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Computability Assignment

Year 2013/14 - Number 1

Please keep this �le anonymous: do not write your name inside this �le.

More information about assignments at http://disi.unitn.it/∼zunino/tea
hing/
omputability/assignments

Please do not submit a �le 
ontaining only the answers; edit this

�le, instead, �lling the answer se
tions.

1 Question

De�ne a binary property p(x, y) over natural numbers that satis�es both the

requisites:

1. ∀x ∈ N.∃y ∈ N.p(x, y) and

2. it is false that ∀y ∈ N.∃x ∈ N.p(x, y)

Provide a de�nition for p, and a proof for the above 
laims.

1.1 Answer

Write your answer here.
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2 Question

In this exer
ise, p(x) and q(x) will be two unary properties over natural numbers,

and P and Q will denote the sets P = {x ∈ N : p(x) holds} and Q = {x ∈ N :
q(x) holds}. If possible, for ea
h of the 
ases below �nd two properties p(x) and
q(x) su
h that ∀x ∈ N. p(x) ⇒ q(x) and

1. P ⊂ Q (stri
t in
lusion);

2. Q ⊂ P (stri
t in
lusion);

3. P \Q 6= ∅;

4. Q \ P 6= ∅.

If for some of the above 
ases it's impossible to �nd su
h properties, provide a

brief explanation of why is it so.

2.1 Answer

Write your answer here.

3 Preliminaries

Given an in�nite sequen
e of sets (Ai)i∈N, we de�ne

⋂

∞

i=0
Ai =

⋂

{Ai | i ∈ N} =

{x | ∀i ∈ N x ∈ Ai} and

⋂k

i=0
Ai =

⋂

{Ai | i ∈ N ∧ i ≤ k} = A0 ∩A1 ∩· · ·∩Ak.

4 Question

Assume (Ai)i∈N to be an in�nite sequen
e of sets of natural numbers, satisfying

N ⊇ A0 ⊇ A1 ⊇ A2 ⊇ A3 · · · (∗)

For ea
h property pi shown below, state whether

• the hypothesis (∗) is su�
ient to 
on
lude that pi holds; or

• the hypothesis (∗) is su�
ient to 
on
lude that pi does not hold; or

• the hypothesis (∗) is not su�
ient to 
on
lude anything about the truth

of pi.
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Justify your answers (brie�y).

1. p1: ∀k ∈ N. Ak =
⋂k

i=0
Ai;

2. p2: if ∀i ∈ N. Ai is �nite, then there exists j ∈ N su
h that Aj = Aj+1;

3. p3: for all i, if Ai is �nite, then Ai = Ai+1;

4. p4: if ∀i ∈ N. Ai 6= Ai+1, then

⋂

∞

i=0
Ai = ∅;

5. p5: if ∀i ∈ N. Ai is �nite, then
⋂

∞

i=0
Ai is �nite;

6. p6: if ∀i ∈ N. Ai is in�nite, then
⋂

∞

i=0
Ai is �nite;

7. p7: if ∀i ∈ N. Ai is in�nite, then
⋂

∞

i=0
Ai is in�nite.

4.1 Answer

Write your answer here.
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5 Question

Re
all the notions of image and preimage of a set with respe
t to a fun
tion:

formally, if A ⊆ X , then f(A) = {f(x)|x ∈ A} ⊆ Y and that, if B ⊆ Y , then

f−1(B) = {x|x ∈ X ∧ f(x) ∈ B} ⊆ X . (Note that here A and B are not points

in the domains of f, f−1
, but rather sets of su
h points)

1. For A ⊆ X , determine the relation (⊆,=,⊇) between A and f−1(f(A)).

2. For B ⊆ Y , determine the relation (⊆,=,⊇) between B and f(f−1(B)).

3. If C ⊂ A ⊆ X , is it always true that f(C) ⊂ f(A)?

4. If C ⊂ B ⊆ Y and f−1(B) 6= ∅, is it always true that f−1(C) ⊂ f−1(B)?

5.1 Answer

Write your answer here.

6 Question

Let A,B be sets, and let idA, idB denote the identity fun
tions over A and B
respe
tively. Assume f ∈ (A → B) and g ∈ (B → A) be fun
tions satisfying

g ◦ f = idA and f ◦ g = idB , where as usual ◦ denotes fun
tion 
omposition.

Prove that f is a bije
tion (i.e., inje
tive and surje
tive).

6.1 Answer

Write your answer here.

7 Question

(This question is more 
hallenging.) Find two fun
tions f, g ∈ (N → N) that
satisfy all the following 
onditions:

1. ran(f) 6= N and ran(g) 6= N;

2. ran(f) and ran(g) are in�nite sets;
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3. ran(h) = N where h(n) = f(n) + g(n);

4. ∃n ∈ N. ran(g ◦ f) = {n}.

