Computability Final Test — 2011-02-08

Notes.

- Write your name and matriculation number on each of your sheets.
- Solve only four (4) exercises.
- Significantly wrong answers will result in negative scores.
- Always provide a justification for your answers.
- To achieve higher scores (≥ 27) you have to solve at least one exercise marked with ★ below.

Reminder: when equating results of partial functions (as in $\phi_i(3) = \phi_i(5)$), we mean that <u>either</u> 1) both sides of the equation are defined to be the same natural number, <u>or</u> 2) both sides are undefined.

Exercise 1. This is an excerpt from a talk by Mr. Rouge Hareng:

I will now prove the following fact: if A, B are two non λ -definable sets, then their union $C = A \cup B$ is not λ -definable.

Proof. By contradiction, assume we have a verifier $V_C = \lambda x$. Or $(V_A x) (V_B x)$ which λ -defines $A \cup B$. This implies that the verifiers V_A, V_B do exist, contradicting the hypothesis "A, B are not λ -definable".

Comment on Mr. Hareng's statement and proof. State whether 1) both the statement and proof are correct; or 2) the statement is correct but the proof is not; or 3) the statement is not correct but the proof is; or 4) both the statement and proof are not correct. (Do not forget to provide a justification.)

Solution (sketch). The correct answer is 4) both the statement and the proof are not correct.

Indeed, the statement is false since K and \bar{K} are not λ -definable sets but their union is $K \cup \bar{K} = \mathbb{N}$. Consequently, the proof has to be wrong somewhere. Indeed, whenever $A \cup B$ admits a verifier, it does not follow that the verifier has to be of the form λx . **Or** $(V_A x)(V_B x)$, so it does not follow that V_A , V_B exist.

Note that answering 3) amounts to claiming that a false statement can have a correct proof! This is the kind of answer that can award negative points. \Box

Exercise 2. Show whether $B = \{i + 1 \mid \phi_i(10) = 7\} \in \mathcal{R}$

Solution (sketch). The set is not recursive. First, it is immediate to verify that

$$B' = \{i | \phi_i(10) = 7\} \le_m B$$

since h(n) = n + 1 is a reduction from B' to B. By Rice, B' is not recursive (check the 3 hypotheses). So B is not recursive.

Note: you can not apply Rice directly to B, since it is not semantically closed.

Exercise 3. Show that

$$A = \{i \mid i > 0 \land \phi_{i-1}(10) = 7\} \le_m B = \{i+1 \mid \phi_i(10) = 7\}$$

Solution (sketch). It is easy to check that A = B, so id(n) = n is a reduction.

Formally, if $n \in A$, then we have that n > 0 and $\phi_{n-1}(10) = 7$. If we let i = n - 1 we then have $\phi_i(10) = 7$, hence $n = i + 1 \in B$.

Dually, if $n \in B$, then n = i + 1 with $\phi_i(10) = 7$. This implies n > 0 and $\phi_{n-1}(10) = \phi_i(10) = 7$, hence $n \in A$.

Note: the above is overly pedantic, a more informal proof that A = B is OK.

Exercise 4. Show whether $C = \{i \mid \phi_i(4) > \phi_i(6)\} \in \mathcal{RE}$

Solution (sketch). $C \in \mathcal{RE}$ since a semi-verifier is provided by $S_C = \lambda x. \mathbf{Gt}(\mathbf{Eval} \ x \ {}^{\mathsf{T}}4 \ {}^{\mathsf{T}})(\mathbf{Eval} \ x \ {}^{\mathsf{T}}6 \ {}^{\mathsf{T}}) I \ \Omega.$

Indeed this S_C stops only whenever both $\phi_x(4)$ and $\phi_x(6)$ are defined, and the former is greater. This is exactly what is required by the definition of C, since undefined values are not greater (or lower) than anything.

Exercise 5. Show whether $E = \{i \mid \forall x. (x^2 < \phi_i(x) < x^3 + 5)\} \in \mathcal{RE}$

Solution (sketch). $E \notin \mathcal{RE}$ by Rice-Shapiro (\Rightarrow) . The set E is semantically closed (because ...). Let \mathcal{F} be the associated set of functions. Take any function $f \in \mathcal{F}$ (e.g. $f(x) = x^2 + 1$). By Rice-Shapiro (\Rightarrow) some finite restriction g of f must belong to \mathcal{F} . But this copes with the definition of E, which only allows total functions: g can not be total since it is finite.

