Computability Final Test — 2012-09-03

Notes.

- Write your name and matriculation number on each of your sheets.
- Solve <u>no more than four</u> (4) exercises. This will be strictly enforced: including more than 4 answers will result in the <u>immediate failure</u> of the test.
- Significantly wrong answers will result in negative scores.
- Always provide a justification for your answers.
- To achieve a score ≥ 27 you have to solve the exercise marked with \star below.

Reminder: when equating results of partial functions (as in $\phi_i(3) = \phi_i(5)$), we mean that <u>either</u> 1) both sides of the equation are defined, and evaluate to the same natural number, or 2) both sides are undefined.

Exercise 1. State whether $A = \{n \mid \phi_n(\phi_n(1) + 2) = 3\} \in \mathcal{RE}$.

Solution (sketch). $A \in \mathcal{RE}$, since a semi-verifier is given by

 $S_A = \lambda n.$ Eq (Eval1 n (Add (Eval1 $n \ \ 1 \) \ \ 2 \)) \ \ 3 \ I \Omega$

Note that the above halts exactly when both $\phi_n(1)$ is defined (with result z) and $\phi_n(z+2)$ is defined, with result 3.

Exercise 2. State whether $A = \{n \mid \exists m \in \mathbb{N}. m^2 + m = n\} \in \mathcal{R}.$

Solution (sketch). $A \in \mathcal{R}$: to check whether $n \in A$ it is sufficient to check whether $n = 0^2 + 0$ or $n = 1^2 + 1$ or ... or $n = n^2 + n$. This can be easily implemented as a loop, so a verifier exists. Note that larger values of m yield $m^2 + m > n$, so there is no need to check for those.

Exercise 3. State whether $A = \{n \mid \operatorname{ran}(\phi_n) \subseteq \mathsf{K}\} \in \mathcal{RE}$.

Solution (sketch). By Rice-Shapiro (\Leftarrow), $A \notin \mathcal{RE}$. The set A is semantically closed: let \mathcal{F}_A be its associated set of functions. Take g(n) = undefined for all n. Such g is a finite function. We have $g \in \mathcal{F}_A$ since $\mathsf{dom}(g) = \emptyset \subseteq \mathsf{K}$. Then, take f(n) = n, which is a recursive extension of g. We have $f \notin \mathcal{F}_A$ since $\mathsf{dom}(f) = \mathbb{N} \not\subseteq \mathsf{K}$. This concludes.

Exercise 4. Let $A_1 \subseteq A_2$ and $h \subseteq g$. Define

$$f_1(n) = \begin{cases} g(n) & \text{if } n \in A_1 \\ h(n) & \text{otherwise} \end{cases} \qquad f_2(n) = \begin{cases} g(n) & \text{if } n \in A_2 \\ h(n) & \text{otherwise} \end{cases}$$

Can we conclude under the hypotheses above that $f_1 \subseteq f_2$? Provide a proof or a counterexample.

Solution (sketch). Yes, we have $f_1 \subseteq f_2$. Assuming that $f_1(n)$ is defined, we prove $f_2(n) = f_1(n)$. We consider the following cases:

- If $n \in A_1$, then $f_1(n) = g(n)$ and $n \in A_2$. Hence by definition $f_2(n) = g(n) = f_1(n)$.
- If $n \notin A_1$, then $f_1(n) = h(n)$. Since $f_1(n)$ is defined, h(n) is defined. Since $h \subseteq g$, then $g(n) = h(n) = f_1(n)$. From this we have $f_2(n) = f_1(n)$: in fact we do not need to check whether $n \in A_2$ since both branches in the definition of f_2 coincide (g(n) = h(n)).

Exercise 5. Let

$$A = \{17 \cdot n \mid \phi_n(3) = 4\} \qquad B = \{17^2 \cdot n \mid \phi_n(3) = 4\}$$

State whether $A \leq_m B$, justifying your answer.

Solution (sketch). We have $A \leq_m B$ using $h(n) = 17 \cdot n$ as reduction. Clearly h is recursive and total.

If $n \in A$, then $n = 17 \cdot k$ for some k where $\phi_k(3) = 4$. Hence, $h(n) = 17 \cdot 17 \cdot k \in B$.

