Computability Final Test — 2012-02-06

Notes.

- Write your name and matriculation number on each of your sheets.
- Solve <u>no more than four</u> (4) exercises. This will be strictly enforced: including more than 4 answers will result in the <u>immediate failure</u> of the test.
- Significantly wrong answers will result in negative scores.
- Always provide a justification for your answers.
- To achieve higher scores (≥ 27) you have to solve the exercise marked with ★ below.

Reminder: when equating results of partial functions (as in $\phi_i(3) = \phi_i(5)$), we mean that <u>either</u> 1) both sides of the equation are defined, and evaluate to the same natural number, <u>or</u> 2) both sides are undefined.

Exercise 1. Comment on this statement by Mr. Rouge Hareng: is it correct?

We proved that A is semantically closed. Let f(x) = x and g(x) =undefined for all x. It is then easy to check that $f \in \mathcal{F}_A$ and $g \notin \mathcal{F}_A$. Also, g is a finite restriction of f. So, by Rice-Shapiro $(\Rightarrow), A \notin \mathcal{RE}$.

Solution (sketch). Everything is correct, but for the last step, which is wrong. In order to apply Rice-Shapiro (\Rightarrow) , one has to consider *all* the possible finite restrictions of f, and not only the specific g Mr. Hareng chose.

Exercise 2. Let $f \in (\mathbb{N}^2 \to \mathbb{N})$ be a recursive total function. Prove whether there exists a total recursive $g \in (\mathbb{N} \to \mathbb{N})$ such that $\operatorname{ran}(g) = \operatorname{ran}(f)$.

Solution (sketch). Yes, take g(n) = f(proj1(n), proj2(n)). Then, ran(g) = ran(f) because ...

Exercise 3. Let $A = \{i \mid \mathsf{dom}(\phi_i) \text{ finite} \land \mathsf{ran}(\phi_i) \text{ finite} \}$ and $B = \{i \mid \mathsf{dom}(\phi_i) \text{ finite} \}$. Prove that $B \leq_m A$.

Solution (sketch). Follows immediately from A = B, since a function with finite domain must also have a finite range.

Exercise 4. Consider the sets $A = \{i \mid \forall x \in \{5, 6, 7\}. \phi_i(x) = 8\}$ and $B = \{i \mid \forall x \in \mathbb{N}. \phi_i(x) = 8\}$. Does $A \in \mathcal{RE}$? Does $B \in \mathcal{RE}$?

Solution (sketch). $A = \{i \mid \phi_i(5) = 8 \land \phi_i(6) = 8 \land \phi_i(7) = 8\}$ so it is defined using a conjunction of three \mathcal{RE} properties: indeed a semi-verifier for the first would be

$$S = \lambda i.$$
 Eq(Eval1 $i \ [5]) \ [8]$

The other semi-verifiers only differ for the involved numeric constants. Hence, $A \in \mathcal{RE}$.

 $B \notin \mathcal{RE}$ by Rice-Shapiro (\Rightarrow). *B* is semantically closed (because ...). f(x) = 8 is a recursive function in $\mathcal{F}_B = \{f\}$, but no finite restriction *g* of it can belong to \mathcal{F}_B , because otherwise g = f, implying that *g* is total, hence not finite.

Exercise 5. Let $A = \{i \mid \phi_i(3) = 5\}, B = \{i \mid \phi_i(5) = 30\}$. For each function f below, state whether it is a m-reduction for $A \leq_m B$. When it is such, prove it; otherwise, justify why it is not an m-reduction by providing at least an informal argument.

$$\begin{aligned} f_1(n) &= \#(\lambda x. \ \phi_n(3) + 25) \quad f_2(n) = \#(\lambda x. \ \phi_n(3) - 25) \quad f_3(n) = \#(\lambda x. \ \phi_n(5) - 25) \\ f_4(n) &= \# \begin{pmatrix} \lambda x. \\ 30 & if \ \phi_n(3) = 5 \land x = 5 \\ 31 & otherwise \end{pmatrix} \\ f_5(n) &= \# \begin{pmatrix} \lambda x. \\ 5 & if \ \phi_n(5) = 30 \\ undefined & otherwise \end{pmatrix} \end{aligned}$$

Solution (sketch). f_1 works: if $n \in A$, then $\phi_n(3) = 5$, hence $\phi_{h(n)}(5) = 5 + 25 = 30$, so $h(n) \in B$. Also, if $n \notin A$, then $\phi_n(3) = y \neq 5$ (y possibly undefined), hence $\phi_{h(n)}(5) = y + 25 \neq 30$, so $h(n) \notin B$.

 f_2 does not work: if $n \in A$, then $\phi_n(3) = 5$, Hence $\phi_{h(n)}(5) = \phi_n(3) - 25 = 5 - 25 \neq 30$ and so $h(n) \notin B$ instead of $h(n) \in B$.

 f_3 does not work: if $n \in A$, then $\phi_n(3) = 5$, but $\phi_n(5)$ is unconstrained (it could be anything, including undefined). Hence $\phi_{h(n)}(5) = \phi_n(5) - 25$ could be anything, and we can not conclude $h(n) \in B$.

 f_4 is not well-defined. The body of the $\#(\lambda x. b(n, x))$ is not recursive. Indeed, if it were such, we could build a verifier for " $\phi_n(3) = 5$ " by just computing b(n, 5) and comparing it to 30. This would contradict the fact that " $\phi_n(3) = 5$ " is not recursive, as one can prove using Rice.

 f_5 is similar to f_3 : $n \in A$ does not imply anything about $\phi_n(5)$.

