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General Information

These notes are meant to be a short summary of the topics covered in my
Computability course kept in 2008 and 2010 in Trento. Students are welcome
to use these notes, provided they understand the following.

• These notes are work in progress. I will update and expand them, so
at any time (but the very end of the course) they do not comprise all
the topics which are needed for the exam. As a consequence, please
do not rely on an old version of these notes.

• You might still want to refer to the books for some parts. I will try to
provide suitable references in the notes.

• While I tried to include all the relevant technical definitions and results
in these notes, at the moment there is almost no discussion about what
is computability and why we want to study it.

• Reporting errors in these notes will be awarded.

In the margins of these notes, you will find some markers for those def-
initions, statements and proofs which will be asked during the oral exam.
For example:

• This is a statement you need to know for the exam. You will not be
asked to prove it, but you may be asked to apply it to some concrete
case, or otherwise to prove you understand it.Statement

• This is a statement you need to know for the exam. You can be asked
to provide a proof for it (such a proof is included in these notes).Proof

Also, please remember the following, taken from ESSE3:

Prerequisites: strong basic notions of set theory; strong formula-
handling skills; good programming skills.

When relevant to the discussion during the oral test, you may be asked
about the above topics even when not explicitly marked in the notes.

Roberto Zunino



Contents

1 Basics 1

1.1 Logic Notation . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Set Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2.1 Further Notation . . . . . . . . . . . . . . . . . . . . . 5

1.3 Induction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.4 Cardinality . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.4.1 Bijections of N ⊎ N,N× N,N∗, . . . in N . . . . . . . . . 9

1.5 Paradoxes and Related Techniques . . . . . . . . . . . . . . . 11

1.5.1 Russell’s Paradox . . . . . . . . . . . . . . . . . . . . . 11

1.5.2 Diagonalisation . . . . . . . . . . . . . . . . . . . . . . 12

1.6 Cardinality Argument for Incomputability . . . . . . . . . . . 14

1.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2 The λ Calculus 17

2.1 Syntax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.2 Curry’s Isomorphism . . . . . . . . . . . . . . . . . . . . . . . 19

2.3 α-conversion, Free Variables, and Substitution . . . . . . . . . 20

2.4 β and η Rules . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.4.1 β Normal Forms . . . . . . . . . . . . . . . . . . . . . 25

2.4.2 η Normal Forms . . . . . . . . . . . . . . . . . . . . . 28

2.4.3 Equational Theory . . . . . . . . . . . . . . . . . . . . 29

2.5 Useful Combinators . . . . . . . . . . . . . . . . . . . . . . . 30

2.5.1 Pairs . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.6 Recursive Functions and Fixed Points . . . . . . . . . . . . . 33

2.7 Church’s Numerals . . . . . . . . . . . . . . . . . . . . . . . . 35

2.8 λ-definable Functions . . . . . . . . . . . . . . . . . . . . . . . 37

2.9 Computability Results in the λ calculus . . . . . . . . . . . . 40

2.9.1 Parameter Lemma . . . . . . . . . . . . . . . . . . . . 42

2.9.2 Padding Lemma . . . . . . . . . . . . . . . . . . . . . 43

iii



iv CONTENTS

2.9.3 Universal Program . . . . . . . . . . . . . . . . . . . . 43
2.9.4 Kleene’s Fixed Point Theorem . . . . . . . . . . . . . 45
2.9.5 Rice’s Theorem . . . . . . . . . . . . . . . . . . . . . . 46

2.10 Other Facts . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
2.10.1 Step-by-step Interpreter . . . . . . . . . . . . . . . . . 48

2.11 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3 Logical Characterization 51
3.1 Primitive Recursive Functions . . . . . . . . . . . . . . . . . . 51

3.1.1 Ackermann’s Function . . . . . . . . . . . . . . . . . . 54
3.2 General Recursive Functions . . . . . . . . . . . . . . . . . . . 55
3.3 T,U-standard Form . . . . . . . . . . . . . . . . . . . . . . . . 60
3.4 The FOR and WHILE Languages . . . . . . . . . . . . . . . . 60
3.5 Church’s Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . 62
3.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4 Classical Results 65
4.1 Padding Lemma . . . . . . . . . . . . . . . . . . . . . . . . . 66
4.2 Parameter Theorem (a.k.a. s-m-n Theorem) . . . . . . . . . . 66
4.3 Universal Program . . . . . . . . . . . . . . . . . . . . . . . . 67
4.4 Fixed Point Theorem, a.k.a. Kleene’s Second Recursion The-

orem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
4.5 Recursively Enumerable Sets . . . . . . . . . . . . . . . . . . 68
4.6 Reductions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.6.1 Turing Reduction . . . . . . . . . . . . . . . . . . . . . 71
4.6.2 Many-one Reduction . . . . . . . . . . . . . . . . . . . 73

