Computability Final Test — 2014-01-13

Notes.

- Answer both theory questions, and choose and solve <u>two</u> exercises, only. Solving more exercises results in the <u>failure</u> of the test.
- To pass the exam you need to provide a reasonable contribution in *both* Theory and Exercises parts.
- Exercises with higher number award more points. To achieve a score ≥ 28 you have to solve an exercise marked with \star below.
- Significantly wrong answers will result in negative scores.
- Always provide a justification for your answers.

Reminder: when equating the results of partial functions (as in $\phi_i(3) = \phi_i(5)$), we mean that <u>either</u> 1) both sides of the equation are defined, and evaluate to the same natural number, <u>or</u> 2) both sides are undefined.

Theory

Question 1. Use a diagonalization argument to prove that a partial function (of your choice) is not recursive.

Answer. See for instance Th. 37 (as suggested at the bottom of page 115), or alternatively Lemma 140 (since λ -definability is equivalent to recursivity).

Question 2. Prove that, if $\exists f \in \mathcal{R}$. $A = \operatorname{ran}(f)$, then $A \in \mathcal{RE}$.

Answer. See Lemma 246.

Exercises

Exercise 3. Prove whether $A \in \mathcal{RE}$, where:

$$A = \{n \mid \phi_n(0) = 9 \land \forall x \in \mathbb{N}. \ \phi_n(x) = \phi_n(x+10)\}$$

Then, briefly discuss if your reasoning still holds if we remove the " $\phi_n(0) = 9$ " requirement from the definition above.

Solution (sketch). $A \notin \mathcal{RE}$ by Rice-Shapiro (\Rightarrow) . Indeed, A is semantically closed (easy to check). Let \mathcal{F} be the associated set of functions. If we consider f(n) = 9, we clearly have $f \in \mathcal{F}$. However, any finite restriction g of f can not belong to \mathcal{F} because in that case it would be defined (= 9) on all the multiples of 10, which are infinitely many.

If we remove the " $\phi_n(0) = 9$ " requirement, instead, g(n) = undefined would be a finite restriction of f belonging to \mathcal{F} . Hence, the previous reasoning would not hold (and we should instead use Rice-Shapiro in the other direction). \Box **Exercise 4.** Let $B = \{n | \phi_n(2) = undefined \land \phi_n(3) = 3\}$. Prove that, for all $A \in \mathcal{RE}, A \leq_m B$.

Solution (sketch). Since K is \mathcal{RE} -complete, it suffices to prove $K \leq_m B$. We take

$$h(n) = \# \left(\lambda x. \begin{cases} 3 & \text{if } x = 3 \land n \in \mathsf{K} \\ undefined & \text{otherwise} \end{cases} \right)$$

The body of the λx is partial recursive by the if-then-else lemma with \mathcal{RE} guard. Hence, by the s-m-n theorem h is total recursive. We now check it is indeed a reduction.

• If $n \in \mathsf{K}$, then

$$\phi_{h(n)}(x) = \begin{cases} 3 & \text{if } x = 3 \land true \\ undefined & \text{otherwise} \end{cases} = \begin{cases} 3 & \text{if } x = 3 \\ undefined & \text{otherwise} \end{cases}$$

In particular, $\phi_{h(n)}(3) = 3$ and $\phi_{h(n)}(2) = undefined$, hence $h(n) \in B$.

• If $n \notin \mathsf{K}$, then

$$\phi_{h(n)}(x) = \begin{cases} 3 & \text{if } x = 3 \land false\\ undefined & \text{otherwise} \end{cases} = undefined$$

In particular, $\phi_{h(n)}(3) = undefined \neq 3$, hence $h(n) \notin B$.

Exercise 5. State whether $f \in \mathcal{R}$ where

$$f(n) = \begin{cases} n^2 & \text{if } \phi_n(2) \text{ is defined} \\ 4 \cdot n + 5 & \text{otherwise} \end{cases}$$

Solution (sketch). We prove $f \notin \mathcal{R}$ by contradiction. Assuming $f \in \mathcal{R}$, since f is total it is easy to construct a verifier for $A = \{n | f(n) = n^2\}$. Hence, $A \in \mathcal{R}$. According to the definition of f we have that $A = \{n \mid \phi_n(2) \text{ defined } \lor n = 5\}$ (note that $n^2 = 4 \cdot n + 5$ iff n = 5 when $n \in \mathbb{N}$). Let $B = \{5\}$ if $\phi_5(2)$ is undefined, and $B = \emptyset$ otherwise. In any case, B is finite, hence recursive. We then consider the set $C = A \setminus B = \{n | \phi_n(2) \text{ defined}\}$ which is recursive because it is a difference of \mathcal{R} sets. But then, by Rice we can prove $C \notin \mathcal{R}$ – contradiction.

Exercise 6. \star Prove that any infinite set $A \in \mathcal{RE}$ includes an infinite set $B \in \mathcal{R}$.

Some hints are provided below:

- [1% score] Rewrite " $A \in \mathcal{RE}$ " in a different but equivalent way.
- [1% score] Prove that, if $f \in \mathcal{R}$ is total, then $g(n) = max\{f(x) \mid 0 \le x \le n\}$ is recursive and monotonic $(n \le m \implies g(n) \le g(m))$.
- [98% score] Define B exploiting the above and conclude.

Solution (sketch). Intentionally omitted.