Formal Techniques – 2015-06-15

Exercise 1. Define the adjunction property between α and γ in a Galois connection. Then, prove that α uniquely determines γ .

Exercise 2. Consider the following protocol excerpt written in the applied-pi notation.

 $(out \ m1 \ . in \ X \ . out \ h(X) \ .()$ $| out \ m2 \ . in \ Y \ . out \ g(Y) \ .())$

Apply the control flow analysis to the protocol above, generating a tree automaton to over-approximate the message flow, as done by function gen(...). Provide a list of states for such automaton and the transitions among them. For each state, briefly hint to its relationship with the protocol above.

Exercise 3. Consider the following tree automaton

 $\begin{array}{l} @a \rightarrow enc(@c, @b), enc(@e, @f), @f, enc(@d, @c), dec(@a, @a), enc(@a, @a) \\ @b \rightarrow enc(@e, @d) \\ @c \rightarrow m \\ @d \rightarrow b \\ @e \rightarrow a \\ @f \rightarrow k \end{array}$

and the rewriting rule

$$\mathsf{dec}(\mathsf{enc}(M,K),K) \Rightarrow M$$

Apply the completion algorithm to the above automaton, building an over-approximation for the languages associated to its states which is closed under rewriting. Assuming @a models the set of messages being exchanged over a public channel, state what can be concluded about the secrecy of message m.

Exercise 4. Formally prove the following formula exploiting the Curry-Howard isomorphism.

$$\forall p, q : \mathsf{Prop.} ((p \to q) \to p) \to (((q \to p) \to q) \to p)$$

Exercise 5. Define a CL (A, \sqsubseteq) and a Scott-continuous function $f : A \to A$ such that the following points can be answered:

- 1. [5% score] Find the minimum fixed point x of f.
- 2. [15% score] Find another fixed point $y \neq x$ of f.
- 3. [80% score] Find a prefixed point z of f which is not a fixed point. That is, $f(z) \sqsubset z$ is a strict inequality.

Remember to justify your answers.

Exercise 6. Let A, B be two DCPOs with $a \perp$ element, and $f : (A \times B) \rightarrow (A \times B)$ be a Scott-continuous function, with $fix_{A \times B}(f) = \langle \bar{a}, \bar{b} \rangle$. Define $f_A = \pi_1 \circ f : (A \times B) \rightarrow A$, and $f_B = \pi_2 \circ f : (A \times B) \rightarrow B$.

Prove the equation below. Its main consequence is that, once \bar{a} is known, \bar{b} can be deduced from it through a minimum fixed point over B alone.

$$b = fix_B(\lambda b : B. f_B(\bar{a}, b))$$

In your solution, you are not required to verify the continuity of functions built from $f, \pi_{1,2}, fix, \lambda$.

Hints: prove the direction \supseteq first. Remember that both DCPOs B and $A \times B$ have their own induction principle.