Computability Assignments Comprehensive List 2013/14

December 9, 2013

Please keep this file anonymous: do not write your name inside this file.

More information about assignments at http://disi.unitn.it/~zunino/teaching/computability/assignments Please do not submit a file containing only the answers; edit this file, instead, filling the answer sections.

1 Question

Define a binary property p(x, y) over natural numbers that satisfies both the requisites:

- 1. $\forall x \in \mathbb{N} : \exists y \in \mathbb{N} : p(x, y)$ and
- 2. it is false that $\forall y \in \mathbb{N}. \exists x \in \mathbb{N}. p(x, y)$

Provide a definition for p, and a proof for the above claims.

1.1 Answer

Please keep this file anonymous: do not write your name inside this file. More information about assignments at http://disi.unitn.it/~zunino/teaching/computability/assignments

2 Question

In this exercise, p(x) and q(x) will be two unary properties over natural numbers, and P and Q will denote the sets $P = \{x \in \mathbb{N} : p(x) \text{ holds}\}$ and $Q = \{x \in \mathbb{N} : q(x) \text{ holds}\}$. If possible, for each of the cases below find two properties p(x) and q(x) such that $\forall x \in \mathbb{N}$. $p(x) \Rightarrow q(x)$ and

- 1. $P \subset Q$ (strict inclusion);
- 2. $Q \subset P$ (strict inclusion);
- 3. $P \setminus Q \neq \emptyset;$
- 4. $Q \setminus P \neq \emptyset$.

If for some of the above cases it's impossible to find such properties, provide a brief explanation of why is it so.

2.1 Answer

Write your answer here.

3 Preliminaries

Given an infinite sequence of sets $(A_i)_{i\in\mathbb{N}}$, we define $\bigcap_{i=0}^{\infty} A_i = \bigcap \{A_i \mid i \in \mathbb{N}\} = \{x \mid \forall i \in \mathbb{N} \ x \in A_i\}$ and $\bigcap_{i=0}^k A_i = \bigcap \{A_i \mid i \in \mathbb{N} \ \land \ i \leq k\} = A_0 \cap A_1 \cap \cdots \cap A_k$.

4 Question

Assume $(A_i)_{i \in \mathbb{N}}$ to be an infinite sequence of sets of natural numbers, satisfying

$$\mathbb{N} \supseteq A_0 \supseteq A_1 \supseteq A_2 \supseteq A_3 \cdots (*)$$

For each property p_i shown below, state whether

- the hypothesis (*) is sufficient to conclude that p_i holds; or
- the hypothesis (*) is sufficient to conclude that p_i does not hold; or
- the hypothesis (*) is not sufficient to conclude anything about the truth of p_i .

Justify your answers (briefly).

- 1. $p_1: \forall k \in \mathbb{N}. A_k = \bigcap_{i=0}^k A_i;$
- 2. p_2 : if $\forall i \in \mathbb{N}$. A_i is finite, then there exists $j \in \mathbb{N}$ such that $A_j = A_{j+1}$;
- 3. p_3 : for all *i*, if A_i is finite, then $A_i = A_{i+1}$;
- 4. p_4 : if $\forall i \in \mathbb{N}$. $A_i \neq A_{i+1}$, then $\bigcap_{i=0}^{\infty} A_i = \emptyset$;
- 5. p_5 : if $\forall i \in \mathbb{N}$. A_i is finite, then $\bigcap_{i=0}^{\infty} A_i$ is finite;
- 6. p_6 : if $\forall i \in \mathbb{N}$. A_i is infinite, then $\bigcap_{i=0}^{\infty} A_i$ is finite;
- 7. p_7 : if $\forall i \in \mathbb{N}$. A_i is infinite, then $\bigcap_{i=0}^{\infty} A_i$ is infinite.

4.1 Answer

Please keep this file anonymous: do not write your name inside this file.

More information about assignments at http://disi.unitn.it/~zunino/teaching/computability/assignments Please do not submit a file containing only the answers; edit this

file, instead, filling the answer sections.

