Computability Final Test — 2012-06-11

Notes.

- Write your name and matriculation number on each of your sheets.
- Solve <u>no more than four</u> (4) exercises. This will be strictly enforced: including more than 4 answers will result in the <u>immediate failure</u> of the test.
- Significantly wrong answers will result in negative scores.
- Always provide a justification for your answers.
- To achieve higher scores (≥ 27) you have to solve the exercise marked with ★ below.

Reminder: when equating results of partial functions (as in $\phi_i(3) = \phi_i(5)$), we mean that <u>either</u> 1) both sides of the equation are defined, and evaluate to the same natural number, <u>or</u> 2) both sides are undefined.

Exercise 1. Comment on this statement by Mr. Rouge Hareng: is it correct?

Let f be a total recursive function. If h_1 is an m-reduction from A to B, then $h_2(n) = f(h_1(n))$ is an m-reduction from A to

$$B' = \{ f(n) \mid n \in B \}$$

Solution (sketch). It is not correct. Take A = B = K, $h_1(n) = n$ and f(n) = 0. Note that $B' = \{0\}$ in this case. Clearly $A \leq_m B$ with reduction h_1 , but we do not have $K = A \leq_m B' = \{0\}$ since the latter is recursive. So $h_2(n) = f(h_1(n)) = 0$ can not be a reduction.

Exercise 2. Prove whether $A = \{i \mid \forall x. \ x^2 \notin \mathsf{dom}(\phi_i)\} \in \mathcal{RE}$.

Solution (sketch). Not \mathcal{RE} by Rice-Shapiro (\Leftarrow). Indeed, A is semantically closed (easy to check). Take g(x) = undefined to be the always-undefined function. Since $x^2 \notin \mathsf{dom}(g) = \emptyset$ for all x, we have $g \in \mathcal{F}_A$. Also, $\mathsf{dom}(g)$ is finite. Take the constant function f(x) = 0 which is clearly recursive and an extension of g. However, $f \notin \mathcal{F}_A$, since e.g. $f(3^2) = 0$ is defined, hence $3^2 \in \mathsf{dom}(f)$.

Exercise 3. Prove whether $A = \{i \mid \forall x. \phi_x(i) = \phi_x(i^2 + 10 - 6 \cdot i)\} \in \mathcal{RE}$.

Solution (sketch). The property

$$\forall x. \ \phi_x(i) = \phi_x(i^2 - 6 \cdot i + 10)$$

is true only when $i = i^2 - 6i + 10$, because:

- If $i = i^2 6i + 10$, clearly $\phi_x(i) = \phi_x(i^2 6i + 10)$ for any x.
- If $i \neq i^2 6i + 10$, by taking x to be an index of the identity function id(z) = z, we have $\phi_x(i) = i \neq i^2 6i + 10 = \phi_x(i^2 6i + 10)$ providing a counterexample to the property above.

Therefore, $A = \{i \mid i = i^2 - 6i + 10\} = \{i \mid i = 2 \lor i = 5\} = \{2, 5\} \in \mathcal{R} \subseteq \mathcal{RE}$ since it is a finite set.

Exercise 4. Prove whether $A = \{i \mid \forall x. \exists y. y > x^4 \land \phi_i(y) = y^2\} \in \mathcal{RE}.$

Solution (sketch). Not \mathcal{RE} by Rice-Shapiro (\Rightarrow) . Indeed, A is semantically closed (easy to check). Take $f(x) = x^2$, which is recursive and belongs to \mathcal{F}_A . Consider any finite restriction g of f. We then have g(x) = undefined as soon as x is large enough, say x > k. This implies $g \notin \mathcal{F}_A$ since otherwise we would have, for some $y > k^4 > k$, that $g(y) = y^2 \neq undefined$. Hence, Rice-Shapiro (\Rightarrow) concludes.

Exercise 5. Consider the function

$$f(i,j) = \begin{cases} 1 & \text{if } \operatorname{dom}(\phi_i) = \operatorname{dom}(\phi_j) = \mathbb{N} \land \phi_i = \phi_j \\ 0 & \text{if } \operatorname{dom}(\phi_i) = \operatorname{dom}(\phi_j) = \mathbb{N} \land \phi_i \neq \phi_j \\ undefined & \text{if } \operatorname{dom}(\phi_i) \neq \mathbb{N} \lor \operatorname{dom}(\phi_j) \neq \mathbb{N} \end{cases}$$

State whether $f \in \mathcal{R}$. (Hint: consider g(i) = f(i, a) where a is picked suitably.)

Solution (sketch). We prove $f \notin \mathcal{R}$ by contradiction. Assuming $f \in \mathcal{R}$, let *a* be such that $\phi_a = id$. Then, g(n) = f(n, a) is a recursive partial function with domain dom $(g) = \{i | dom(\phi_i) = \mathbb{N}\} = Tot$. Hence, $Tot \in \mathcal{RE}$. The last statement is false, as can be verified by Rice-Shapiro (\Rightarrow) .

Exercise 6. Define $A \in \mathcal{RE} \setminus \mathcal{R}$ and $B \in \mathcal{RE} \setminus \mathcal{R}$ such that $(A \cap B) \notin \mathcal{RE} \setminus \mathcal{R}$.