Exercise 6. Show that $\bar{\mathsf{K}} \leq_m A = \{i \mid \forall x > 300. \ \phi_i(x) = x + \phi_i(x-1)\}$

Solution (sketch). Take

$$h(n) = \# (\lambda x. \phi_n(n))$$

If $n \in K$, then $\phi_{h(n)}$ is always undefined, and since undefined = x + undefined(for all x) we have $h(n) \in A$. Instead, if $n \in K$, we have that $\phi_{h(n)}(x) = \phi_n(n) = y \neq undefined$ for all x. In that case, $\phi_{h(n)}(301) = y \neq 301 + y = 301 + \phi_{h(n)}(300)$, so $h(n) \notin A$.

Exercise 7. Let $A = \{i \mid \exists x. \phi_i(x) > \phi_i(x+1)\}$. Show that $A \leq_m \mathsf{K}$ and that $\mathsf{K} \leq_m A$.

Solution (sketch). $A \leq_m \mathsf{K}$ follows from $A \in \mathcal{RE}$. Indeed, A is defined via an existential quantification of the predicate $p(x, i) = \phi_i(x) > \phi_i(x+1)$ which is \mathcal{RE} since it can be semi-verified by using a universal program to compute both sides and then comparing the results.

 $\mathsf{K} \leq_m A$ is obtained e.g. using the reduction

$$h(n) = \# \left(\lambda x. \begin{cases} (1-x)^2 & \text{if } n \in \mathsf{K} \\ undefined & \text{otherwise} \end{cases} \right)$$

Indeed, the above is well-defined because \dots (hence it is recursive and total), and is a reduction because \dots

Exercise 8. State whether there exists a recursive bijection f between \mathbb{N} and $P = \{p \in \mathbb{N} \mid p \text{ prime}\}.$

Solution (sketch). Yes, $f(n) = p_n$ where p_n is the n-th prime number is computable, and is obviously a bijection. Justifying that f is recursive is a programming exercise.

Exercise 9. Given a total $f \in \mathcal{R}$, let

$$A_f = \{i \mid \forall x \in \mathbb{N}. \ \phi_i(f(x)) = \phi_i(f(x+1))\}$$

Define, when possible, three total functions $f, g, h \in \mathcal{R}$ such that

$$A_f \in \mathcal{R} \qquad A_g \in \mathcal{RE} \setminus \mathcal{R} \qquad A_h \notin \mathcal{RE}$$

Solution (sketch).

- Using f(x) = 0 we have $A_f = \mathbb{N} \in \mathcal{R}$.
- Defining such g is not possible. Indeed, if g is a constant total function, we have $A_g = \mathbb{N} \in \mathcal{R}$. Otherwise, assume $g(a) \neq g(a+1)$ for some $a \in \mathbb{N}$. Then, we prove $A_g \notin \mathcal{RE}$ by establishing $\overline{\mathsf{K}} \leq_m A_g$. Indeed, the following l(n) is a reduction:

$$l(n) = \# \left(\lambda y. \begin{cases} y & \text{if } n \in \mathsf{K} \\ undefined & \text{otherwise} \end{cases} \right)$$

- If $n \in \bar{\mathsf{K}}$, then $\phi_{l(n)}(y) = undefined$ for all y, hence $\forall x.\phi_{l(n)}(g(x)) = undefined = \phi_{l(n)}(g(x+1))$, so $l(n) \in A_g$.
- − If $n \in K$, then $\phi_{l(n)}(y) = y$ for all y, hence $\phi_{l(n)}(g(a)) = g(a) \neq g(a+1) = \phi_{l(n)}(g(a+1))$, hence $\neg \forall x. \phi_{l(n)}(g(x)) = \phi_{l(n)}(g(x+1))$, so $l(n) \notin A_q$.

• Any non-constant h works, by part (g) above.

Alternative solution: take h(x) = x. In that case, $A_h = \{i \mid \forall x \in \mathbb{N}, \phi_i(x) = \phi_i(x+1)\}$ is not \mathcal{RE} . Indeed, A_h is semantically closed (it is defined only in terms of ϕ_i). The always undefined function g(x) = undefined (which has a finite domain) belongs to \mathcal{F}_{A_h} , while the identity function f(x) = x is a recursive extension of g that does not belong to \mathcal{F}_{A_h} , since otherwise we would get x = x+1 for all x. So, by Rice-Shapiro (\Leftarrow) $A_h \notin \mathcal{RE}$.

Exercise 10. \star Recall the WHILE imperative programming language, which has the following syntax. Below, c are commands (statements), b are boolean expressions, e are arithmetic expressions, and x are variables.

Now, restrict the syntax of WHILE as follows. Name this restriction W.

(Changes are underlined). The set W-definable functions is then the set of functions implementable in W, using the inherited WHILE semantics.

Question: state whether the set of W-definable functions is larger, smaller, or equal to \mathcal{R} (and justify your claim).

Solution (sketch). Intentionally omitted.