4.7 Rice-Shapiro Theorem . . . . . . . . . . . . . . . . . . . . . . 74
4.8 Rice’s Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . 76

A Solutions 79
A.1 More Proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83



Chapter 1

Basics

In this chapter we shall recall some preliminary facts which we shall use in
the rest of the course. Most proofs here are left as an exercise to the reader:
you should be able to do this with a moderate effort. Moreover, you should
test your formula-understanding skills by performing most exercises in this
section.

1.1 Logic Notation

The following exercises are meant to check your formula-handling skills.

Exercise 1. Describe the meaning of the formulas below.

p ∨ ¬p excluded middle

¬(p ∨ q) ⇐⇒ (¬p ∧ ¬q) De Morgan

¬(p ∧ q) ⇐⇒ (¬p ∨ ¬q) De Morgan

(p =⇒ q) ⇐⇒ (¬p ∨ q) classical implication

(p ∧ q =⇒ r) ⇐⇒ (p =⇒ (q =⇒ r)) export/import

(p =⇒ q) ⇐⇒ (¬q =⇒ ¬p) contraposition

(p ⇐⇒ q) ⇐⇒ (¬p ⇐⇒ ¬q) contraposition

(p ∧ q) ∨ r ⇐⇒ (p ∨ r) ∧ (q ∨ r) distribution

(p ∨ q) ∧ r ⇐⇒ (p ∧ r) ∨ (q ∧ r) distribution

(¬∀x. p(x)) ⇐⇒ (∃x.¬p(x)) De Morgan

(¬∃x. p(x)) ⇐⇒ (∀x.¬p(x)) De Morgan

1
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(p ∧ (∀x. q(x))) ⇐⇒ (∀x. p ∧ q(x)) scope extrusion (x not in p)

(p ∨ (∀x. q(x))) ⇐⇒ (∀x. p ∨ q(x)) scope extrusion (x not in p)

(p ∧ (∃x. q(x))) ⇐⇒ (∃x. p ∧ q(x)) scope extrusion (x not in p)

(p ∨ (∃x. q(x))) ⇐⇒ (∃x. p ∨ q(x)) scope extrusion (x not in p)

(p =⇒ (∀x. q(x))) ⇐⇒ (∀x. (p =⇒ q(x))) scope extrusion (x not in p)

(p =⇒ (∃x. q(x))) ⇐⇒ (∃x. (p =⇒ q(x))) scope extrusion (x not in p)

((∀x. p(x)) =⇒ q) ⇐⇒ (∃x. (p(x) =⇒ q)) scope extrusion (x not in q)

((∃x. p(x)) =⇒ q) ⇐⇒ (∀x. (p(x) =⇒ q)) scope extrusion (x not in q)

∃y.∀x. p(x, y) =⇒ ∀x.∃y. p(x, y)

∀x.∃y. p(x, y) 6=⇒ ∃y.∀x. p(x, y)

∃!x. p(x) ⇐⇒ ∃c. (∀x. (p(x) ⇐⇒ x = c)) uniqueness

∃!x. p(x) ⇐⇒ (∃x. p(x)) ∧ (∀x, y. (p(x) ∧ p(y) =⇒ x = y))

Exercise 2. Convince yourself that the formulas above indeed hold.

1.2 Set Theory

Let A,B, . . . ,X, Y, Z be sets. Below, we provide standard definitions and
examples. I recommend you read them and check they match with your
intuition.

∀x ∈ X. p(x) ⇐⇒ (∀x. x ∈ X =⇒ p(x))

∃x ∈ X. p(x) ⇐⇒ (∃x. x ∈ X ∧ p(x))
⋃

X =
⋃

Y ∈X

Y = {y|∃Y ∈ X. y ∈ Y }

⋃

{{1, 2, 3}, {4, 5}, ∅} = {1, 2, 3, 4, 5}

A ∪B =
⋃

{A,B} = {x|x ∈ A ∨ x ∈ B}
⋂

X =
⋂

Y ∈X

Y = {y|∀Y ∈ X. y ∈ Y }

⋂

{{1, 2, 3}, {3, 4, 5}} = {3}

A ∩B =
⋂

{A,B} = {x|x ∈ A ∧ x ∈ B}
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A \B = {x|x ∈ A ∧ x 6∈ B}

X ⊆ Y ⇐⇒ ∀x ∈ X.x ∈ Y

P(A) = {B|B ⊆ A}

We shall use ordered pairs 〈x, y〉, as well as ordered tuples.

