Computability Final Test — 2013-01-18

Notes.

- Answer both theory questions, and choose and solve <u>two</u> exercises, only. Solving more exercises results in the <u>failure</u> of the test.
- To pass the exam you need to provide a reasonable contribution in *both* Theory and Exercises parts.
- To achieve a score ≥ 28 you have to solve the exercise marked with \star below.
- Significantly wrong answers will result in negative scores.
- Always provide a justification for your answers.

Reminder: when equating the results of partial functions (as in $\phi_i(3) = \phi_i(5)$), we mean that <u>either</u> 1) both sides of the equation are defined, and evaluate to the same natural number, <u>or</u> 2) both sides are undefined.

Theory

Question 1. Prove that \mathcal{RE} sets are closed under binary intersection and union, but not under complement.

Question 2. State and prove the Rice-Shapiro theorem (part \Rightarrow , only).

Exercises

Exercise 3. Prove whether

$$A = \{n \mid \forall x \in \mathbb{N}. \ \phi_n(x^2) = 22\} \in \mathcal{RE}$$

Solution (sketch). $A \notin \mathcal{RE}$, by Rice-Shapiro (\Rightarrow). A is clearly semantically closed (easy to check), so let \mathcal{F}_A denote the associated set of functions.

Take the constant function f(n) = 22. We have $f \in \mathcal{F}_A$ since $f(x^2) = 22$ for all x.

However no finite restriction g of f can belong to \mathcal{F}_A since in that case g would be defined on $1^2, 2^2, 3^2, 4^2, \ldots$ hence on infinitely many points.

Exercise 4. Let $A = \{n \mid \phi_n(3) = 3\}$ and $B = \{n \mid \phi_n(5) = 5\}$. Prove whether $f(n) = \chi_A(n) + \chi_B(n)$ is a recursive total function.

Solution (sketch). f is total (sum of two total functions), but not recursive. By contradiction, assume it is recursive. Hence, the following function g is recursive:

$$g(n) = \begin{cases} 1 & \text{if } f(n) = 2\\ 0 & \text{otherwise} \end{cases}$$

(g is recursive since f is recursive and total, so f(n) = 2 is a recursive property).

We now prove that $\chi_{A\cap B}(n) = g(n)$. Indeed if $n \in A \cap B$ then f(n) = 1 + 1 = 2, so g(n) = 1. Otherwise, if $n \notin A \cap B$ then f(n) = 0 or 1, so g(n) = 0.

Hence, $A \cap B$ is recursive. However, $A \cap B = \{n \mid \phi_n(3) = 3 \land \phi_n(5) = 5\}$ which is not recursive by Rice (easy to check). This is a contradiction.

Exercise 5. Prove whether

$$A = \{n \mid n \neq 0 \land \forall a, b \in \mathbb{N} . (a \cdot b = n \implies \phi_n(a) = 0)\} \in \mathcal{RE}$$

Solution (sketch). $A \in \mathcal{RE}$ since the following is a semi-verifier: procedure $S_A(n)$:

if n=0 then loop forever

for a := 1 to n do

if n mod a = 0 then run $\phi_n(a)$ and take its result r if r \neq 0 then loop forever

return 1

Clearly the code above works as intended for n = 0. In the other cases:

If $n \in A$, all the divisors a of n satisfy $\phi_n(a) = 0$ hence all the calls to the self-interpreter above halt and return z = 0. Hence, the for loop completes and the last line returns 1.

Otherwise, if $n \notin A$, we have $\phi_n(a) \neq 0$ for some divisor a of n. Let a be the minimum such divisor. If $\phi_n(a) = undefined$, then the for loop will get stuck by invoking the self-interpreter. If $\phi_n(a)$ is defined to some natural $\neq 0$, then for loop will get stuck in the explicit infinite loop after the check for z = 0. In either case, $S_A(n)$ loops forever, as it should.

Exercise 6. \star Two sets $A, B \subseteq \mathbb{N}$ are said to be separable iff

 $\exists f \in \mathcal{R}. \ (\forall a \in A. \ f(a) = 1) \land (\forall b \in B. \ f(b) = 0)$

- [5% score] State the T, U-normal form.
- [95% score] Prove whether $A = \{ \mathsf{pair}(i, j) \mid \phi_i, \phi_j \in \mathcal{PR} \land \phi_i = \phi_j \}$ and $B = \{ \mathsf{pair}(i, j) \mid \phi_i, \phi_j \in \mathcal{PR} \land \phi_i \neq \phi_j \}$ are separable.

Solution (sketch). Intentionally omitted.