Computability Final Test — 2013-07-15

Notes.

- Answer both theory questions, and choose and solve <u>two</u> exercises, only. Solving more exercises results in the <u>failure</u> of the test.
- To pass the exam you need to provide a reasonable contribution in *both* Theory and Exercises parts.
- Exercises with higher number award more points. To achieve a score ≥ 28 you have to solve an exercise marked with \star below.
- Significantly wrong answers will result in negative scores.
- Always provide a justification for your answers.

Reminder: when equating the results of partial functions (as in $\phi_i(3) = \phi_i(5)$), we mean that <u>either</u> 1) both sides of the equation are defined, and evaluate to the same natural number, <u>or</u> 2) both sides are undefined.

Theory

Question 1. Prove that $A \in \mathcal{RE} \iff A \leq_m \mathsf{K}$. For each lemma used in that proof, provide its statement.

Question 2. State the four alternative characterizations for \mathcal{RE} sets we have seen in the course (and mentioned in a single lemma in the notes). Choose two among such characterizations, and prove that implication holds between them.

Exercises

Exercise 3. Prove whether $\bar{\mathsf{K}} \leq_m A = \{i \mid \mathsf{ran}(\phi_i) \text{ infinite}\}$

Solution (sketch). Take

$$h(n) = \# \left(\lambda x. \begin{cases} x & \text{if } \phi_n(n) \text{ does not halt in } \le x \text{ steps} \\ undefined & \text{otherwise} \end{cases} \right)$$

The function inside the λ is partial recursive by the if-then-else lemma (on \mathcal{R} conditions) since: 1) the condition " $\phi_n(n)$ does not halt in $\leq x$ steps" is recursive (implementable using the step-by-step interpreter); 2) the functions x (identity) and *undefined* are recursive. Hence by the s-m-n lemma, h is well-defined, and recursive total.

We now check that h is indeed a reduction.

- If $n \in \overline{\mathsf{K}}$, then $\phi_n(n)$ never halts, therefore $\phi_{h(n)}(x) = x$ for all x. Hence $\mathsf{ran}(\phi_{h(n)}) = \mathbb{N}$, which is infinite. We conclude $h(n) \in B$.
- If $n \notin \overline{\mathsf{K}}$, then $\phi_n(n)$ halts in some (say k) steps. Therefore, $\phi_{h(n)}(x) = x$ for all x < k, and $\phi_{h(n)}(x) = undefined$ for $x \ge k$. Hence $\operatorname{ran}(\phi_{h(n)}) = \{0, \ldots, k-1\}$ which is finite. So, $h(n) \notin B$.

Exercise 4. Construct a binary predicate p(x, y) such that we have <u>both</u>: 1) p(x, y) belongs to \mathcal{R} , and 2) $q(x) = \forall y. p(x, y)$ does not belong to \mathcal{RE} . **Extra point.** \star Make p <u>also</u> satisfy 3) $r(x) = \exists y. p(x, y)$ belongs to $\mathcal{RE} \setminus \mathcal{R}$.

Solution (sketch). Take $p(x, y) = {}^{\circ}\phi_x(0)$ does not halt in y steps". This is clearly recursive (decidable e.g. using the step-by-step interpreter). Then, q(x) simplifies to ${}^{\circ}\phi_x(0) = undefined$ " which is not \mathcal{RE} . Indeed, a semi-verifier for q would be a semi-verifier for the set $A = \{i \mid \phi_i(0) = undefined\}$ which is not \mathcal{RE} by Rice-Shapiro (\Leftarrow) as we now show. A is clearly semantically closed, so we let \mathcal{F}_A to be its associated function set. The function g(x) = undefined is a finite-domain function belonging to \mathcal{F}_A . Instead f(x) = 0 is a recursive extension of g which does not belong to \mathcal{F}_A .

Extra point: intentionally omitted.

Exercise 5. Here is an excerpt from a talk of Mr. Rouge Hareng:

... we then obtain a set of recursive functions \mathcal{F} . Define $A = \{i \mid \phi_i \in \mathcal{F}\}$. We now consider two cases, according to whether the set \mathcal{F} is finite or infinite.

- If \mathcal{F} is finite, from its finiteness we obtain that A is recursive.
- If \mathcal{F} is infinite, then A is instead not recursive.

Comment on Mr. Hareng's claims. Provide a proof for each correct claim, and a counterexample for each wrong claim.

Solution (sketch). The first claim is wrong. If we take e.g. the finite set $\mathcal{F} = \{id\}$ we have $A = \{i \mid \phi_i = id\}$ which is not recursive by Rice.

The second claim is also wrong. Take e.g. $\mathcal{F} = \mathcal{R}$, which is infinite. We then obtain $A = \mathbb{N} \in \mathcal{R}$.

Exercise 6. \star Consider the following set of total functions:

$$\mathcal{H} = \left\{ h \in (\mathbb{N}^2 \to \mathbb{N}) \mid \forall x, n. \left(\begin{array}{c} x \in \mathsf{dom}(\phi_n) \implies \phi_{h(n,x)}(x) = \phi_n(x) + 1 \\ \land \\ x \notin \mathsf{dom}(\phi_n) \implies \phi_{h(n,x)}(x) = 0 \end{array} \right) \right\}$$

State whether $\mathcal{H} = \emptyset$. Then state whether $\mathcal{H} \cap \mathcal{R} = \emptyset$.

Solution (sketch). Intentionally omitted.