Solution (sketch). Let $A = \{2 \cdot i \mid i \in \mathsf{K}\}$ and $B = \{2 \cdot i + 1 \mid i \in \mathsf{K}\}$. They are \mathcal{RE} (construct a semi-verifier), but not recursive (K reduces to both). Then, $(A \cap B) = \emptyset \in \mathcal{R}$ concludes.

Exercise 7. Let f be a total function defined as

$$f(n) = \begin{cases} 1 + \lfloor \frac{n}{4} \rfloor & n \in \mathsf{K} \\ 0 & otherwise \end{cases}$$

State whether a restriction g of f exists such that all these properties hold:

- 1. $g \in \mathcal{R}$ and
- 2. $\forall x \in \mathsf{dom}(g)$. $\exists y \in \mathsf{dom}(g)$. g(x) < g(y)

Solution (sketch). A trivial, yet correct, answer is to pick g(x) = undefined.

A non trivial g can also be constructed as follows. Take a such that $\phi_a=\mathsf{id}.$ Consider then

$$A = \{a, \mathsf{pad}(a), \mathsf{pad}(\mathsf{pad}(a)), \ldots\} = \{\mathsf{pad}^n(a) \mid n \in \mathbb{N}\}\$$

We have $A \in \mathcal{R}$ since to answer the question " $x \in A$?" it is sufficient to compare x to the *increasing* sequence $a, pad(a), \ldots$ until either x is found or the sequence becomes too large (>x) — this requires at most x steps.

Now take

$$g(n) = \begin{cases} 1 + \lfloor \frac{n}{4} \rfloor & n \in A\\ undefined & \text{otherwise} \end{cases}$$

since $A \subseteq \mathsf{K}$ (A only contains indices of the identity function), the above is a restriction of

$$h(n) = \begin{cases} 1 + \lfloor \frac{n}{4} \rfloor & n \in \mathsf{K} \\ undefined & \text{otherwise} \end{cases}$$

which is in turn a restriction of f.

We now check properties 1,2:

1) By definition $g \in \mathcal{R}$, since the guard $n \in A$ is recursive, and both branches are recursive functions.

2) If $x \in \mathsf{dom}(g) = A$, then we can take $y = \mathsf{pad}^4(x)$ so that surely $y \in A$ and also $y \ge x + 4$. Hence,

$$g(x) = 1 + \left\lfloor \frac{x}{4} \right\rfloor < 1 + \left\lfloor \frac{x+4}{4} \right\rfloor \le 1 + \left\lfloor \frac{y}{4} \right\rfloor = g(y)$$

Exercise 8. We write min A for the minimum element of a set A.

State whether a <u>partial</u> recursive function f exists such that,

 $\forall i \in \mathbb{N}. \ \forall A \subseteq \mathbb{N}. \ (A \neq \emptyset \land \phi_i = \chi_A \implies f(i) = \min A)$

State whether a *total* recursive function g exists such that,

$$\forall i \in \mathbb{N}. \ \forall A \subseteq \mathbb{N}. \ (A \neq \emptyset \land \phi_i = \chi_A \implies g(i) = \min A)$$

Solution (sketch). Intentionally omitted.

Exercise 9. \star Let f be as in Ex. 5. State whether $g \in \mathcal{R}$ for some $g \supseteq f$.

Solution (sketch). There is no such g. (Note in passing that this also proves Ex. 5.)

By contradiction, assume $g \supseteq f$ to be recursive. Let a be such that $\phi_a(x) = 0$. Consider then the function:

$$h(n) = g(\# \left(\lambda x. \begin{cases} 1 & \text{if } \phi_n(n) \text{ halts in } x \text{ steps} \\ 0 & \text{otherwise} \end{cases} \right), \#(\lambda x. 0))$$

the above h is well defined, since both uses of " $\#(\lambda x.\langle \langle body \rangle \rangle)$ " involve recursive bodies w.r.t. n and x. Further, such bodies are also *total* w.r.t. x, i.e. they are always defined. This implies that both indices passed to g(-,-) are indices of total functions, and by hypothesis g coincides with f on those. Function h is also recursive, since g is such. Summing up, we have:

$$\begin{split} h(n) &= f(\# \left(\lambda x. \begin{cases} 1 & \text{if } \phi_n(n) \text{ halts in } x \text{ steps} \\ 0 & \text{otherwise} \end{cases} \right), \#(\lambda x. 0)) \\ &= \begin{cases} 1 & \text{if } \phi \\ & \# \left(\lambda x. \begin{cases} 1 & \text{if } \phi_n(n) \text{ halts in } x \text{ steps} \\ 0 & \text{otherwise} \end{cases} \right)^{=\phi_{\#(\lambda x. 0)}} \\ &= \begin{cases} 1 & \text{if } \left(\lambda x. \begin{cases} 1 & \text{if } \phi_n(n) \text{ halts in } x \text{ steps} \\ 0 & \text{otherwise} \end{cases} \right) = (\lambda x. 0) \\ &= \begin{cases} 1 & \text{if } \left(\lambda x. \begin{cases} 1 & \text{if } \phi_n(n) \text{ halts in } x \text{ steps} \\ 0 & \text{otherwise} \end{cases} \right) = (\lambda x. 0) \\ &= \begin{cases} 1 & \text{if } \forall x. \phi_n(n) \text{ does not halt in } x \text{ steps} \\ &= & \\ 0 & \text{otherwise} \end{cases} \\ &= \chi_{\bar{K}}(n) \in \mathcal{R} \end{split}$$

which is a contradiction.