_0 \sqsubseteq x_1 \sqsubseteq x_2 \sqsubseteq \cdots$ admits a supremum $\bigsqcup_{n \in \mathbb{N}} x_n$.)
- For all monotonic $f: A \to A$ the supremum $\bigsqcup_{n \in \mathbb{N}} f^n(\bot)$ exists.