〈x, y〉 = 〈x′, y′〉 ⇐⇒ (x = x′ ∧ y = y′)

X × Y = {〈x, y〉|x ∈ X ∧ y ∈ Y }

Exercise 3. Define ∀〈x, y〉 ∈ Z. p(x, y) using the notation seen above.

The disjoint union of two sets: we use 0 and 1 as tags to keep the two
sets disjoint.

A ⊎B = {〈0, a〉|a ∈ A} ∪ {〈1, b〉|b ∈ B}

Definition 4. For our purposes, the set of functions from a set A to a set
B, written (A→ B) is defined as

(A→ B) = {f |f ⊆ A×B ∧ ∀a ∈ A.∃!b ∈ B. 〈a, b〉 ∈ f}

The domain of f ∈ (A→ B) is dom(f) = {a|〈a, b〉 ∈ f} = A. The range of
f ∈ (A→ B) is ran(f) = {b|〈a, b〉 ∈ f} ⊆ B.

So, a function is a set of pairs, mapping each element a of its domain A
to exactly one element f(a) of its range (some subset of B).

Definition 5. A function f is injective (or one-to-one) when

∀x, y ∈ dom(f). f(x) = f(y) =⇒ x = y

Exercise 6. Prove the following to be equivalent to f being injective.

f−1 ∈ (ran(f)→ dom(f)) where f−1 = {〈b, a〉|〈a, b〉 ∈ f}

We shall often deal with partial functions.

Definition 7. The set of partial functions (A B) is defined as

(A B) = {f |∃A′ ⊆ A. f ∈ (A′ → B)}

Definition
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The domain of partial function f ∈ (A  B) is therefore a subset of
A. This means that the expression f(a) when a ∈ A is actually undefined
whenever a is not in dom(f). In informal terms, a partial function is a
function that might fail to deliver any result. Formally, while a “true”
function returns exactly one result, a partial function returns at most one
result.

Sometimes we shall use the term total function for a function f ∈ (A→
B) to stress the fact that f is completely defined on A, i.e. dom(f) = A.

Exercise 8. Try to classify the following operations as “partial” or “total”.
Be precise on what A and B are in your model.

• addition,subtraction,multiplication,division on natural numbers

• compiling a Java program

• compiling a Java program, then running it and taking its output

• downloading a file from a server

• executing a COMMIT SQL statement

Definition 9. A function f ∈ (A→ B) is said to be surjective (or “onto”)
when ran(f) = B. An injective and surjective function is said to be bijective
(or a bijection, or a one-to-one correspondence).

Note. If f is a partial function, arguing whether f is a total function is
meaningless unless the set A is clear from the context: every partial f is a
total function in (dom(f)→ ran(f)), for instance.

Note 2. Similarly, if f is a function, arguing whether f is surjective is
meaningless unless the set B is clear from the context: every f is surjective
in (dom(f)→ ran(f)).

Note 3. The same holds for bijections.

Definition 10. The composition of two partial functions f, g is defined as

(f ◦ g)(x) = f(g(x))

Note that, whenever g(x) is undefined, so is f(g(x)).

Exercise 11. Let A,B,C be sets, and let g ∈ (A→ B) and f ∈ (B → C).
Prove that

• If f and g are injective, then f ◦ g is injective.

• If f and g are surjective, then f ◦ g is surjective.

• If f and g are bijections, then f ◦ g is a bijection.
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1.2.1 Further Notation
Definition

For this course, we shall use

N = {0, 1, 2, . . .}

Ā = N \ A

χA(x) =

{

1 if x ∈ A
0 otherwise

χ̃A(x) =

{

1 if x ∈ A
undefined otherwise

The (total) function χA is called the characteristic function of the set A.
Similarly, the partial function χ̃A is called the semi-characteristic function
of A.

1.3 Induction

Many concepts in computer science (and mathematics) are defined through
some sort of inductive definition. Similarly, many useful properties are often
proved by exploiting some induction principle.

In this section, we survey some different, yet equivalent, ways to present
an inductive definition. Students which have no or little background on
these topics may find some of these hard to understand at the beginning.
Also note that a deep understanding of these is not strictly necessary for the
rest of the course1. As a guideline, as long as you are able to solve Ex. 15
below, you should be able to understand every other use of induction in
these notes.