If $n \notin A$, then either (1) n is not a multiple of 17 or (2) $n = 17 \cdot k$ for some k but $\phi_k(3) \neq 4$. Then:

- In case (1), $h(n) = 17 \cdot n$ can not be a multiple of 17^2 , hence $h(n) \notin B$.
- In case (2), $h(n) = 17 \cdot 17 \cdot k$ is a multiple of 17^2 , but we still have $h(n) \notin B$ since $\phi_k(3) \neq 4$.

(Note that no other k needs to be considered, since $g(n) = 17^2 \cdot n$ is injective).

Exercise 6. Let $A = \{n \mid \exists x \in \mathbb{N}. \phi_n(x) = \phi_x(n)\}$. Prove that $\overline{\mathsf{K}} \cup A \in \mathcal{R}$.

Solution (sketch). Since $\phi_n(n) = \phi_n(n)$ for all n, we have that $\exists x. \phi_n(x) = \phi_x(n)$ holds for all n, hence $A = \mathbb{N}$, which implies $A \cup \overline{\mathsf{K}} \in \mathcal{R}$.

Exercise 7. Let

$$h(n) = \# \left(\lambda x. \begin{cases} 1 & \text{if } x = 0\\ \phi_n(x-1) \cdot x & \text{otherwise} \end{cases} \right)$$

Write h in an equivalent way using the s function from the s-m-n theorem [10% score]. Then, prove that h is a recursive total function [10% score]. Finally, let a be such that $\phi_a = \phi_{h(a)}$ as stated in the second recursion theorem. What is the result of $\phi_a(100)$ [80% score]?

Solution (sketch). Let g such that $g(n, x) = \begin{cases} 1 & \text{if } x = 0 \\ \phi_n(x-1) \cdot x & \text{otherwise} \end{cases}$

This is clearly recursive (the guard is such, as well as the two branches). Take any *i* such that $\phi_i = g$. We can then define *h* as h(n) = s(i, n), using the *s* from the s-m-n theorem.

h is recursive and total because s is such. More pedantically, h is a composition of s (rec.total), the constant function i (rec.total) and the identity n (rec.total).

Let a such that $\phi_a = \phi_{h(a)}$. We have $\phi_a(100) = \phi_{h(a)}(100) = \phi_{s(i,a)}(100) = \phi_i(a, 100) = \phi_a(99) \cdot 100$. By repeating the steps above we get $\phi_a(100) = \phi_{h(a)}(100) = 1 \cdot \cdots \cdot 99 \cdot 100$. Hence the result is 100!.

Exercise 8. Let f be a total recursive function such that, for all $n \in \mathbb{N}$:

$$f(2 \cdot n) < f(2 \cdot n + 2) \qquad f(2 \cdot n + 1) < f(2 \cdot n + 3)$$

Prove that $ran(f) \in \mathcal{R}$.

Solution (sketch). The two properties above imply that (1) f(n) < f(n+2) for all n, hence by induction we obtain

$$\forall n \in \mathbb{N}. f(n) \ge \lfloor n/2 \rfloor$$

More precisely: the above is clearly true when n = 0 or n = 1. For larger n, we have f(n) > f(n-2) by (1), and by the inductive hypothesis $f(n-2) \ge \lfloor \frac{n-2}{2} \rfloor = \lfloor \frac{n}{2} \rfloor - 1$. Hence $f(n) > \lfloor \frac{n}{2} \rfloor - 1$ which is equivalent to $f(n) \ge \lfloor \frac{n}{2} \rfloor$.

Having established the above, we can check whether a given natural x belongs to ran(f) by comparing it to $f(0), f(1), \ldots, f(2 \cdot n + 2)$. Indeed, for m larger than $2 \cdot n + 2$, we have $f(m) \ge n + 1 > n$, hence there's no need to try larger m. This test can easily be implemented in a verifier.

Exercise 9. \star *Prove that there exists* $A \subseteq \mathbb{N}$ *such that*

$$\mathsf{K} \subseteq A \quad \land \quad A \in \mathcal{R} \quad \land \quad \bar{A} \text{ infinite}$$

Solution (sketch). Intentionally omitted.