Computability Final Test — 2011-07-07

Notes.

- Write your name and matriculation number on each of your sheets.
- Solve <u>no more than four</u> (4) exercises. This will be strictly enforced: including more than 4 answers will result in the <u>immediate failure</u> of the test.
- Significantly wrong answers will result in negative scores.
- Always provide a justification for your answers.
- To achieve higher scores (≥ 27) you have to solve at least one exercise marked with ★ below.

Reminder: when equating results of partial functions (as in $\phi_i(3) = \phi_i(5)$), we mean that <u>either</u> 1) both sides of the equation are defined to be the same natural number, <u>or</u> 2) both sides are undefined.

Exercise 1. State whether $A = \{n \mid 2^n < 1000 \land \phi_n(n) = 2\} \in \mathcal{R}$.

Solution (sketch). The set A may contain only numbers < 10 because $2^{10+k} \ge 2^{10} = 1024 > 1000$. Hence it is a finite set. So, $A \in \mathcal{R}$.

Exercise 2. State whether $B = \{ \text{proj2}(n) \mid \phi_n(6) = n \} \in \mathcal{RE}.$

Solution (sketch). $B \in \mathcal{RE}$. Indeed, let

$$f(n) = \begin{cases} \operatorname{proj2}(n) & \text{if } \phi_n(6) = n \\ undefined & o.w. \end{cases}$$

The above f is recursive because 1) the property " $\phi_n(6) = n$ " is \mathcal{RE} (because e.g. it has semi-verifier λn . Eq (Eval $n \ \ulcorner 6 \urcorner)$ n), and 2) when the property holds f(n) is proj2(n) which is recursive, and 3) when the property does not hold f(n) is undefined. The range of f is clearly B, therefore $B \in \mathcal{RE}$.

Exercise 3. Comment on this proof excerpt by Mr. Rouge Hareng: is it correct? Why?

... and therefore, $A = \operatorname{dom}(f)$. Since f is a recursive function, we obtain $A = \operatorname{dom}(\phi_i)$ for some i, hence $A \in \mathcal{RE}$, which contradicts the hypothesis $A \in \mathcal{R}$. This concludes our proof.

Solution (sketch). The last step is wrong. $A \in \mathcal{RE}$ does not imply $A \notin \mathcal{R}$ (e.g. $\emptyset \in \mathcal{RE}$ but $\emptyset \in \mathcal{R}$). The rest of the proof is OK.

Exercise 4. Prove that, for any predicate P(-):

$$(\exists n. P(n)) \iff (\exists x, y. P(\mathsf{pair}(x, y)))$$

Then, prove that $A \in \mathcal{RE}$ if and only if

$$A = \{x \mid \exists y, z. \text{ pair}(x, \text{pair}(y, z)) \in B\} \text{ for some } B \in \mathcal{R}$$

Solution (sketch). Part 1. (\Rightarrow) If for some *n* we have P(n), we can take x = proj1(n), y = proj2(n) and have pair(x, y) = n, so P(pair(x, y)). (Note: an alternative solution would exploit the fact that pair is a surjective function.)

(\Leftarrow) If for some x, y we have P(pair(x, y)), we can take n = pair(x, y) and have P(n).

Part 2. We know that $A \in \mathcal{RE}$ if and only if there is a $B \in \mathcal{R}$ such that

$$A = \{m \mid \exists n. \mathsf{pair}(m, n) \in B\}$$

By Part 1, taking $P(n) = "pair(m, n) \in B"$ the above is equivalent to

$$A = \{m \mid \exists x, y. \text{ pair}(m, \text{pair}(x, y)) \in B\}$$

. 6		

Exercise 5. State whether $C = \{n^2 + n \mid \phi_n(n) = undefined\} \in \mathcal{RE}$.

Solution (sketch). $C \notin \mathcal{RE}$ since $\bar{K} \leq_m C$ with reduction $h(n) = n^2 + n$. Such h is obviously computable and total. It is indeed a reduction because

- If $n \in \overline{\mathsf{K}}$ we have $\phi_n(n) =$ undefined, and so $h(n) = n^2 + n \in C$
- If $n \notin \overline{\mathsf{K}}$, we have that $\phi_n(n)$ is defined. Moreover, h(n) is injective since it is strictly increasing. We can then have $h(n) \notin C$

Exercise 6. Prove that $\bar{\mathsf{K}} \leq_m \{i \mid \forall x. (x < 10 \implies \phi_i(x) = \phi_i(10))\} = D.$

Solution (sketch). The following is a reduction:

$$h(n) = \# \Big(\lambda x. \left\{ \begin{array}{ll} 3 & \text{if } x < 10 \land \phi_n(n) \text{ halts} \\ undefined & o.w. \end{array} \right)$$

the above is computable and total because "x < 10" is clearly recursive, while " $\phi_n(n)$ halts" is \mathcal{RE} . Overall, 1) the guard of the "if" is \mathcal{RE} , 2) the constant function of n "3" is recursive, and 3) in the other case the function is undefined.