Below, we provide an inductive definition for the set of natural numbers
N. This is done in several different ways, so that the reader can get used
to all of these. Some informal argument supporting the fact that these
definition indeed match our intuitive notion of N is provided.

Definition 12. The set of natural numbers N can be equivalently defined as
follows:

• (Informal definition) N = {0, 1, 2, 3, 4, . . .}

1In spite of this, it is my opinion that each graduating Computer Science student should
be rather knowledgeable with induction techniques, as these play such a huge rôle in our
discipline.
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• (Through inductive inference rules) We let N be the set of those ele-
ments that can be generated by the following inference rules: (below, s
is a symbol for the successor function “+1”)

0 ∈ N

n ∈ N

s(n) ∈ N

Intuition: the rules above can generate only natural numbers since we
can only use 0 and the successor function s; vice versa, any natural
number n can be constructed by starting with the first rule and then
applying the second one n times.

• (Through the so-called “least prefixed-point” property) Let R̂ be the
following function:

R̂(X) = {0} ∪ {s(n)|n ∈ X}

That, we let N be the least of the prefixed points of R̂, i.e.

N =
⋂

{X|R̂(X) ⊆ X} ∧ R̂(N) ⊆ N

Intuition: the function R̂(X) applies the inference rules above once
to the elements of X. Hence, N is the least set that is closed under
application of R̂.

• (Through the so-called “least fixed-point” property) Let R̂ as above.
Then, N is the least of the fixed points of R̂, i.e.

N =
⋂

{X|R̂(X) = X} ∧ R̂(N) = N

Intuition: N is the least set that is unaffected by the application of R̂.

• (As a limit of an increasing chain) Let R̂ as above, and write R̂n(X)
for the result of applying n times the function R̂ to X. That is,
R̂0(X) = X, R̂1(X) = R̂(X), R̂2(X) = R̂(R̂(X)), and so on. Then,

N =
⋃

n≥0

R̂n(∅)

Intuition: we have R̂0(∅) = ∅, R̂1(∅) = {0}, R̂2(∅) = {0, 1},. . . R̂n(∅) =
{0, 1, 2, . . . , n− 1}. The union of all these sets is clearly N.
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• (As a recursive set-theoretic equation) Let 1 below denote a singleton
set, e.g. 1 = {0}). We let N to be the least solution of the equation

X ≃ 1 ⊎X

Intuition: we have N ≃ 1 ⊎ (1 ⊎ (1 ⊎ · · · , so this equation is roughly
“generating” a sequence of distinct terms, which represent the natural
numbers.

The (non-trivial) equivalence of the definitions above is a consequence
of the Knaster-Tarski theorem, which is one of the most important founda-
tional theorems in computer science. It is usually discussed when studying
the formal semantics of programming languages.

We can rephrase the “prefixed-point” definition of N as follows:

N =
⋂

{X|0 ∈ X ∧ ∀m.m ∈ X =⇒ s(m) ∈ X}

This allows us to state the usual induction principle on N:

Theorem 13 (Induction Principle). Given a predicate p on N, we have
∀n ∈ N. p(n) iff both of these hold

p(0)

∀m ∈ N. p(m) =⇒ p(m+ 1)

Proof. The (⇒) direction is trivial.
For the (⇐) direction, we take Y = {n ∈ N|p(n)} and show Y = N,

proving the thesis ∀n ∈ N. p(n). By definition of Y , Y ⊆ N is immediate.
By hypothesis, we have

0 ∈ Y
∀m ∈ N. m ∈ Y =⇒ m+ 1 ∈ Y

the above implies

Y ∈ {X|0 ∈ X ∧ ∀m.m ∈ X =⇒ s(m) ∈ X}

which together with

N =
⋂

{X|0 ∈ X ∧ ∀m.m ∈ X =⇒ s(m) ∈ X}

implies Y ⊆ N.
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Exercise 14. Prove ∀n ∈ N.0 + 1 + 2 + · · · + n = n·(n+1)
2 .

Note how the induction principle (Th.13) closely matches the inductive
inference rules,

Consider the above equation

N ≃ 1 ⊎ N

If you recall context free grammars, you will find the above recursive set
equation similar to

N ← 0 | s(N)

Indeed, grammars are a kind of inductive definitions.

Exercise 15. Starting from the grammar of binary trees (of naturals)

T ← N | b(T, T )

rewrite the above definition using inference rules. Then, further rewrite it
as a recursive set-theoretic equation. You can use N,×,⊎ for the latter.