5 Question

Recall the notions of image and preimage of a set with respect to a function: formally, if $A \subseteq X$, then $f(A) = \{f(x) | x \in A\} \subseteq Y$ and that, if $B \subseteq Y$, then $f^{-1}(B) = \{x | x \in X \land f(x) \in B\} \subseteq X$. (Note that here A and B are not points in the domains of f, f^{-1} , but rather sets of such points)

- 1. For $A \subseteq X$, determine the relation $(\subseteq, =, \supseteq)$ between A and $f^{-1}(f(A))$.
- 2. For $B \subseteq Y$, determine the relation $(\subseteq, =, \supseteq)$ between B and $f(f^{-1}(B))$.
- 3. If $C \subset A \subseteq X$, is it always true that $f(C) \subset f(A)$?
- 4. If $C \subset B \subseteq Y$ and $f^{-1}(B) \neq \emptyset$, is it always true that $f^{-1}(C) \subset f^{-1}(B)$?

5.1 Answer

Write your answer here.

6 Question

Let A, B be sets, and let id_A, id_B denote the identity functions over A and B respectively. Assume $f \in (A \to B)$ and $g \in (B \to A)$ be functions satisfying $g \circ f = id_A$ and $f \circ g = id_B$, where as usual \circ denotes function composition. Prove that f is a bijection (i.e., injective and surjective).

6.1 Answer

Write your answer here.

7 Question

(This question is more challenging.) Find two functions $f, g \in (\mathbb{N} \to \mathbb{N})$ that satisfy all the following conditions:

- 1. $\operatorname{ran}(f) \neq \mathbb{N}$ and $\operatorname{ran}(g) \neq \mathbb{N}$;
- 2. ran(f) and ran(g) are infinite sets;

- 3. $\operatorname{ran}(h) = \mathbb{N}$ where h(n) = f(n) + g(n);
- 4. $\exists n \in \mathbb{N}$. $\operatorname{ran}(g \circ f) = \{n\}$.

7.1 Answer

Please keep this file anonymous: do not write your name inside this file.

More information about assignments at $http://disi.unitn.it/\sim zunino/teaching/computability/assignments$ Please do not submit a file containing only the answers; edit this file, instead, filling the answer sections.

Question 8

Let A, B be sets and suppose that $A \leftrightarrow B$ (i.e. there exists a bijection $f \in$ $(A \to B)$). Show that for all sets C, $(C \to (A \times A)) \leftrightarrow (C \to (A \times B))$.

8.1 Answer

Write your answer here.

Question 9

- 1. Doeas a surjective function $f \in (\mathbb{N} \to \{0, 1, 2, 3\})$ exist?
- 2. Does an injective function $f \in (\mathcal{P}(\mathbb{N}) \rightsquigarrow \mathbb{N})$ exist?
- 3. Does an injective function $f \in (\mathcal{P}(\mathbb{N}) \to \mathbb{N})$ exist?

Justify your answers.

9.1 Answer

Write your answer here.

10Question

Let A, B be nonempty sets and let $f \in (A \to B)$. Define a function $g \in (B \rightsquigarrow A)$ such that $\operatorname{dom}(g) \neq \emptyset$ and for all $b \in \operatorname{dom}(g)$, $(f \circ g)(b) = b$.

10.1Answer

Please keep this file anonymous: do not write your name inside this file.

More information about assignments at http://disi.unitn.it/~zunino/teaching/computability/assignments Please do not submit a file containing only the answers; edit this file, instead, filling the answer sections.

11 Question

Prove by induction that $\forall k \in \mathbb{N}$. $9^k - 2^k$ is a multiple of 7. Follow the steps outlined below.

- 1. Prove that, if k = 0, then $9^0 2^0$ is a multiple of 7. This is the basis of the induction.
- 2. Now, suppose that for a *generic* natural number n, it is true that $9^n 2^n$ is a multiple of 7. By only using this *inductive hypothesis*, prove that $9^{n+1} 2^{n+1}$ is a multiple of 7. To do so, use the identity:

$$9^{n+1} - 2^{n+1} = 9^{n+1} - 9^n \cdot 2 + 9^n \cdot 2 - 2^{n+1}$$

and a clever factorization of the right-hand side of the equality. Remember that, at some point, you are expected to use the *inductive hypothesis*.

11.1 Answer

Write your answer here.

12 Preliminaries

Let P(k) be the property " $\forall n, m \in \mathbb{N}$. max(n,m) = k implies n = m". The following is a proof by induction that $\forall k \in \mathbb{N}. P(k)$.

- 1. Basis of the induction: if max(n,m) = 0 then n = m = 0, as we wanted.
- 2. Inductive step: suppose that P(k) is true for a generic natural number k; we want to prove that this implies P(k + 1), i.e. that for all natural numbers n, m such that max(n, m) = k + 1, n = m. So, let $n, m \in \mathbb{N}$ satisfy max(n,m) = k+1. Then max(n-1,m-1) = max(n,m) 1 = k. By the induction hypothesis, it follows that n-1 = m-1, and therefore n = m. This proves P(k + 1), so the induction step is complete.