Exercise 6. Show whether $D = \{i \mid \forall x. \phi_i(x) = \phi_i(0)\} \in \mathcal{RE}$

Solution (sketch). $D \notin \mathcal{RE}$ by Rice-Shapiro (\Leftarrow). The set D is semantically closed (because ...). Let \mathcal{F} be the associated set of functions, and take f(x) = undefined for all x. Clearly, f(x) = f(0) = undefined for all x, so f must belong to \mathcal{F} . By Rice-Shapiro (\Leftarrow), \mathcal{F} contains any recursive extension of f, e.g. the identity function. Hence, id(x) = id(0) for all x. Therefore 51 = id(51) = id(0) = 0 which is a contradiction.

Exercise 7. Show that if a generic set $A \in \mathcal{RE}$ then $A \setminus \{42\} \in \mathcal{RE}$

Solution (sketch). Let $A' = A \setminus \{42\}$. Then $S_{A'} = \lambda x$. Eq $x \ \ 42 \ \Omega(S_A x)$ is a semi-verifier: it diverges on 42 as it should, and otherwise stops only on other $x \in A$.

Alternative solution: The set $B = \{42\}$ is finite, hence recursive. Therefore the complement \overline{B} is recursive, hence \mathcal{RE} . Therefore $A' = A \setminus \{42\} = A \setminus B = A \cap \overline{B}$ is \mathcal{RE} since it is the intersection of two \mathcal{RE} sets. \Box

Exercise 8. Let $f \in (\mathbb{N} \rightsquigarrow \mathbb{N})$ be a partial function, and let $A_f = \{i | \phi_i = f\}$. Discuss whether A_f is an infinite set depending on f.

Solution (sketch). If f is recursive, by the Padding Lemma, it admits an infinite number of implementations, each one having its own index i, so the set A_f is infinite.

Otherwise, if f is not recursive, no implementation exists and $A_f = \emptyset$ is finite. \Box

Exercise 9. Show that $\bar{\mathsf{K}} \leq_m D = \{i \mid \forall x. \phi_i(x) = \phi_i(0)\}$

Solution (sketch). Let

$$h(n) = \# \left(\lambda x. \begin{cases} undefined & x = 0 \\ \phi_n(n) & o.w. \end{cases} \right)$$

Such h is recursive and total (the body of the lambda is recursive w.r.t. the parameters n, x, so we conclude by the s-m-n th.).

Let's check it is a reduction:

- If $n \in \bar{K}$, $\phi_{h(n)}(x) = \begin{cases} undefined \quad x = 0 \\ \phi_n(n) \quad o.w. \end{cases} = \begin{cases} undefined \quad x = 0 \\ undefined \quad o.w. \end{cases} = undefined \quad o.w.$
- If $n \notin \bar{\mathsf{K}}$, $\phi_{h(n)}(x) = \begin{cases} undefined \quad x = 0\\ \phi_n(n) \quad o.w. \end{cases}$. Hence $\phi_{h(n)}(1) = \phi_n(n) \neq undefined$ since $n \in \mathsf{K}$, while $\phi_{h(n)}(0) = undefined$, so $h(n) \notin D$.

Exercise 10. Let g(n) = 1 when n is a prime number, and g(n) = 0 otherwise. Is g primitive recursive?

Solution (sketch). Yes, g is primitive recursive, since a verifier for the set of prime numbers can be defined in the FOR language: we just need to check for potential divisors within 2..x.

Exercise 11. Construct two sets $A, B \subseteq \mathbb{N}$ such that all of the following properties hold:

- A is infinite
- $A \subset B$ (note: this implies $A \neq B$)
- $A \in \mathcal{R} \land B \in \mathcal{R}$
- $\forall C. \left(A \subseteq C \subseteq B \implies C \in \mathcal{R} \right)$

Solution (sketch). Take e.g. $A = \mathbb{N} \setminus \{0\}$ and $B = \mathbb{N}$. There are no C's in between but for C = A and C = B. So the statement trivially holds. \Box

Exercise 12. \star We defined the set of partial functions \mathcal{R} as a subset of the set of all the partial functions $\mathbb{N}^k \to \mathbb{N}$. Would it be possible to extend the definition of \mathcal{R} in a meaningful way to other cases such as $\mathbb{Z}^k \to \mathbb{Z}$, or $\mathbb{Q}^k \to \mathbb{Q}$? If so, provide the formal details defining such an extension, and comment on them. Otherwise, provide formal details explaining why such an extension would not be meaningful, and comment on them.

Solution (sketch). Yes, it can be done. A possible way is to encode relative integers and rational numbers into natural numbers using suitable bijections. Then, a function f from e.g. rationals to rationals is defined to be recursive iff there is a recursive function from naturals to naturals which maps the encoding of a rational x to the encoding of the rational f(x).

Exercise 13. \star Show whether all bijective functions $f \in (\mathbb{N} \leftrightarrow \mathbb{N})$ are recursive.

Solution (sketch). Intentionally omitted.