
Computability Final Test — 2012-09-03

Notes.

• Write your name and matriculation number on each of your sheets.

• Solve no more than four (4) exercises. This will be strictly enforced: including
more than 4 answers will result in the immediate failure of the test.

• Significantly wrong answers will result in negative scores.

• Always provide a justification for your answers.

• To achieve a score ≥ 27 you have to solve the exercise marked with ⋆ below.

Reminder: when equating results of partial functions (as in φi(3) = φi(5)), we

mean that either 1) both sides of the equation are defined, and evaluate to the same

natural number, or 2) both sides are undefined.

Exercise 1. State whether A = {n | φn(φn(1) + 2) = 3} ∈ RE.

Solution (sketch). A ∈ RE , since a semi-verifier is given by

SA = λn. Eq (Eval1 n (Add (Eval1 n pp1qq) pp2qq)) pp3qq I Ω

Note that the above halts exactly when both φn(1) is defined (with result z)
and φn(z + 2) is defined, with result 3.

Exercise 2. State whether A = {n | ∃m ∈ N. m2 +m = n} ∈ R.

Solution (sketch). A ∈ R: to check whether n ∈ A it is sufficient to
check whether n = 02 +0 or n = 12 +1 or . . . or n = n2 + n. This can be easily
implemented as a loop, so a verifier exists. Note that larger values of m yield
m2 +m > n, so there is no need to check for those.

Exercise 3. State whether A = {n | ran(φn) ⊆ K} ∈ RE .

Solution (sketch). By Rice-Shapiro (⇐), A 6∈ RE . The set A is seman-
tically closed: let FA be its associated set of functions. Take g(n) = undefined
for all n. Such g is a finite function. We have g ∈ FA since dom(g) = ∅ ⊆ K.
Then, take f(n) = n, which is a recursive extension of g. We have f 6∈ FA since
dom(f) = N 6⊆ K. This concludes.

Exercise 4. Let A1 ⊆ A2 and h ⊆ g. Define

f1(n) =

{

g(n) if n ∈ A1

h(n) otherwise
f2(n) =

{

g(n) if n ∈ A2

h(n) otherwise

Can we conclude under the hypotheses above that f1 ⊆ f2? Provide a proof or
a counterexample.
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Solution (sketch). Yes, we have f1 ⊆ f2. Assuming that f1(n) is defined,
we prove f2(n) = f1(n). We consider the following cases:

• If n ∈ A1, then f1(n) = g(n) and n ∈ A2. Hence by definition f2(n) =
g(n) = f1(n).

• If n 6∈ A1, then f1(n) = h(n). Since f1(n) is defined, h(n) is defined. Since
h ⊆ g, then g(n) = h(n) = f1(n). From this we have f2(n) = f1(n): in
fact we do not need to check whether n ∈ A2 since both branches in the
definition of f2 coincide (g(n) = h(n)).

Exercise 5. Let

A = {17 · n | φn(3) = 4} B = {172 · n | φn(3) = 4}

State whether A ≤m B, justifying your answer.

Solution (sketch). We have A ≤m B using h(n) = 17 · n as reduction.
Clearly h is recursive and total.

If n ∈ A, then n = 17 · k for some k where φk(3) = 4. Hence, h(n) =
17 · 17 · k ∈ B.

If n 6∈ A, then either (1) n is not a multiple of 17 or (2) n = 17 · k for some
k but φk(3) 6= 4. Then:

• In case (1), h(n) = 17 · n can not be a multiple of 172, hence h(n) 6∈ B.

• In case (2), h(n) = 17 ·17 ·k is a multiple of 172, but we still have h(n) 6∈ B
since φk(3) 6= 4.

(Note that no other k needs to be considered, since g(n) = 172·n is injective).

Exercise 6. Let A = {n | ∃x ∈ N. φn(x) = φx(n)}. Prove that K̄ ∪ A ∈ R.

Solution (sketch). Since φn(n) = φn(n) for all n, we have that ∃x. φn(x) =
φx(n) holds for all n, hence A = N, which implies A ∪ K̄ ∈ R.

Exercise 7. Let

h(n) = #
(

λx.

{

1 if x = 0

φn(x− 1) · x otherwise

)

Write h in an equivalent way using the s function from the s-m-n theorem [10%
score]. Then, prove that h is a recursive total function [10% score]. Finally, let
a be such that φa = φh(a) as stated in the second recursion theorem. What is
the result of φa(100) [80% score]?
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Solution (sketch). Let g such that g(n, x) =

{

1 if x = 0

φn(x− 1) · x otherwise
.

This is clearly recursive (the guard is such, as well as the two branches). Take
any i such that φi = g. We can then define h as h(n) = s(i, n), using the s from
the s-m-n theorem.

h is recursive and total because s is such. More pedantically, h is a com-
position of s (rec.total), the constant function i (rec.total) and the identity n
(rec.total).

Let a such that φa = φh(a). We have φa(100) = φh(a)(100) = φs(i,a)(100) =
φi(a, 100) = φa(99) · 100. By repeating the steps above we get φa(100) =
φh(a)(100) = 1 · · · · · 99 · 100. Hence the result is 100!.

Exercise 8. Let f be a total recursive function such that, for all n ∈ N:

f(2 · n) < f(2 · n+ 2) f(2 · n+ 1) < f(2 · n+ 3)

Prove that ran(f) ∈ R.

Solution (sketch). The two properties above imply that (1) f(n) <
f(n+ 2) for all n, hence by induction we obtain

∀n ∈ N. f(n) ≥ ⌊n/2⌋

More precisely: the above is clearly true when n = 0 or n = 1. For larger n,
we have f(n) > f(n − 2) by (1), and by the inductive hypothesis f(n − 2) ≥
⌊n−2

2 ⌋ = ⌊n
2 ⌋ − 1. Hence f(n) > ⌊n

2 ⌋ − 1 which is equivalent to f(n) ≥ ⌊n
2 ⌋.

Having established the above, we can check whether a given natural x be-
longs to ran(f) by comparing it to f(0), f(1), . . . , f(2 · n + 2). Indeed, for m
larger than 2 · n + 2, we have f(m) ≥ n + 1 > n, hence there’s no need to try
larger m. This test can easily be implemented in a verifier.

Exercise 9. ⋆ Prove that there exists A ⊆ N such that

K ⊆ A ∧ A ∈ R ∧ Ā infinite

Solution (sketch). Intentionally omitted.
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