13 Question

Is the above proof correct? If not, can you tell what is wrong with it?

13.1 Answer

Please keep this file anonymous: do not write your name inside this file.

More information about assignments at http://disi.unitn.it/~zunino/teaching/computability/assignments Please do not submit a file containing only the answers; edit this file, instead, filling the answer sections.

14 Question

- Remember that for all $A \subseteq \mathbb{N}$, $\overline{A} = \mathbb{N} \setminus A$, and id_A is the identity function on A. Let $f \in (\mathbb{N} \to \mathbb{N})$ and let $A = \{f(n) | n \text{ is a prime number}\}.$
 - 1. Characterize the elements of the set \overline{A} (i.e. find a property p such that $\overline{A} = \{n|p(n)\}$). Notice that p could be a conjunction of many "simpler" properties.
 - 2. Define a function $g \in (A \to \mathbb{N})$ such that $f \circ g = id_A$.

14.1 Answer

Write your answer here.

15 Question

Let $A = \{n | \exists m \in \mathbb{N}. n = m^2\}$ and $B = \{2n | n \in \mathbb{N}\}$. Following the steps outlined below, define a bijection $f \in (\mathbb{N} \to \mathbb{N})$ such that f(A) = B and $f(\overline{A}) = \overline{B}$.

- 1. Provide a bijection $g \in (A \to \mathbb{N})$.
- 2. Provide a bijection $h \in (\mathbb{N} \to B)$.
- 3. Argue that there exists a bijection $g' \in (\overline{A} \to \mathbb{N})$.
- 4. Provide a bijection $h' \in (\mathbb{N} \to \overline{B})$.
- 5. Prove that the function $f \in (\mathbb{N} \to \mathbb{N})$ defined as

$$f(n) = \begin{cases} (h \circ g)(n) & \text{if } n \in A\\ (h' \circ g')(n) & \text{if } n \in \overline{A} \end{cases}$$

satisfies all the desired properties.

15.1 Answer

Please keep this file anonymous: do not write your name inside this file.

More information about assignments at http://disi.unitn.it/~zunino/teaching/computability/assignments Please do not submit a file containing only the answers; edit this

file, instead, filling the answer sections.

16 Question

A set $C \subseteq \mathbb{N}$ is called *upward closed* iff $\forall x \in C$. $\forall y \in \mathbb{N}$ $(y > x \Longrightarrow y \in C)$.

Provide a characterization of the set $Z = \{X | X \in \mathcal{P}(\mathbb{N}) \land X \text{ is upward closed}\}$ (i.e. find a property p such that $Z = \{X | X \in \mathcal{P}(\mathbb{N}) \land p(X)\}$, where p could be a conjunction of many "simpler" properties).

16.1 Answer

Write your answer here.

17 Question

A set $X \subseteq \mathbb{N}$ is called *cofinite* iff \overline{X} is finite.

Prove or refute the statement: "if $X, Y \in \mathcal{P}(\mathbb{N})$ are NOT cofinite, then $X \cup Y$ is NOT cofinite".

17.1 Answer

Write your answer here.

18 Question

In what follows, $A \subseteq \mathbb{N}$.

- 1. Prove that if there exists a bijection $f \in (\mathbb{N} \to A)$, then A is infinite.
- 2. Can you provide an example of an infinite set A and of a function $f \in (\mathbb{N} \to A)$ which is neither injective nor surjective?

18.1 Answer

Please keep this file anonymous: do not write your name inside this file.

More information about assignments at http://disi.unitn.it/~zunino/teaching/computability/assignments Please do not submit a file containing only the answers; edit this file, instead, filling the answer sections.

19 Preliminaries

Recall that an equivalence relation \sim over a set A is a binary relation that satisfies all of the following:

∀x ∈ A. x ~ x (reflexivity);
∀x, y ∈ A. x ~ y ⇒ y ~ x (symmetry);
∀x, y, z ∈ A. x ~ y ∧ y ~ z ⇒ x ~ z (transitivity).

If A is a set and \sim is an equivalence relation over A, then for all $x \in A$ one can define the *equivalence class* of x with respect to \sim , that is the set $[x] = \{y|y \in A \land x \sim y\}$. We will denote by A/\sim the set of all equivalence classes of elements of A, that is $A/\sim = \{[x]|x \in A\}$.

