Computability Final Test — 2013-09-04

Notes.

- Answer both theory questions, and choose and solve <u>two</u> exercises, only. Solving more exercises results in the <u>failure</u> of the test.
- To pass the exam you need to provide a reasonable contribution in *both* Theory and Exercises parts.
- Exercises with higher number award more points. To achieve a score ≥ 28 you have to solve an exercise marked with \star below.
- Significantly wrong answers will result in negative scores.
- Always provide a justification for your answers.

Reminder: when equating the results of partial functions (as in $\phi_i(3) = \phi_i(5)$), we mean that <u>either</u> 1) both sides of the equation are defined, and evaluate to the same natural number, or 2) both sides are undefined.

Theory

Question 1. Define the m-reducibility relation (\leq_m) . Provide two sets A, B such that $A \leq_m B$ and two sets C, D such that $C \not\leq_m D$.

Question 2. State and prove the Rice-Shapiro theorem (part \leftarrow , only).

Exercises

Exercise 3. Prove whether $A = \{n \mid \exists m \in \mathbb{N} : m \text{ even } \wedge n = m^2\}$ is $\mathcal{R}, \mathcal{RE} \setminus \mathcal{R},$ or not \mathcal{RE} .

Solution (sketch). $A \in \mathcal{R}$. To construct a verifier for A it suffices to proceed as follows. Given an input n, compute the sequence $(2 \cdot 0)^2$, $(2 \cdot 1)^2$, $(2 \cdot 2)^2$, ... until either n is found or some number > n is found. In the first case, return "true", otherwise we return "false". This straightforward to implement and prove correct.

Exercise 4. Prove whether

$$B = \{n \mid \phi_n(0) = \phi_n(1)\} \leq_m \mathsf{K}$$

Solution (sketch). Reduction does not hold since $B \notin \mathcal{RE}$ and $K \in \mathcal{RE}$.

Indeed, we proceed by Rice-Shapiro (\Leftarrow). *B* is clearly semantically closed (easy to check), so we can take \mathcal{F}_B as its associated set of partial functions. To apply Rice-Shapiro, take the finite function g(x) = undefined and the recursive function f(x) = x. Clearly *g* is a restriction of *f*, yet $g \in \mathcal{F}_B$ (undefined = undefined) while $f \notin \mathcal{F}_B$ ($0 \neq 1$).

Exercise 5. For any two partial functions f and g, define $A_{f,g} = \{n \mid f(n) = g(n)\}$.

Prove both the following statements:

1. For any recursive and total f, and any recursive g, we have $A_{f,g} \in \mathcal{RE}$.

2. For some recursive f, and some recursive g, we have $A_{f,g} \notin \mathcal{RE}$.

Solution (sketch).

1) We can define a semi-verifier as follows. Let F and G be any two implementations of f and g respectively. Then:

S(n):

run F(n) and take its result x
run G(n) and take its result y
if x = y then return 1
loop forever

Suppose $n \in A$, hence f(n) = g(n). Since f is total, f(n) is defined, and so is g(n). In such case, S(n) correctly halts and returns 1.

Suppose $n \notin A$, hence $f(n) \neq g(n)$. Since f is total, f(n) is defined. The result of g(n) is either undefined or defined to some natural $\neq f(n)$. In the first case, S(n) will diverge when G(n) is run. In the second case, S(n) will diverge when its last line is reached.

2) Take f(x) = undefined (which is \mathcal{R}) and $g(x) = \tilde{\chi}_{\mathsf{K}}(x)$ (which is \mathcal{R}). Then $A = \{n \mid undefined = \tilde{\chi}_{\mathsf{K}}(n)\} = \bar{\mathsf{K}} \notin \mathcal{RE}$.

Exercise 6. * Answer the following questions:

- [5% score] State the second recursion theorem.
- [95% score] Prove that the set $A = \{n \mid \phi_n(n) = 0\}$ is <u>not</u> semantically closed.

Solution (sketch). Intentionally omitted.