Computability Final Test — 2012-01-19

Notes.

- Write your name and matriculation number on each of your sheets.
- Solve <u>no more than four</u> (4) exercises. This is strictly enforced: including more than 4 answers results in the <u>immediate failure</u> of the test.
- Significantly wrong answers result in negative scores.
- Always provide a justification for your answers.
- To achieve higher scores (≥ 27) you have to solve some exercises marked with ★ below.

Reminder: when equating results of partial functions (as in $\phi_i(3) = \phi_i(5)$), we mean that <u>either</u> 1) both sides of the equation are defined, and evaluate to the same natural number, <u>or</u> 2) both sides are undefined.

Exercise 1. Comment on this statement by Mr. Rouge Hareng: is it correct? If so, help Mr. Hareng in writing a more detailed proof; otherwise, provide a counterexample.

If A is a subset of B, we have that $A \leq_m B$ trivially holds: it suffices to take as a reduction any total recursive function whose range is B.

Solution (sketch). $\neg(\mathsf{K} \leq_m \mathbb{N})$ is a counterexample. If $\mathsf{ran} f = B$, it is then impossible to prove "if $n \notin A$ then $f(n) \notin B$ ".

Exercise 2. State whether $A = \{i \mid \forall x \in \mathbb{N}. (\phi_i(x) = 5 \iff x \text{ is even})\}$ is \mathcal{RE} .

Solution (sketch). A is semantically closed (easy to check). By Rice-Shapiro (\Rightarrow) : let f(n) = 5 for even n, and f(n) = 6 otherwise. This f is recursive and $f \in \mathcal{F}_A$. However, no finite restriction g of f belongs to \mathcal{F}_A since in that case it would be defined on all even numbers, hence on infinitely many points. Hence $A \notin \mathcal{RE}$.

Exercise 3. State whether $B = \{i \mid \exists x. x \in \mathsf{K} \cap \mathsf{ran}(\phi_i)\}$ is \mathcal{RE} .

Solution (sketch). $B \in \mathcal{RE}$. Indeed, the predicate defining B can be equivalently rewritten as $\exists x, w, k_1, k_2.q(x, w, k_1, k_2)$ where $q(x, w, k_1, k_2)$ is defined as

 $\phi_x(x)$ halts in k_1 steps, and $\phi_i(w)$ halts in k_2 steps with result x

which is recursive (one can use a step-by-step interpreter to verify it). Hence its existential quantification is \mathcal{RE} .

Exercise 4. A set $C \subseteq \mathbb{N}$ is said to be upward closed iff

$$\forall x \in C. \ \forall y \in \mathbb{N}. \ [y > x \implies y \in C]$$

Prove that any upward closed C is \mathcal{RE} .

Solution (sketch). If *C* is empty then it is \mathcal{R} , hence \mathcal{RE} . Otherwise, $C = \{x \mid k \leq x\}$ where $k = \min C$. So *C* can be verified by $V_C = \lambda x$. Leq $\llbracket k \rrbracket x$. Hence *C* is \mathcal{R} , hence \mathcal{RE} .

Exercise 5. Recall that a partial function $f \in \mathbb{N} \rightsquigarrow \mathbb{N}$ is injective iff

 $\forall x, y \in \mathsf{dom}(f). [f(x) = f(y) \implies x = y]$

Let $D = \{i \mid \phi_i \text{ injective}\}$. Answer these questions:

1)
$$D \in \mathcal{R}$$
? 2) $D \in \mathcal{RE}$? 3) $D \in \mathcal{RE}$?

Solution (sketch).

- 1) $D \notin \mathcal{R}$ by Rice. (easy to check)
- 2) $\overline{D} \in \mathcal{RE}$ since

which is \mathcal{RE} because it is an existential quantification of a \mathcal{RE} property. Indeed, the latter is a conjunction of two \mathcal{RE} properties:

$$p(i, x, y): \quad \phi_i(x) = \phi_i(y) \neq \text{undefined} \\ q(i, x, y): \quad x \neq y$$

The second, q, is trivially recursive, hence \mathcal{RE} . Instead, p is \mathcal{RE} since it can be semi-verified using a universal program as follows:

 $\lambda i, x, y$. Eq (Eval1 i x) (Eval1 i y) I Ω

Note that the above loops when $\phi_i(x)$ or $\phi_i(y)$ are not defined, but in that case p(i, x, y) does not hold, so looping is the right thing to do.