20 Question

Let A be a set and \sim an equivalence relation over A. Show that, for all $x, y \in A$, either [x] = [y] or $[x] \cap [y] = \emptyset$. Hint: remember that, by the *law of excluded middle*, for any choice of $x, y \in A$, either $x \sim y$ or $x \not\sim y$ (where $x \not\sim y$ means $\neg(x \sim y)$).

20.1 Answer

Write your answer here.

21 Question

Let $f \in (\mathbb{N} \to \mathbb{N})$. For each of the relations below, prove whether it is an equivalence relation over \mathbb{N} :

- 1. $x \sim y$ if and only if f(x) = f(y);
- 2. $x \sim y$ if and only if $f(x) \neq f(y)$;
- 3. $x \sim y$ if and only if $f^{-1}(x) \cap f^{-1}(y) \neq \emptyset$.

21.1 Answer

Write your answer here.

22 Question

Let $\{\varphi_n\}_{n\in\mathbb{N}}$ be an enumeration for the set of recursive partial functions from \mathbb{N} to \mathbb{N} , and let \sim be the equivalence relation over \mathbb{N} defined as follows: $i \sim j$ if and only if $\varphi_i = \varphi_j$. Moreover, let $e \in (\mathbb{N} \times \mathbb{N} \rightsquigarrow \mathbb{N})$ the partial function defined as $e(a, b) = \varphi_a(b)$.

Prove that, if $i \sim j$, then $\forall b \in \mathbb{N}$, e(i, b) = e(j, b).

22.1 Answer

Write your answer here.

23 Remark

Notice that, by what you have proved in the previous exercise, it can be deduced that one can obtain a well-defined partial function $f \in (\mathbb{N}/\sim \times \mathbb{N} \rightsquigarrow \mathbb{N})$ by posing f([a], b) = e(a, b).

Please keep this file anonymous: do not write your name inside this file.

More information about assignments at http://disi.unitn.it/~zunino/teaching/computability/assignments Please do not submit a file containing only the answers; edit this

file, instead, filling the answer sections.

24 Definition

If \sim is an equivalence relation over a set A, a set $B \subseteq A$ is closed under \sim if $\forall x \in B \ \forall y \in A \ (y \sim x \Rightarrow y \in B).$

25 Question

Let \sim be the relation over \mathbb{N} defined as $x \sim y$ if |x - y| is a multiple of 3. Show that \sim is an equivalence relation and determine all sets of natural numbers closed under \sim .

Hint 1: there is only a finite number of such sets.

Hint 2: take a look at question 3 below.

25.1 Answer

Write your answer here.

26 Question

Let \sim be an equivalence relation over a nonempty set A. Prove that a subset $B \subseteq A$ is closed under \sim if and only if it is a (possibly empty) union of equivalence classes of elements of A (for the definition of equivalence class of an element of A, see point 1 of assignment 8).

26.1 Answer

Please keep this file anonymous: do not write your name inside this file.

More information about assignments at $http://disi.unitn.it/\sim zunino/teaching/computability/assignments$ Please do not submit a file containing only the answers; edit this file, instead, filling the answer sections.

27**Preliminaries**

Recall that for $a, b \in \mathbb{N}$, $min\{a, b\}$ is the least element between a and b. Recall also that a set $C \subseteq \mathbb{N}$ is called *upward closed* iff $\forall x \in C$. $\forall y \in \mathbb{N}$ $(y > x \Longrightarrow y \in Y)$ C).

Question $\mathbf{28}$

Let $g, h \in \mathcal{R}$, and define

$$f(x) = \begin{cases} g(x) & whenever \ x \in \mathsf{K} \\ \min\{g(x), h(x)\} + 1 & otherwise \end{cases}$$

Is it possible to find g and h such that $f \in \mathcal{R}$ and total? If it is so, provide g, h, and the proof that $f \in \mathcal{R}$ and total; otherwise, provide a proof of why $f \notin \mathcal{R}$ or not total regardless of the choice of g and h.

28.1Answer

Write your answer here.

$\mathbf{29}$ Question

Prove or disprove: there exists an upward closed set $C \notin \mathcal{RE}$.

29.1Answer

Write your answer here.

Question 30

Prove or disprove: the function f defined below belongs to \mathcal{R} .

$$f(n) = \begin{cases} (\varphi_n(n))^n & \text{whenever } \varphi_n(n) \text{ is defined} \\ 77 & \text{otherwise} \end{cases}$$