Computability Final Test — 2012-07-10

Notes.

- Write your name and matriculation number on each of your sheets.
- Solve <u>no more than four</u> (4) exercises. This will be strictly enforced: including more than 4 answers will result in the <u>immediate failure</u> of the test.
- Significantly wrong answers will result in negative scores.
- Always provide a justification for your answers.
- To achieve a score ≥ 27 you have to solve the exercise marked with \star below.

Reminder: when equating results of partial functions (as in $\phi_i(3) = \phi_i(5)$), we mean that <u>either</u> 1) both sides of the equation are defined, and evaluate to the same natural number, or 2) both sides are undefined.

Exercise 1. Prove whether $A = \{i \mid \phi_i(3) > \phi_{i+1}(5)\} \in \mathcal{RE}$.

Solution (sketch). $A \in \mathcal{RE}$ because the following is a semi-verifier:

 $S_A = \lambda i.$ Lt (Eval1 (Succ i) [5]) (Eval1 i [3]) I Ω

Checking that the above halts exactly on $i \in A$ is easy. Note that when $\phi_i(3)$ or $\phi_{i+1}(5)$ are undefined the program loops inside the "**Eval1**" part (and never reaches **I** or Ω). However, in this cases $i \notin A$, since *undefined* is not less or greater than any value (including *undefined* itself). Hence the fact that S_A does not halt in such cases is indeed the wanted behaviour.

Exercise 2. Prove whether $\bar{\mathsf{K}} \leq_m B = \{i \mid \exists n. \phi_i(n) = n+1\}.$

Solution (sketch). We have $\bar{\mathsf{K}} \not\leq_m B$ because $\bar{\mathsf{K}} \notin \mathcal{RE}$ and $B \in \mathcal{RE}$. The latter can be proved as follows. The property $p(i, n) = "\phi_i(n) = n + 1"$ is \mathcal{RE} since it can be semi-verified by

 $S_p = \lambda i n.$ **Eq** (**Eval1** i n) (**Succ** n) **I** Ω

(Checking that S_p halts exactly when p holds is easy.) Hence $\exists n. \ p(i,n)$ is \mathcal{RE} since it is an existential quantification of an \mathcal{RE} property. This proves $B \in \mathcal{RE}$.

Exercise 3. Comment on this statement by Mr. Rouge Hareng: is it correct?

Let h be a recursive partial function. If $A \subseteq B$, then $f \subseteq g$ where

$$f(n) = \begin{cases} h(n) + 1 & \text{if } n \in A \\ undefined & otherwise \end{cases} \qquad \qquad g(n) = \begin{cases} h(n) + 1 & \text{if } n \in B \\ h(n) & otherwise \end{cases}$$

Solution (sketch). Yes, it is correct. We just have to prove that

$$\forall n \in \mathsf{dom}(f). \ f(n) = g(n)$$

Note that by definition f is undefined outside A, hence $dom(f) \subseteq A$. The above goal is then implied by

$$\forall n \in A. f(n) = g(n)$$

When $n \in A$, we have f(n) = h(n) + 1. Also, since $n \in A \subseteq B$, g(n) = h(n) + 1. Therefore f(n) = g(n).

Exercise 4. Prove whether $C = \{i \mid \forall n. (n \text{ prime} \implies \phi_i(n) = 3)\} \in \mathcal{RE}.$

Solution (sketch). $C \notin \mathcal{RE}$ by Rice-Shapiro (\Rightarrow). C is semantically closed (easy to check). Take f(x) = 3 for all x. Clearly, $f \in \mathcal{F}_C$. Consider now any finite restriction g of f. Since the domain of g is finite, and primes are infinite, there is a prime $p \notin \mathsf{dom}(g)$. Hence, we have $g(p) = undefined \neq 3$ which proves $g \notin \mathcal{F}_C$. We conclude $C \notin \mathcal{RE}$.

Exercise 5. Prove whether $D = \{i \mid \mathsf{dom}(\phi_{\mathsf{proj1}(i)}) \subseteq \mathsf{dom}(\phi_{\mathsf{proj2}(i)})\} \in \mathcal{RE}.$

Solution (sketch). $D \notin \mathcal{RE}$ since $Tot \leq_m D$, where $Tot = \{i \mid \mathsf{dom}(\phi_i) = \mathbb{N}\} \notin \mathcal{RE}$ by Rice-Shapiro (\Rightarrow). A possible reduction is

$$h(n) = \mathsf{pair}(a, n)$$
 where a is such that $\phi_a = \mathsf{id}$

Verifying the above claims is left as an exercise.

Exercise 6. Prove whether $f \in \mathcal{R}$, where

$$f(n) = \begin{cases} 2 \cdot n + 1 & \text{if } \phi_n(0) = 0\\ 44 & \text{otherwise} \end{cases}$$

Solution (sketch). We prove $f \notin \mathcal{R}$ as follows: Let $A = \{n \mid \phi_n(0) = 0\}$. We have that

$$n \in A \iff f(n)$$
 odd

Indeed, if $n \in A$, then $f(n) = 2 \cdot n + 1$ which is odd; otherwise, if $n \notin A$, then f(n) = 44.

By contradiction, assume $f \in \mathcal{R}$. Then $A \in \mathcal{R}$ since by the above equivalence, we can verify $n \in A$ by computing f(n) and checking for oddness. However, $A \notin \mathcal{R}$ by Rice (easy to check).

Exercise 7. Prove whether $\bar{\mathsf{K}} \leq_m E = \{i \mid \exists n. \forall m > n. \phi_i(m) = m + 1\}.$

Solution (sketch). $\bar{\mathsf{K}} \leq_m E$. Indeed, take

$$h(n) = \# \left(\lambda x. \begin{cases} x+1 & \text{if } \phi_n(n) \text{ does not halt in } \le x \text{ steps} \\ 0 & \text{otherwise} \end{cases} \right)$$

The above is well-defined because the guard is recursive and the branches are also such. Then:

- If $n \in \overline{\mathsf{K}}$, then $\phi_n(n)$ does not halt, hence $\phi_{h(n)}(x) = x + 1$ for all x, and so $h(n) \in E$.
- If $n \notin \bar{K}$, then $\phi_n(n)$ halts, say in k steps. Hence, $\phi_{h(n)}(x) = 0$ for all x > k. Assume by contradiction $h(n) \in E$: then we have $\phi_{h(n)}(x) = x + 1$ for all x > m, for some m. Take any x larger than m and k. We get $\phi_{h(n)}(x) = 0 = x + 1$ which is a contradiction. Hence $h(n) \notin E$.

Exercise 8. We write min A for the minimum element of a set A. State whether a partial recursive function f exists such that,

$$\forall i \in \mathbb{N}. \ \forall A \subseteq \mathbb{N}. \ (A \neq \emptyset \land \phi_i = \chi_A \implies f(i) = \min A)$$

State whether a total recursive function g exists such that,

$$\forall i \in \mathbb{N}. \ \forall A \subseteq \mathbb{N}. \ (A \neq \emptyset \land \phi_i = \chi_A \implies g(i) = \min A)$$

Solution (sketch). Intentionally omitted.

Exercise 9. \star (This exercise counts as two exercises. If you choose it, solve only 3 exercises instead of 4.) Prove that

$$\exists A \subseteq \mathbb{N}. \ A \ infinite \ \land \left(\nexists B \in \mathcal{RE}. \ B \ infinite \ \land B \subseteq A \right)$$

(Hint: construct A by diagonalization)

Solution (sketch). Intentionally omitted.