• 3) $D \notin \mathcal{RE}$, otherwise we contradict 1) and 2).

Exercise 6. State whether $E = \{4^i \cdot 5^j \mid \forall x. \phi_i(x) = \phi_j(x+1)\}$ is \mathcal{RE} .

Solution (sketch). $\bar{K} \leq E$ with reduction

$$h(n) = 4^{f(n)} \cdot 5^{a}$$

$$\phi_{a}(n) = undefined \qquad \text{for all } n$$

$$f(n) = \#(\lambda x. \phi_{n}(n))$$

Function h is recursive and total (because ...). Also, $h(n) \in E$ is equivalent to $\forall x. \phi_{f(n)}(x) = \phi_a(x+1)$ (since $g(b,c) = 4^b \cdot 5^c$ is injective), which is equivalent to $\forall x. \phi_{f(n)}(x) = undefined$, which is equivalent to $\forall x. \phi_n(n) = undefined$, which is equivalent to $n \in \overline{K}$. \Box

Exercise 7. Construct a total function $f \in (\mathbb{N} \to \mathbb{N})$ such that

1) $\forall n. f(n) > 2^n$ 2) $g(n) = \lfloor \frac{f(n)}{2} \rfloor$ is recursive 3) f is not recursive.

Solution (sketch). Let $f(n) = 2^{n+1} + \chi_{\mathsf{K}}(n)$. We have $f(n) \ge 2^{n+1} > 2^n$, hence 1) holds. Function $g(n) = \lfloor \frac{2^{n+1} + \chi_{\mathsf{K}}(n)}{2} \rfloor = \lfloor \frac{2^{n+1}}{2} \rfloor = 2^n$ is recursive, so 2) holds. Finally, $f \notin \mathcal{R}$ since otherwise $f(n) - 2^{n+1} = \chi_{\mathsf{K}}(n)$ would be recursive, contradicting $\mathsf{K} \notin \mathcal{R}$. Hence 3) holds.

Exercise 8. Let A_0, A_1, \ldots be an infinite sequence of sets of natural numbers. Define a set B such that $\forall i. A_i \leq_m B$.

Solution (sketch). Take $B = \{ \mathsf{pair}(i, n) \mid i \in \mathbb{N} \land n \in A_i \}$. Then $h_i(n) = \mathsf{pair}(i, n)$ is a m-reduction from A_i to B. (because ...)

Exercise 9. \star Prove whether there exists a bijection f between \mathbb{N} and \mathcal{RE} . Then, prove whether there exists a bijection f between \mathcal{RE} and $\mathcal{P}(\mathbb{N})$. You may wish to exploit the following property:

(Schröder-Bernstein) There exists a bijection $f \in (A \leftrightarrow B)$ if and only if there exist injective functions $g \in (A \rightarrow B)$ and $h \in (B \rightarrow A)$.

Solution (sketch). Intentionally omitted.

Exercise 10. \star Let $w \in (\Lambda \to \mathbb{N})$ be inductively defined as

$$w(x_i) = 0$$
 $w(MN) = w(N) + w(M)$ $w(\lambda x_i, M) = 1 + w(M)$

Further, let $A = \{\#M \mid w(M) < 10^6\}$ and $B = \{i \mid \forall x. \phi_i(x) = x\}$. Assume that recursive function are enumerated using λ -terms, by letting ϕ_i to be the partial function computed by λ -term M with #M = i. Formally, assume

$$\phi_{\#M}(x) = y \iff M^{\ulcorner}x^{\urcorner} =_{\beta\eta} {\ulcorner}y^{\urcorner}$$

Then, answer the following questions:

- 1. [2% score] Is A a recursive set?
- 2. [2% score] Is B a recursive set?
- 3. [96% score] Is $A \cap B$ a recursive set?

Solution (sketch). Intentionally omitted.