
Computability Final Test — 2011-09-01

Notes.

• Write your name and matriculation number on each of your sheets.

• Solve no more than four (4) exercises. This will be strictly enforced: in-
cluding more than 4 answers will result in the immediate failure of the
test.

• Significantly wrong answers will result in negative scores.

• Always provide a justification for your answers.

• To achieve higher scores (≥ 27) you have to solve the exercise marked with
? below.

Reminder: when equating results of partial functions (as in φi(3) = φi(5)),
we mean that either 1) both sides of the equation are defined to be the same
natural number, or 2) both sides are undefined.

Exercise 1. If possible, define f ∈ R such that the set {h | h ⊆ f} contains
exactly 8 functions; if impossible, explain why. Similarly, if possible define g ∈ R
such that the set {h | h ⊆ g} contains exactly 100 functions; if impossible,
explain why.

Solution (sketch). Take f = χ̂{0,1,2}, the semi-characteristic of the set
D = {0, 1, 2}. Its domain D contains 3 elements, and the restrictions of f
correspond to the subsets of D (i.e. they are of the form f |A with A ⊆ D), so
they are 23 = 8. It is impossible to g instead, since 100 is not a power of 2.

Exercise 2. State whether A = {i | φi(φi(22)) = 7} ∈ RE.

Solution (sketch). A ∈ RE . A semi-verifier could simply be

SA = λi. Eq pp7qq(Eval i(Eval i pp22qq))IΩ

The above program can loop on the innermost Eval, on the outermost, or on
Ω. It’s easy to consider all these cases and show that indeed SA halts exactly
on A.

Exercise 3. Let Even be the set of even naturals.
Then, state whether B = {i | ran(φi) ⊇ Even} ∈ RE.
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Solution (sketch). The set B is semantically closed (because . . . ). Let f
such that f(n) = n. We have that f ∈ FB since ran(f) = N ⊇ Even. However,
any finite restriction g of f , having finite domain, also has finite range. Hence,
we can’t have ran(g) ⊇ Even since Even is infinite. So, we conclude that
B 6∈ RE by Rice-Shapiro (⇒).

Exercise 4. Given

f(x) =

{
5 if x is prime
undefined o.w.

state whether C = {i | φi ⊇ f} ∈ RE.

Solution (sketch). The set C is semantically closed (because . . . ). We
trivially have that f ∈ FC since f ⊆ f . However, any finite restriction g of
f , having finite domain, can not be defined (as 5) on all the primes which are
infinite. Hence, it’s not possible that g ⊆ f . So, we conclude that C 6∈ RE by
Rice-Shapiro (⇒).

Exercise 5. Let A � B = (A \ B) ∪ (B \ A). Then state whether each of the
following properties holds.

• [30% score] A,B ∈ R =⇒ A�B ∈ R

• [70% score] A ∈ R ∧B ∈ RE =⇒ A�B ∈ RE

Solution (sketch). The first point is true, it’s enough to exploit VA, VB
and add some logical operators to construct VA�B .

The second point is false, in general. For instance, take A = N and B = K.
Then A�B = (N \ K) ∪ (K \ N) = K̄ ∪ ∅ = K̄ which is not RE .

Exercise 6. State whether D = {2i | ∀x. φi(x) = φi(2 · x)} ∈ RE.

Solution (sketch). D 6∈ RE . Note in passing that D can not be said to
be semantically closed, because of the 2i. We use a simple reduction to cope
with that.

First, let D′ = {i | ∀x. φi(x) = φi(2 · x)}. We have D′ ≤m D with reduction
h(n) = 2n (recursive total because . . . ). Then, we prove D′ 6∈ RE by Rice-
Shapiro (⇐). D′ is semantically closed (because . . . ). The always undefined
function g(x) = undefined belongs to FD′ , and it is a finite function. So any
recursive extension of it should belong to FD′ as well, but e.g. id(x) = x does
not since for instance for x = 3 we have id(3) 6= id(2 · 3).

Exercise 7. Let f ∈ (N N) such that

∀g ∈ (N N).
(
g 6= f ∧ g ⊆ f =⇒ g ∈ R

)
Prove that f ∈ R.
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Solution (sketch). If f is always undefined then we have f ∈ R. Oth-
erwise we have f(x) = y ∈ N for some x. Let g(n) = f(n) for all n 6= x, and
g(x) = undefined. We have g 6= f, g ⊆ f , so by hypothesis g ∈ R. However,
given an implementation for g it’s easy to construct an implementation for f ,
e.g.:

F = λn. Eq n ppxqq ppyqq (G n)

Exercise 8. Show whether K̄ ≤m {i | φi(i3 + i2) = undefined} = E.

Solution (sketch). A reduction could be e.g.

h(n) = #(λx. φn(n))

This is recursive total (because . . . ). It’s simple to check that the above is indeed
a reduction, since φh(n)(〈whatever〉) = φn(n) which is undefined iff n ∈ K̄.

Exercise 9. Formally prove that there is some i such that φi = χ{5,i,2i}.

Solution (sketch). Start from

f(i, n) =


1 if n = 5
1 if n = i
1 if n = 2i

0 o.w.

In other words, f(i, n) = χ{5,i,2i}(n). Such f is clearly recursive, so f = φx
for some x. Take function g(i) = s(x, i) where s is from the s-m-n theorem. g
is a recursive total function, hence applying the second recursion theorem we
get that for some index i, φi(n) = φg(i)(n) = φs(x,i)(n) = φx(i, n) = f(i, n) =
χ{5,i,2i}(n) which is the desired property.

An alternative, essentially equivalent, way is to start from h(i) = #(λn. χ{5,i,2i}(n))
and apply the second recursion theorem to h.

Exercise 10. ? Find f ∈ R such that

¬ ( {i | ∃x. f(x, i) = 0} ≤m {i | ∀x. f(x, i) = 0} )

Solution (sketch). Take

f(x, i) =

 1 if x = 0
0 if x > 0, i ∈ K
undefined o.w.

We have f ∈ R (because...). Also, {i | ∀x. f(x, i) = 0} = ∅ because f(0, i) = 1.
Also, {i | ∃x. f(x, i) = 0} = K because f(x, i) = 0 only when i ∈ K and x > 0.
So we indeed have ¬(K ≤m ∅).
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