Computability Final Test — 2012-09-03

Notes.
e Write your name and matriculation number on each of your sheets.

e Solve no more than four (4) exercises. This will be strictly enforced: including
more than 4 answers will result in the immediate failure of the test.

e Significantly wrong answers will result in negative scores.

e Always provide a justification for your answers.

e To achieve a score > 27 you have to solve the exercise marked with x below.

Reminder: when equating results of partial functions (as in ¢;(3) = ¢i(5)), we
mean that either 1) both sides of the equation are defined, and evaluate to the same
natural number, or 2) both sides are undefined.

Exercise 1. State whether A = {n | ¢n(én(1) +2) =3} € RE.

Solution (sketch). A € RE, since a semi-verifier is given by
Sa =An. Eq (Evall n (Add (Evall n™1") T27)) 371 Q

Note that the above halts exactly when both ¢, (1) is defined (with result z)
and ¢, (z + 2) is defined, with result 3. O

Exercise 2. State whether A= {n | Im € N.m? +m =n} € R.

Solution (sketch). A € R: to check whether n € A it is sufficient to
check whether n = 024+0orn=12+1or...or n = n? +n. This can be easily
implemented as a loop, so a verifier exists. Note that larger values of m yield
m? +m > n, so there is no need to check for those. o

Exercise 3. State whether A = {n | ran(¢,) C K} € RE.

Solution (sketch). By Rice-Shapiro (<), A € RE. The set A is seman-
tically closed: let F4 be its associated set of functions. Take g(n) = unde fined
for all n. Such g is a finite function. We have g € F4 since dom(g) = 0 C K.

Then, take f(n) = n, which is a recursive extension of g. We have f & F4 since
dom(f) =N ¢ K. This concludes. O

Exercise 4. Let Ay C Ay and h C g. Define

fu(n) = {g(n) ifn€ Ay o) = {g(n) ifn € A

h(n) otherwise h(n) otherwise

Can we conclude under the hypotheses above that f1 C fo? Provide a proof or
a counterexzample.



Solution (sketch). Yes, we have f; C fo. Assuming that fi(n) is defined,
we prove fa(n) = f1(n). We consider the following cases:

o If n € Ay, then fi(n) = g(n) and n € Ay. Hence by definition fo(n) =
g9(n) = fi(n).

o Ifn & Ay, then fi(n) = h(n). Since f1(n) is defined, h(n) is defined. Since
h C g, then g(n) = h(n) = fi(n). From this we have fa(n) = fi(n): in
fact we do not need to check whether n € Ay since both branches in the
definition of f2 coincide (g(n) = h(n)).

O

Exercise 5. Let
A={1T-n|on(3) =4}  B={17"-n|¢.(3) = 4}
State whether A <,, B, justifying your answer.

Solution (sketch). We have A <,,, B using h(n) = 17 - n as reduction.
Clearly h is recursive and total.

If n € A, then n = 17 - k for some k where ¢x(3) = 4. Hence, h(n) =
17-17 -k € B.

If n ¢ A, then either (1) n is not a multiple of 17 or (2) n = 17 - k for some
k but ¢ (3) # 4. Then:

e In case (1), h(n) = 17 - n can not be a multiple of 172, hence h(n) € B.

e In case (2), h(n) = 17-17-k is a multiple of 172, but we still have h(n) ¢ B
since ¢(3) # 4.

(Note that no other k needs to be considered, since g(n) = 172-n is injective).
O

Exercise 6. Let A= {n | 3z € N. ¢,,(z) = ¢.(n)}. Prove that KUA € R.

Solution (sketch). Since ¢, (n) = ¢n(n) for all n, we have that Jz. ¢, (v) =
¢z (n) holds for all n, hence A = N, which implies AUK € R. O

Exercise 7. Let

h(n):#()\x. {1 ifa=0 )

On(x—1) -2 otherwise

Write h in an equivalent way using the s function from the s-m-n theorem [10%
score]. Then, prove that h is a recursive total function [10% score]. Finally, let
a be such that ¢po = Pn(a) as stated in the second recursion theorem. What is

the result of ¢4(100) [80% score]?



Solution (sketch). Let g such that g(n,z) = {1 ifz= 0 .

¢n(x —1) -2 otherwise
This is clearly recursive (the guard is such, as well as the two branches). Take
any ¢ such that ¢; = g. We can then define h as h(n) = s(i,n), using the s from
the s-m-n theorem.

h is recursive and total because s is such. More pedantically, h is a com-
position of s (rec.total), the constant function 4 (rec.total) and the identity n
(rec.total).

Let a such that ¢q = ¢p(q). We have ¢4(100) = ¢p,(4)(100) = ¢y(;,4)(100) =
i(a,100) = ¢,(99) - 100. By repeating the steps above we get ¢,(100) =
®h(a)(100) =1 - --- -99-100. Hence the result is 100!. O

Exercise 8. Let f be a total recursive function such that, for all n € N:
f2-n)<f(2-n+2) f2-n+1)< f(2-n+3)
Prove that ran(f) € R.

Solution (sketch).  The two properties above imply that (1) f(n) <
f(n +2) for all n, hence by induction we obtain

Yn € N. f(n) > |n/2]

More precisely: the above is clearly true when n = 0 or n = 1. For larger n,
we have f(n) > f(n —2) by (1), and by the inductive hypothesis f(n — 2) >
|272] = |%] — 1. Hence f(n) > | %] — 1 which is equivalent to f(n) > [Z].

Having established the above, we can check whether a given natural = be-
longs to ran(f) by comparing it to f(0), f(1),...,f(2-n + 2). Indeed, for m
larger than 2 - n + 2, we have f(m) > n + 1 > n, hence there’s no need to try

larger m. This test can easily be implemented in a verifier. O

Exercise 9. % Prove that there exists A C N such that
KCA AN AeR A Amﬁmte

Solution (sketch). Intentionally omitted. O