Exercise 16. Express the set T of Ex. 15 using
⋂

:

T =
⋂

{X| · · · }

Exercise 17. (For logically minded people)
Write an induction principle for T.

Exercise 18. Define A∗, the set of finite sequences (i.e. strings) of elements
of the set A using an inductive definition.

Exercise 19. Consider the set of natural numbers A defined by the inductive
rules below.

6

n m

n+m

n m

n ·m

n m

nm

State an induction principle for this set, in the spirit of Th. 13. Then use
it to prove that every number in A is an even natural number.

An important set of inductive rules is the following one, which is used
in defining equivalence relations.

Definition 20. The equivalence relation inductive rules for a relation R
are the following:

x R x

x R y

y R x

x R y y R z

x R z
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1.4 Cardinality

1.4.1 Bijections of N ⊎ N,N× N,N∗, . . . in N

Disjoint Union We now construct a bijection between N⊎N and N. The
set N⊎N is intuitively composed of two parts: the “left N” and the “right N”.
We define two functions, named inL (“in-left”) and inR (“in-right”) which
map the left/right parts into the set of even and odd naturals, respectively.
Then we construct the wanted bijection encode⊎ exploiting these auxiliary
functions.

inL(n) = 2n

inR(n) = 2n+ 1

encode⊎(x) =

{

inL(n) if x = 〈0, n〉
inR(n) if x = 〈1, n〉

Definition

Exercise 21. Prove that this is a bijection. (Check that it is injective and
surjective)

Exercise 22. Write the inverse function N→ N ⊎ N. See Sol. 223.

Cartesian Product We now provide a bijection (N×N)↔ N: this is the
so-called “dovetail” function.

pair(〈n,m〉) =
(n+m)(n+m+ 1)

2
+ n

Definition
m=0 1 2 3 4 5 6 7

n=0 0 1 3 6 10 15 21 28

1 2 4 7 11 16 22 29

2 5 8 12 17 23 30

3 9 13 18 24 . . .

4 14 19 25 . . .

5 20 26 . . .

6 27 . . .

7 . . .

Exercise 23. Describe the inverse function N → N × N. This is usually
seen as two projection functions proj1 and proj2.
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Exercise 24. Construct a bijection (N⊎ (N×N))↔ ((N⊎N)×N). Do not
re-invent everything from scratch, but exploit previous results instead.

Theorem 25. There a bijection between N and N+ (the set of finite non-
empty sequences of naturals).

Proof. Left as an exercise. First, provide an inductive definition for N+.
Then, define the bijection inductively.

Exercise 26. Describe how to use these encodings to construct the following
bijections:

• the language of arithmetic expressions ↔ N

• the set of all files ↔ N

• the language of logic formulas ↔ N

Exercise 27. Define a bijection between N and Q.

Exercise 28. Prove that

A ∩B = ∅ =⇒ ∃f ∈ (A ∪B ↔ A ⊎B)

Exercise 29. Prove that pair is monotonic on both arguments, that is:

∀x, x′, y, y′. x ≤ x′ ∧ y ≤ y′ =⇒ pair(〈x, y〉) ≤ pair(〈x′, y′〉)

Lemma 30.
pair(〈n,m〉) ≥ n
pair(〈n,m〉) ≥ m

Statement

Proof. The first part is trivial:

pair(〈n,m〉) =
(n +m)(n +m+ 1)

2
+ n ≥ n

For the second part

pair(〈n,m〉) =
(n+m)(n+m+ 1)

2
+ n ≥

(n+m)(n +m+ 1)

2
=

=
n2 +m2 + 2nm+ n+m

2
≥

m2 +m

2
≥

m+m

2
= m

where the last steps follow from m2 ≥ m, which holds for all m ∈ N.
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1.5 Paradoxes and Related Techniques

This section presents one of the first computability results.
First, we will consider computer programs, as entities defining an ef-

fective (or automatic, mechanizable) procedure to process an input so to
construct, upon termination, an output. We will then restrict to the simple
case where inputs and output are just natural numbers. In this case, we can
say that a given program compute a partial function N N.

Then, we will show the existence of a specific total function f ∈ N→ N

which no program can compute. In other words, if we consider the set R

of the partial functions g such that there is at least one program that can
compute g, our function f does not belong to R. Again, in other words R

is a strict subset of N  N. We will see that, intuitively, f is just “too
complex” to be computed by a program. While a computer is a magnificent
device which can solve a large amount of different tasks, still its power has
some limits: tasks so complex that no computer can possibly solve do exist.

In order to construct this “impossible-to-compute” function f we need
to borrow a clever proof technique from logic: the diagonalisation technique.

