Formal Techniques – 2018-06-28 **Exercise 1.** Informally describe the four CTL formulae $AF\phi$, $AG\phi$, $EF\phi$, $EG\phi$ (where ϕ is atomic), providing for each one a brief description (1-3 lines), and one example where it holds. **Exercise 2.** Consider the following protocol excerpt written in the applied-pi notation. $$(in \ W \ . \ ! \ . \ out \ f(W) \ . \ () \ | \ in \ X \ . \ out \ h(X) \ . \ in \ Y \ . \ out \ g(X,Y) \ . \ () \)$$ Apply the control flow analysis to the protocol above, generating a tree automaton to over-approximate the message flow, as done by function gen(...). Provide a list of states for such automaton and the transitions among them. Make each state clearly related to a part of the protocol above. **Exercise 3.** Formalize the following cryptographic protocol fragment using the applied-pi notation. Initially, Alice knows symmetric keys k_1, k_2 . Further, Alice and Bob share a symmetric key k_s . - 1) Alice sends k_1 to Bob, encrypting it with k_s . - 2) Then, Bob generates a fresh nonce N, and sends N to Alice, encrypting it with k_1 . - 3) Alice answers by generating a message containing two items: the key k_2 and the hash of N encrypted with k_2 . The whole message (a pair) is encrypted using k_s . - 4) Bob finally retrieves the hash of N from the received message, and sends such hash to Alice (without encrypting it). **Exercise 4.** Formally prove the following formula exploiting the Curry-Howard isomorphism. $$\forall p, q, r, s : \mathsf{Prop.}\ ((p \land q) \to s) \to ((q \lor r) \to (r \lor (p \to s)))$$ **Exercise 5.** Let $\alpha: \mathcal{C} \xrightarrow{\leftarrow} \mathcal{A}: \gamma$ be a Galois connection between two CLs \mathcal{C}, \mathcal{A} . - 1. Prove that $\gamma \circ \alpha \circ \gamma = \gamma$. - 2. Define $\delta: A \to A$ as the function $\delta(a) = \prod \{a' | \gamma(a') = \gamma(a) \}$. Prove that $\delta = \alpha \circ \gamma$. ## Exercise 6. - Below, we write R ⊆^{rs} X² when R is a binary relation over set X, and R is reflexive (∀x ∈ X. xRx) and symmetric (∀x, y ∈ X. xRy ⇒ yRx). For any R ⊆^{rs} X², define X_R = {A ⊆ X | ∀x, y ∈ A. xRy}. Prove that (X_R, ⊆) is a DCPO with | | = | ∫ and ⊥ = ∅. - 2. Let $A \sim_R B$ mean $\forall a \in A, b \in B$. aRb. For any two relations $R, S \subseteq^{rs} X^2$, define $$St(R,S) = \left\{ f: X_R \to X_S \;\middle|\; \begin{array}{c} f \; Scott\text{-}continuous \; \land \\ \forall A,B \in X_R. \; A \sim_R B \implies f(A \cap B) = f(A) \cap f(B) \end{array} \right\}$$ Prove that, if $R,S,T \subseteq^{rs} X$, $f \in St(R,S)$, and $g \in St(S,T)$, then $g \circ f \in St(R,T)$.