7.1 Answer

Write your answer here.
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8 Question

Let A,B be sets and suppose that A ↔ B (i.e. there exists a bije
tion f ∈
(A → B)). Show that for all sets C, (C → (A×A)) ↔ (C → (A×B)).

8.1 Answer

Write your answer here.

9 Question

1. Doeas a surje
tive fun
tion f ∈ (N → (N → {0, 1, 2, 3})) exist?

2. Does an inje
tive fun
tion f ∈ (P(N) N) exist?

3. Does an inje
tive fun
tion f ∈ (P(N) → N) exist?

Justify your answers.

9.1 Answer

Write your answer here.

10 Question

Let A,B be nonempty sets and let f ∈ (A → B). De�ne a fun
tion g ∈ (B  A)
su
h that dom(g) 6= ∅ and for all b ∈ dom(g), (f ◦ g)(b) = b.

10.1 Answer

Write your answer here.
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11 Question

Prove by indu
tion that ∀k ∈ N. 9k − 2k is a multiple of 7. Follow the steps

outlined below.

1. Prove that, if k = 0, then 90 − 20 is a multiple of 7. This is the basis of

the indu
tion.

2. Now, suppose that for a generi
 natural number n, it is true that 9n − 2n

is a multiple of 7. By only using this indu
tive hypothesis, prove that

9n+1 − 2n+1
is a multiple of 7. To do so, use the identity:

9n+1 − 2n+1 = 9n+1 − 9n · 2 + 9n · 2− 2n+1

and a 
lever fa
torization of the right-hand side of the equality. Remember

that, at some point, you are expe
ted to use the indu
tive hypothesis.

11.1 Answer

Write your answer here.

12 Preliminaries

Let P (k) be the property �∀n,m ∈ N. max(n,m) = k implies n = m�. The

following is a proof by indu
tion that ∀k ∈ N.P (k).

1. Basis of the indu
tion: if max(n,m) = 0 then n = m = 0, as we wanted.

2. Indu
tive step: suppose that P (k) is true for a generi
 natural number

k; we want to prove that this implies P (k + 1), i.e. that for all natural

numbers n,m su
h that max(n,m) = k + 1, n = m. So, let n,m ∈ N

satisfy max(n,m) = k+1. Then max(n− 1,m− 1) = max(n,m)− 1 = k.
By the indu
tion hypothesis, it follows that n− 1 = m− 1, and therefore

n = m. This proves P (k + 1), so the indu
tion step is 
omplete.

13 Question

Is the above proof 
orre
t? If not, 
an you tell what is wrong with it?
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13.1 Answer

Write your answer here.
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14 Question

Remember that for all A ⊆ N, A = N \A, and idA is the identity fun
tion on A.
Let f ∈ (N → N) and let A = {f(n)|n is a prime number}.

1. Chara
terize the elements of the set A (i.e. �nd a property p su
h that

A = {n|p(n)}). Noti
e that p 
ould be a 
onjun
tion of many �simpler�

properties.

2. De�ne a fun
tion g ∈ (A → N) su
h that f ◦ g = idA.

14.1 Answer

Write your answer here.

15 Question

Let A = {n|∃m ∈ N. n = m2} and B = {2n|n ∈ N}. Following the steps

outlined below, de�ne a bije
tion f ∈ (N → N) su
h that f(A) = B and

f(A) = B.

1. Provide a bije
tion g ∈ (A → N).

2. Provide a bije
tion h ∈ (N → B).

3. Argue that there exists a bije
tion g′ ∈ (A → N).

4. Provide a bije
tion h′ ∈ (N → B).

5. Prove that the fun
tion f ∈ (N → N) de�ned as

f(n) =

{

(h ◦ g)(n) if n ∈ A

(h′ ◦ g′)(n) if n ∈ A

satis�es all the desired properties.

15.1 Answer

Write your answer here.
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16 Question

A set C ⊆ N is 
alled upward 
losed i� ∀x ∈ C. ∀y ∈ N (y > x =⇒ y ∈ C).
Provide a 
hara
terization of the set Z = {X |X ∈ P(N)∧X is upward closed}

(i.e. �nd a property p su
h that Z = {X |X ∈ P(N) ∧ p(X)}, where p 
ould be

a 
onjun
tion of many �simpler� properties).

16.1 Answer

Write your answer here.

17 Question

A set X ⊆ N is 
alled 
o�nite i� X is �nite.