The above is a reduction because:

• If $n \in \bar{\mathsf{K}}$, then $\phi_{h(n)}(x) = \begin{cases} 3 & \text{if } x < 10 \land false \\ undefined & o.w. \end{cases}$ = undefined for all x. In particular, $\phi_{h(n)}(x) = undefined = \phi_{h(n)}(10)$ for all x (in-

for all x. In particular,
$$\phi_{h(n)}(x) = unaefinea = \phi_{h(n)}(10)$$
 for all x (including those $x < 10$). So, $h(n) \in D$.

• If $n \in K$, then $\phi_{h(n)}(x) = \begin{cases} 3 & \text{if } x < 10 \\ undefined & o.w. \end{cases}$. In particular, $\phi_{h(n)}(5) = 3 \neq undefined = \phi_{h(n)}(10)$. Since 5 < 10, we can conclude $h(n) \notin D$.

Exercise 7. Let $A \otimes B = \{ pair(a, b) | a \in A \land b \in B \}$. Prove whether:

$$\begin{array}{l} A, B \in \mathcal{RE} \implies A \otimes B \in \mathcal{RE} \\ A \otimes B \in \mathcal{RE} \implies A \in \mathcal{RE} \\ A \otimes B \leq_m B \otimes A \end{array}$$

(Suggestion: watch out for all the possible cases!)

Solution (sketch). Part 1. True. A semi-verifier can be constructed as follows: given the input x, we split it into $a = \operatorname{proj1}(x)$ and $b = \operatorname{proj2}(x)$. Then, we call both semi-verifiers $S_A(a)$ and $S_B(b)$. Formally:

 $S_{A\otimes B} = \lambda x. \ S_A(\operatorname{Proj1} x)(S_B(\operatorname{Proj2} x))$

It is easy to check that $x \in A \otimes B$ iff $a \in A \wedge b \in B$. So, the above is indeed a semi-verifier for $A \otimes B$.

Part 2. False. $\bar{\mathsf{K}} \otimes \emptyset = \emptyset \in \mathcal{RE}$, but $\bar{\mathsf{K}} \notin \mathcal{RE}$.

Part 3. True. h(x) = pair(proj2(x), proj1(x)) is a reduction. (Easy to check)

Exercise 8. Prove whether $E = \{i | \forall x. \phi_i(x) = \phi_x(x)\} \in \mathcal{RE}$.

Solution (sketch). $E \notin \mathcal{RE}$ by Rice-Shapiro (\Rightarrow) . E is semantically closed (because...). The associated function set \mathcal{F}_E only contains one function, namely $f(x) = \phi_x(x)$. The domain of this function is infinite, since it is defined e.g. on $\#(\mathbf{K}^{\square} n^{\square})$ for all n. Let g be any finite restriction of f. Since the domain of f is infinite, $g \neq f$. Hence $g \notin \mathcal{F}_E = \{f\}$.

Exercise 9. \star Prove that: (note: \mathcal{R}^t = recursive total functions)

 $\forall f \in \mathcal{R}^t. \exists g \in \mathcal{R}^t. \forall i \in \mathbb{N}. \phi_{q(i)} = \phi_{f(q(i),i)}$

Solution (sketch). Intentionally omitted.

Exercise 10. \star Let A_0, A_1, \ldots be an infinite sequence of sets of natural numbers. Let $f \in \mathcal{R}$ such that

$$f(x,y) = \tilde{\chi}_{A_x}(y) = \begin{cases} 1 & \text{if } y \in A_x \\ undefined & otherwise \end{cases}$$

Prove that: (Remember to provide a justification)

 $\begin{array}{ll} [5\% \ score] & \forall x. \ A_x \in \mathcal{RE} & holds \\ [25\% \ score] & \bigcup_x A_x \in \mathcal{RE} & holds \\ [70\% \ score] & \bigcap_x A_x \in \mathcal{RE} & does \ not \ hold, \ in \ general \end{array}$

Solution (sketch). Intentionally omitted.