1.5.1 Russell’s Paradox

Here’s a famous version of this paradox:

There is a (male) barber b in a City who is shaving each (and
only) man in the City who is not shaving himself.

Apparently, one might think that this is a possible scenario. In formulas,
we could write:

∀m ∈ City.
(

b shaves m ⇐⇒ ¬(m shaves m)
)

But if this were true for all men m, we could take m = b and have

b shaves b ⇐⇒ ¬(b shaves b)

which is clearly false. That is, we are unable to answer “does the barber
shave himself?”.

Russell used a similar argument to find a contradiction to näıve set
theory. Assume there is a set X = {x|p(x)} for each predicate p we can
think of. We clearly must have

∀y.
(

y ∈ X ⇐⇒ p(y)
)
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How can we make this resemble the paradox seen before? We want X to
play the rôle of the barber. So, y must play the man m, and shaves relation
must be ∈ (the membership relation). Then p(y) becomes y 6∈ y. So, the
above becomes

∀y.
(

y ∈ {x|x 6∈ x} ⇐⇒ (y 6∈ y)
)

which is indeed a contradiction, since if X = {x|x 6∈ x}, we now have
(choosing y = X, as we did before for m = b)

X ∈ X ⇐⇒ X 6∈ X

Russell used this argument to show that the set X above actually must
regarded as non well-defined, so to avoid the logical fallacy. The same
argument however can be used to prove a number of interesting facts.

1.5.2 Diagonalisation

Theorem 31 (Cantor). There is no bijection between a set A and its parts
P(A).

Proof. By contradiction, assume f ∈ (A ↔ P(A)). We now proceed as for
Russell’s paradox. Let

X = {x ∈ A|x 6∈ f(x)}

Clearly, X ∈ P(A), so f−1(X) ∈ A. We now have,

f−1(X) ∈ X ⇐⇒ f−1(X) 6∈ f(f−1(X)) ⇐⇒ f−1(X) 6∈ X

which is a contradiction.

This kind of argument is also known as a diagonalisation argument. This
is because the set X is constructed by looking at the diagonal of this matrix:

x y z . . . (all the elements of A)

f(x) yes no no . . .

f(y) no no no . . .
f(z) no yes yes . . .
...

...
...

...
. . .

Given a ∈ A, the matrix above has a “yes” at coordinates f(a), a iff xj
belongs to Xi (and a “no” otherwise). How do we build a set X different
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from all the f(a)’s ? We take the diagonal (yes, no, yes, . . .) and complement
it: (no, yes, no, . . .)

x y z . . . (all the elements of A)

X no yes no . . .

So, X is clearly distinct from all the f(a).

Exercise 32. Construct a bijection from R to the interval [0, 1).
(Hint: start from arctan(x))

Theorem 33. There is no bijection between N and R.

Proof. By contradiction, there is a bijection f between N and [0, 1). Every
real x ∈ [0, 1) can be written in a unique way as an infinite sequence of
decimal digits

x = 0. d0d1d2 . . .

with 0 ≤ di ≤ 9, and such that digits 0, . . . , 8 occur infinitely often (no
periodic 9’s). In other words, there is a bijection between [0, 1) and such
infinite sequences.

So, for all n ∈ N , we can write f(n) = 0.dn,0dn,1 . . ., hence we have a
bijection between N and these infinite sequences.

We proceed by Russell’s argument (diagonalisation). We construct a
sequence different from all the ones generated by f(n) for all n ∈ N. We let

di =

{

1 if di,i = 0
0 otherwise

Note that this is indeed a legal sequence (each digit in the 0 . . . 9 range, no
periodic 9’s). Hence, there is no n such that f(n) = 0. d0d1d2 . . ., contra-
dicting f being a bijection.

Another example of the same technique:

Theorem 34. There is no bijection f between N and (N→ N). Proof

Proof. By contradiction, take f . Define g(n) = f(n)(n) + 1. Since f is
a bijection, and g a function in its range, for some i ∈ N we must have
g = f(i). But then f(i)(i) = g(i) = f(i)(i) + 1.