Prove or refute the statement: �if X, Y ∈ P(N) are NOT 
o�nite, then

X ∪ Y is NOT 
o�nite�.

17.1 Answer

Write your answer here.

18 Question

In what follows, A ⊆ N.

1. Prove that if there exists a bije
tion f ∈ (N → A), then A is in�nite.

2. Can you provide an example of an in�nite set A and of a fun
tion f ∈
(N → A) whi
h is neither inje
tive nor surje
tive?

18.1 Answer

Write your answer here.
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19 Preliminaries

Re
all that an equivalen
e relation ∼ over a set A is a binary relation that

satis�es all of the following:

1. ∀x ∈ A. x ∼ x (re�exivity);

2. ∀x, y ∈ A. x ∼ y ⇒ y ∼ x (symmetry);

3. ∀x, y, z ∈ A. x ∼ y ∧ y ∼ z ⇒ x ∼ z (transitivity).

If A is a set and ∼ is an equivalen
e relation over A, then for all x ∈ A one


an de�ne the equivalen
e 
lass of x with respe
t to ∼, that is the set [x] =
{y|y ∈ A ∧ x ∼ y}. We will denote by A/∼ the set of all equivalen
e 
lasses of

elements of A, that is A/∼ = {[x]|x ∈ A}.

20 Question

Let A be a set and ∼ an equivalen
e relation over A. Show that, for all x, y ∈ A,
either [x] = [y] or [x] ∩ [y] = ∅. Hint: remember that, by the law of ex
luded

middle, for any 
hoi
e of x, y ∈ A, either x ∼ y or x 6∼ y (where x 6∼ y means

¬(x ∼ y)).

20.1 Answer

Write your answer here.

21 Question

Let f ∈ (N → N). For ea
h of the relations below, prove whether it is an

equivalen
e relation over N:

1. x ∼ y if and only if f(x) = f(y);

2. x ∼ y if and only if f(x) 6= f(y);

3. x ∼ y if and only if f−1(x) ∩ f−1(y) 6= ∅.
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21.1 Answer

Write your answer here.

22 Question

Let {ϕn}n∈N be an enumeration for the set of re
ursive partial fun
tions from

N to N, and let ∼ be the equivalen
e relation over N de�ned as follows: i ∼ j if

and only if ϕi = ϕj . Moreover, let e ∈ (N×N N) the partial fun
tion de�ned

as e(a, b) = ϕa(b).
Prove that, if i ∼ j, then ∀b ∈ N, e(i, b) = e(j, b).

22.1 Answer

Write your answer here.

23 Remark

Noti
e that, by what you have proved in the previous exer
ise, it 
an be dedu
ed

that one 
an obtain a well-de�ned partial fun
tion f ∈ (N/∼ ×N N) by posing
f([a], b) = e(a, b).
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24 De�nition

If ∼ is an equivalen
e relation over a set A, a set B ⊆ A is 
losed under ∼ if

∀x ∈ B ∀y ∈ A (y ∼ x ⇒ y ∈ B).

25 Question

Let ∼ be the relation over N de�ned as x ∼ y if |x− y| is a multiple of 3. Show
that ∼ is an equivalen
e relation and determine all sets of natural numbers


losed under ∼.
Hint 1: there is only a �nite number of su
h sets.

Hint 2: take a look at question 3 below.

25.1 Answer

Write your answer here.

26 Question

Let∼ be an equivalen
e relation over a nonempty setA. Prove that a subset B ⊆
A is 
losed under ∼ if and only if it is a (possibly empty) union of equivalen
e


lasses of elements of A (for the de�nition of equivalen
e 
lass of an element of

A, see point 1 of assignment 8).

26.1 Answer

Write your answer here.
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27 Preliminaries

Re
all that for a, b ∈ N, min{a, b} is the least element between a and b. Re
all
also that a set C ⊆ N is 
alled upward 
losed i� ∀x ∈ C. ∀y ∈ N (y > x =⇒ y ∈
C).

28 Question

Let g, h ∈ R, and de�ne

f(x) =

{

g(x) whenever x ∈ K

min{g(x), h(x)} + 1 otherwise

Is it possible to �nd g and h su
h that f ∈ R and total? If it is so, provide g,
h, and the proof that f ∈ R and total; otherwise, provide a proof of why f 6∈ R
or not total regardless of the 
hoi
e of g and h.

28.1 Answer

Write your answer here.

29 Question

Prove or disprove: there exists an upward 
losed set C 6∈ RE .

29.1 Answer

Write your answer here.

30 Question

Prove or disprove: the fun
tion f de�ned below belongs to R.

f(n) =

{

(ϕn(n))
n whenever ϕn(n) is defined

77 otherwise
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