
Computability Final Test — 2012-07-10

Notes.

• Write your name and matriculation number on each of your sheets.

• Solve no more than four (4) exercises. This will be strictly enforced: including
more than 4 answers will result in the immediate failure of the test.

• Significantly wrong answers will result in negative scores.

• Always provide a justification for your answers.

• To achieve a score ≥ 27 you have to solve the exercise marked with ? below.

Reminder: when equating results of partial functions (as in φi(3) = φi(5)), we

mean that either 1) both sides of the equation are defined, and evaluate to the same

natural number, or 2) both sides are undefined.

Exercise 1. Prove whether A = {i | φi(3) > φi+1(5)} ∈ RE.

Solution (sketch). A ∈ RE because the following is a semi-verifier:

SA = λi. Lt (Eval1 (Succ i) pp5qq) (Eval1 i pp3qq) I Ω

Checking that the above halts exactly on i ∈ A is easy. Note that when φi(3)
or φi+1(5) are undefined the program loops inside the “Eval1” part (and never
reaches I or Ω). However, in this cases i 6∈ A, since undefined is not less or
greater than any value (including undefined itself). Hence the fact that SA

does not halt in such cases is indeed the wanted behaviour.

Exercise 2. Prove whether K̄ ≤m B = {i | ∃n. φi(n) = n+ 1}.

Solution (sketch). We have K̄ 6≤m B because K̄ 6∈ RE and B ∈ RE . The
latter can be proved as follows. The property p(i, n) = “φi(n) = n + 1” is RE
since it can be semi-verified by

Sp = λi n. Eq (Eval1 i n) (Succ n) I Ω

(Checking that Sp halts exactly when p holds is easy.) Hence ∃n. p(i, n) is
RE since it is an existential quantification of an RE property. This proves
B ∈ RE .

Exercise 3. Comment on this statement by Mr. Rouge Hareng: is it correct?

Let h be a recursive partial function. If A ⊆ B, then f ⊆ g where

f(n) =

{
h(n) + 1 if n ∈ A
undefined otherwise

g(n) =

{
h(n) + 1 if n ∈ B
h(n) otherwise
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Solution (sketch). Yes, it is correct. We just have to prove that

∀n ∈ dom(f). f(n) = g(n)

Note that by definition f is undefined outside A, hence dom(f) ⊆ A. The above
goal is then implied by

∀n ∈ A. f(n) = g(n)

When n ∈ A, we have f(n) = h(n) + 1. Also, since n ∈ A ⊆ B, g(n) = h(n) + 1.
Therefore f(n) = g(n).

Exercise 4. Prove whether C = {i | ∀n. (n prime =⇒ φi(n) = 3)} ∈ RE.

Solution (sketch). C 6∈ RE by Rice-Shapiro (⇒). C is semantically
closed (easy to check). Take f(x) = 3 for all x. Clearly, f ∈ FC . Consider
now any finite restriction g of f . Since the domain of g is finite, and primes are
infinite, there is a prime p 6∈ dom(g). Hence, we have g(p) = undefined 6= 3
which proves g 6∈ FC . We conclude C 6∈ RE .

Exercise 5. Prove whether D = {i | dom(φproj1(i)) ⊆ dom(φproj2(i))} ∈ RE.

Solution (sketch). D 6∈ RE since Tot ≤m D, where Tot = {i | dom(φi) =
N} 6∈ RE by Rice-Shapiro (⇒). A possible reduction is

h(n) = pair(a, n) where a is such that φa = id

Verifying the above claims is left as an exercise.

Exercise 6. Prove whether f ∈ R, where

f(n) =

{
2 · n+ 1 if φn(0) = 0

44 otherwise

Solution (sketch). We prove f 6∈ R as follows:
Let A = {n | φn(0) = 0}. We have that

n ∈ A ⇐⇒ f(n) odd

Indeed, if n ∈ A, then f(n) = 2 · n + 1 which is odd; otherwise, if n 6∈ A, then
f(n) = 44.

By contradiction, assume f ∈ R. Then A ∈ R since by the above equiv-
alence, we can verify n ∈ A by computing f(n) and checking for oddness.
However, A 6∈ R by Rice (easy to check).

Exercise 7. Prove whether K̄ ≤m E = {i | ∃n. ∀m > n. φi(m) = m+ 1}.

Solution (sketch). K̄ ≤m E. Indeed, take

h(n) = #

(
λx.

{
x+ 1 if φn(n) does not halt in ≤ x steps

0 otherwise

)
The above is well-defined because the guard is recursive and the branches are
also such. Then:
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• If n ∈ K̄, then φn(n) does not halt, hence φh(n)(x) = x + 1 for all x, and
so h(n) ∈ E.

• If n 6∈ K̄, then φn(n) halts, say in k steps. Hence, φh(n)(x) = 0 for all
x > k. Assume by contradiction h(n) ∈ E: then we have φh(n)(x) = x+ 1
for all x > m, for some m. Take any x larger than m and k. We get
φh(n)(x) = 0 = x+ 1 which is a contradiction. Hence h(n) 6∈ E.

Exercise 8. We write minA for the minimum element of a set A.
State whether a partial recursive function f exists such that,

∀i ∈ N. ∀A ⊆ N. (A 6= ∅ ∧ φi = χA =⇒ f(i) = minA)

State whether a total recursive function g exists such that,

∀i ∈ N. ∀A ⊆ N. (A 6= ∅ ∧ φi = χA =⇒ g(i) = minA)

Solution (sketch). Intentionally omitted.

Exercise 9. ? (This exercise counts as two exercises. If you choose it, solve
only 3 exercises instead of 4.) Prove that

∃A ⊆ N. A infinite ∧
(
@B ∈ RE . B infinite ∧B ⊆ A

)
(Hint: construct A by diagonalization)

Solution (sketch). Intentionally omitted.
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