Actually, the above proof proved a slightly more general fact: we can
extend the theorem to a surjective f . Also, we can use partial functions as
ran(f), exploiting (N→ N) ⊆ (N N).
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Theorem 35. There is no surjective function between N and (N N). Statement

Proof. Left as an exercise. Hint: prove the following

∅ 6= B ⊆ B′ ∧ f ∈ (A→ B′). f surjective
=⇒ ∃g ∈ (A→ B). g surjective

1.6 Cardinality Argument for Incomputability

We can now state a first, strong, computability result.
Namely, we compare the set of functions (N → N) with the set of pro-

grams in an unspecified language. We merely assume the following very
reasonable assumptions:

• each program can be written in a file — i.e. it can be represented by
a (possibly very long, but finite) string

• each program has an associated semantic partial function, mapping
the input (a file) to the output (another file)

Theorem 36. There is a function (from input to output) that can not be
computed by a program.Proof

Proof. There is a bijection between files and N (Ex. 26). So a program just
corresponds to a natural in N, while the function mapping input to output
can be seen as some partial function in (N  N). Since the mapping from
programs to their semantics is in (N → (N  N)), by Th .35 it can not be
surjective.

Note that the proof above actually hints to one of these incomputable
functions. Let us forget files, and just assume that programs get some
natural as input and can output a natural as output. Similarly, we can
identify programs with naturals as well, i.e. we fix some enumeration and
use Pn to denote the n-th program. So, we can write ϕx(y) for the output of
the x-th program (Px) when run using y as input. Then, the proof suggests
this function:

f(i) = ϕi(i) + 1

However, we should be careful here: the function ϕi is a partial function,
and therefore ϕi(i) might be undefined. So, we change the above definition
of f to:

f(i) =

{

ϕi(i) + 1 if ϕi(i) is defined
0 otherwise
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And this indeed is not a computable function.

Theorem 37. The total function f defined above is not computable. Proof

Proof. First, note that f(i) is defined for all i, so f is indeed a total function.
By contradiction, assume that f is computable by some program P .

Since programs can be enumerated, we have P = Px for some natural index
x. The fact that Px computes f can be written as ∀i. ϕx(i) = f(i). Since
this holds for all i, we can pick i = x and have f(x) = ϕx(x). Since f is
total ϕx(x) must be defined. From this last statement, by expanding the
definition of f we get ϕx(x) = f(x) = ϕx(x)+1. This is a contradiction.

Exercise 38. What happens if we change the 0 in the definition of f to
some other natural? Does the incomputability argument still hold? What if
we change it to “undefined”, thus defining f to be a partial function?

1.7 Summary

The most important facts in this section:

• näıve set theory ; logical formulas

• encoding and decoding functions for N2,N ⊎ N

• diagonalization method for constructing a non-computable function
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Chapter 2

The λ Calculus

Why the λ-calculus in a computability course?

The usual way to introduce students to computability theory is to work in
a rather abstract setting, and reason about what can (and can not) computed
by programs by making as less assumptions as possible about what programs
are, in which programming language they are written (if any at all), and how
they are executed. Being, in a sense, “language-agnostic” is one of the main
strengths of computability theory, since it allows one to achieve very general
results.

On the other hand, coping with this high level of abstraction might be
difficult for students, at least at the beginning. More precisely, it can be
hard to keep track of the connections between the abstract theory (func-
tions, indexes, enumerations) and the more concrete world of computer sci-
ence (programming languages, interpreters, semantics). In order to bridge
the gap, it is possible to first present computability results on a specific
programming language, and then abstract from that choice later on, when
(hopefully) a strong intuition about the meaning of such results has been
developed.

Another point in favour of starting our investigation using a specific
programming language is the following. Some results in computability are
“positive”, in the sense that they state that some function can indeed be
computed by a program. To prove this in an abstract setting, where no
convenient programming language can be used, can be a daunting task.
Often, a full proof would be rather long, full of technicalities, tedious, and
not very useful to students as there is no deep insight to be gained from such
a proof. Indeed, it is common practice to omit these proofs, and refer to
some informal principle such as Church’s Thesis to support the statement.

17
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Instead, when a programming language is used, these proofs amount to
solving specific programming exercises, which is a task worth doing in a
Computer Science course.

So, why using the (untyped) λ calculus and not another programming
language (say, Java)? The λ calculus has some specific features which, at
least in my opinion, make it a very good choice for studying computability.

• The syntax of the λ calculus is extremely small. This greatly helps
when defining procedures which manipulate program code, since we
have a very small number of cases to consider, only. By comparison,
the full Java syntax is huge.

• The full semantics of the λ calculus fits half of a page, even when
including all the auxiliary definitions. This helps in constructing in-
terpreters (or compilers). Building a full Java interpreter is much more
complex.

• The λ calculus is reasonably expressive. Despite being minimalistic,
all the common building blocks of programs can be defined. This
includes data types (e.g. booleans, naturals), usual operations (e.g.
multiplication, testing for ≤), data structures (e.g. lists, trees), control
structures (if-then-else, loops, recursion).

