
Computability Final Test — 2014-01-13

Notes.

• Answer both theory questions, and choose and solve two exercises, only. Solving
more exercises results in the failure of the test.

• To pass the exam you need to provide a reasonable contribution in both Theory
and Exercises parts.

• Exercises with higher number award more points. To achieve a score ≥ 28 you
have to solve an exercise marked with ⋆ below.

• Significantly wrong answers will result in negative scores.

• Always provide a justification for your answers.

Reminder: when equating the results of partial functions (as in φi(3) = φi(5)), we

mean that either 1) both sides of the equation are defined, and evaluate to the same

natural number, or 2) both sides are undefined.

Theory

Question 1. Use a diagonalization argument to prove that a partial function
(of your choice) is not recursive.

Answer. See for instance Th. 37 (as suggested at the bottom of page 115),
or alternatively Lemma 140 (since λ-definability is equivalent to recursivity).

Question 2. Prove that, if ∃f ∈ R. A = ran(f), then A ∈ RE.

Answer. See Lemma 246.

Exercises

Exercise 3. Prove whether A ∈ RE, where:

A = {n | φn(0) = 9 ∧ ∀x ∈ N. φn(x) = φn(x+ 10)}

Then, briefly discuss if your reasoning still holds if we remove the “φn(0) = 9”
requirement from the definition above.

Solution (sketch). A 6∈ RE by Rice-Shapiro (⇒). Indeed, A is seman-
tically closed (easy to check). Let F be the associated set of functions. If we
consider f(n) = 9, we clearly have f ∈ F . However, any finite restriction g of
f can not belong to F because in that case it would be defined (= 9) on all the
multiples of 10, which are infinitely many.

If we remove the “φn(0) = 9” requirement, instead, g(n) = undefined would
be a finite restriction of f belonging to F . Hence, the previous reasoning would
not hold (and we should instead use Rice-Shapiro in the other direction).
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Exercise 4. Let B = {n|φn(2) = undefined ∧ φn(3) = 3}. Prove that, for all
A ∈ RE, A ≤m B.

Solution (sketch). Since K is RE-complete, it suffices to prove K ≤m B.
We take

h(n) = #

(

λx.

{

3 if x = 3 ∧ n ∈ K

undefined otherwise

)

The body of the λx is partial recursive by the if-then-else lemma with RE guard.
Hence, by the s-m-n theorem h is total recursive. We now check it is indeed a
reduction.

• If n ∈ K, then

φh(n)(x) =

{

3 if x = 3 ∧ true

undefined otherwise
=

{

3 if x = 3

undefined otherwise

In particular, φh(n)(3) = 3 and φh(n)(2) = undefined, hence h(n) ∈ B.

• If n 6∈ K, then

φh(n)(x) =

{

3 if x = 3 ∧ false

undefined otherwise
= undefined

In particular, φh(n)(3) = undefined 6= 3, hence h(n) 6∈ B.

Exercise 5. State whether f ∈ R where

f(n) =

{

n2 if φn(2) is defined

4 · n+ 5 otherwise

Solution (sketch). We prove f 6∈ R by contradiction. Assuming f ∈ R,
since f is total it is easy to construct a verifier for A = {n|f(n) = n2}. Hence,
A ∈ R. According to the definition of f we have that A = {n | φn(2) defined ∨
n = 5} (note that n2 = 4 · n + 5 iff n = 5 when n ∈ N). Let B = {5} if φ5(2)
is undefined, and B = ∅ otherwise. In any case, B is finite, hence recursive.
We then consider the set C = A \ B = {n|φn(2) defined} which is recursive
bcause it is a difference of R sets. But then, by Rice we can prove C 6∈ R –
contradiction.

Exercise 6. ⋆ Prove that any infinite set A ∈ RE includes an infinite set
B ∈ R.
Some hints are provided below:

• [1% score] Rewrite “A ∈ RE” in a different but equivalent way.

• [1% score] Prove that, if f ∈ R is total, then g(n) = max{f(x) | 0 ≤ x ≤
n} is recursive and monotonic (n ≤ m =⇒ g(n) ≤ g(m)).

• [98% score] Define B exploiting the above and conclude.

Solution (sketch). Intentionally omitted.
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