Computability Final Test — 2014-02-03

Notes.

- Answer both theory questions, and choose and solve <u>two</u> exercises, only. Solving more exercises results in the <u>failure</u> of the test.
- To pass the exam you need to provide a reasonable contribution in *both* Theory and Exercises parts.
- Exercises with higher number award more points. To achieve a score ≥ 28 you have to solve an exercise marked with \star below.
- Significantly wrong answers will result in negative scores.
- Always provide a justification for your answers.

Reminder: when equating the results of partial functions (as in $\phi_i(3) = \phi_i(5)$), we mean that <u>either</u> 1) both sides of the equation are defined, and evaluate to the same natural number, <u>or</u> 2) both sides are undefined.

Theory

Question 1. Prove that, if $A, B \in \mathcal{RE}$, then $A \cup B \in \mathcal{RE}$ and $A \cap B \in \mathcal{RE}$. Also prove that, under the same assumption, $A \setminus B \in \mathcal{RE}$ does not hold in general.

Question 2. State the Rice-Shapiro theorem. Then, prove its (\Rightarrow) direction.

Exercises

Exercise 3. [70% score] Prove whether $A \in \mathcal{RE}$, where:

$$A = \{n \mid \phi_n(100) = 10 \land \forall x \in \mathbb{N}. \ \phi_n(2 \cdot x) = 2 \cdot \phi_n(x)\}$$

[30% score] Then, prove whether $B \in \mathcal{RE}$, where:

$$B = \{n \mid \forall x \in \mathbb{N}. \ \phi_n(2 \cdot x) = 2 \cdot \phi_n(x)\}$$

Solution (sketch). $A = \emptyset \in \mathcal{RE}$. Indeed, if $n \in A$, we have $10 = \phi_n(100) = 2 \cdot \phi_n(50) = 2 \cdot 2 \cdot \phi_n(25)$ which is impossible: if $\phi_n(25)$ is undefined then 10 should also be undefined, otherwise if $\phi_n(25)$ is defined then 10 should be a multiple of 4.

For the second part, $B \notin \mathcal{RE}$ by Rice-Shapiro (\Leftarrow). Taking g(n) = undefinedand f(n) = 1 suffices since $1 = f(2 \cdot 1) \neq 2 \cdot f(1) = 2$.

Exercise 4. [80% score] Prove whether $\mathsf{K} \leq_m C = \{n \mid \mathsf{dom}(\phi_n) \in \mathcal{R}\}$. [20% score] Then, also prove whether $\bar{\mathsf{K}} \leq_m C$. Solution (sketch). $K \leq_m C$ because the following is a reduction

$$h(n) = \# \left(\lambda x. \begin{cases} 0 & \text{if } n \in \mathsf{K} \lor x \in \mathsf{K} \\ undefined & \text{otherwise} \end{cases} \right)$$

The body of the λx is recursive by the if-then-else lemma with \mathcal{RE} guard (because...). So by the s-m-n theorem, h is well-defined and recursive total. Then:

- If $n \in \mathsf{K}$, then $\phi_{h(n)}(x) = 0$ for all x, then $\mathsf{dom}(\phi_{h(n)}) = \mathbb{N} \in \mathcal{R}$, so $h(n) \in C$.
- If $n \notin K$, then $\phi_{h(n)}(x) = 0$ for $x \in K$ and undefined otherwise, then $\operatorname{\mathsf{dom}}(\phi_{h(n)}) = K \notin \mathcal{R}$, so $h(n) \notin C$.

 $\bar{\mathsf{K}} \leq_m C$ because the following is a reduction

$$h(n) = \# \left(\lambda x. \begin{cases} 0 & \text{if } n \in \mathsf{K} \land x \in \mathsf{K} \\ undefined & \text{otherwise} \end{cases} \right)$$

As before, h is well-defined and recursive total. Then:

- If $n \in \overline{\mathsf{K}}$, then $\phi_{h(n)}(x) = undefined$ for all x, then $\mathsf{dom}(\phi_{h(n)}) = \emptyset \in \mathcal{R}$, so $h(n) \in C$.
- If $n \notin \bar{\mathsf{K}}$, then $\phi_{h(n)}(x) = 0$ for $x \in \mathsf{K}$ and undefined otherwise, then $\mathsf{dom}(\phi_{h(n)}) = \mathsf{K} \notin \mathcal{R}$, so $h(n) \notin C$.

Exercise 5. Prove whether $f \in \mathcal{R}$, where:

$$f(n,x) = \begin{cases} 2 \cdot n & \text{if } \phi_n(x) \text{ halts } in \ge x \text{ steps} \\ 51 & \text{otherwise} \end{cases}$$

Solution (sketch). We have $f \notin \mathcal{R}$. Assume by contradiction $f \in \mathcal{R}$. Since f is total, the set $A = \{n \mid f(n,0) = 2 \cdot n\}$ is recursive. However, since 51 is odd and $2 \cdot n$ is even for any n, we have $A = \{n \mid \phi_n(0) \text{ halts in } \geq 0 \text{ steps}\} = \{n \mid \phi_n(0) \text{ is defined}\}$. We reach a contradiction since $A \notin \mathcal{R}$ by Rice.

Exercise 6. \star Define an infinite sequence of sets A_0, A_1, A_2, \ldots such that, for all $i \in \mathbb{N}$:

$$A_i \subseteq A_{i+1} \qquad \land \qquad A_i \in \mathcal{RE} \iff i \text{ is even}$$

Hint: can $A_{i+1} \setminus A_i$ be finite? Construct the sets accordingly.

Solution (sketch). Intentionally omitted.