• Some classic computability results have a remarkably simple and ele-
gant proof when using the λ calculus.

To be fair, there are some drawbacks as well. For instance, we will omit
the proofs of some fundamental facts such as the Normalization theorem and
the Church-Rosser theorem, since these are not short enough to be included
in a computability course without sacrificing too much time. Further, as we
will see, some infelicities arise from subtle differences among “not having a
numeral normal form”, “not having a normal form”, and “being unsolvable”.

In this chapter, we will provide a short introduction to the untyped λ
calculus. For the full gory details, see the introduction of [Barendregt].

2.1 Syntax

Definition 39 (λ-terms). Let Var = {x0, x1, . . .} be a denumerable set of
variables. The syntax of the λ-terms isDefinition

M ::= x variable (with x ∈ Var)
| (M M) application
| λx.M abstraction (with x ∈ Var)



2.2. CURRY’S ISOMORPHISM 19

The set of all λ-terms is written as Λ.

Intuitively, a λ-term represents a function, e.g. we can write

f = λx. x2 + 5

instead of
∀x. f(x) = x2 + 5

Note. While we shall often use an extended syntax in our examples,
involving arithmetic operators, naturals, and so on, we do this to guide
intuition, only. In the λ calculus there is no other syntax other than that
shown in Def. 39. Later, we shall see how we can express things like 5 and
x2 in the calculus.

Exercise 40. Rewrite the definition of Λ, providing a recursive equation of
the form Λ ≃ · · · . Use only the following constructs: Var,×,⊎.

As a convention, we write chains of applications such as

(((xy)z)w)

in the more natural form
xyzw

Warning. Note that applications such as (x(y(zw))) still need all the paren-
theses, otherwise we have (x(y(zw))) = xyzw = (((xy)z)w). These, in
general, are not equal, as we shall prove later.

A often-used set of inductive rules are the structural rules. They are
used to allow a relation R between λ-terms to be applied to each subterm.

Definition 41. The λ-structural inductive rules for a relation R between
λ-terms are the following:

M R N

(MO) R (NO)

M R N

(OM) R (ON)

M R N

(λx.M) R (λx.N)

2.2 Curry’s Isomorphism

How to express functions with more than one parameter in the λ-calculus?
The answer is suggested by the following result.

Lemma 42. Let A,B,C be sets. Then, there exists a bijection
[

(A×B)→ C
]

↔
[

A→ (B → C)
]



20 CHAPTER 2. THE λ CALCULUS

Proof. Left as an exercise.

To represent binary functions using only unary functions, we proceed
as follows. Instead of taking two arguments x, y and return the result, we
instead take only x, and return a function. This function will take y, and
return the actual result.

λx. (λy. x2 + y)

Note that this way of expressing binary functions also allows partial appli-
cation: we can just pass the first argument x, only, and use the resulting
function as we want. For instance, we could use the resulting function on
several different y’s.

We write λxy. · · · as a shorthand for λx. λy. · · · .

2.3 α-conversion, Free Variables, and Substitution

In computer programs, the name of variables is immaterial. Variables can
be arbitrarily renamed without affecting the run-time behaviour of the pro-
gram. It is important, though, that all the occurrences of the same variable
are renamed consistently. This includes both variable declaration and use,
as we can see below.

λx. x2 + 5 = λy. y2 + 5

Above the “λx” declares, or binds, the variable x which is then used in the
expression x2 + 5. If we want to rename x to y, we can intuitively do that
without affecting the meaning of the expression, as long as we rename all
the occurences of x.

The renaming of program variables is known as α-conversion, and is
written as =α.

λx. x2 + 5 =α λy. y2 + 5

In order to precisely define the rules for α-conversion, we start with
identifying those variables which can not be renamed. For instance, we can
not rename those variables for which there is no declaration, i.e. no enclosing
λ in the λ-term at hand. For example, consider the following:

λx. x+ z

Here, we can rename x, but we can not rename z, since there is no λz
around. Such a variable is said to be free.
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Definition 43. The free variables free(M) of a λ-term are those not under
a λ-binder. Formally, they are inductively defined as follows:

free(xi) = {xi}
free(NO) = free(N) ∪ free(O)
free(λxi.N) = free(N) \ {xi}

Definition

Exercise 44. Prove that for all λ-terms M , the set free(M) is finite.

Let us consider the λ-term λx. M . Roughly, in order to α-convert a
variable x into y we have to perform two steps: 1) change λx into λy; 2)
substitute every x in M into y. Formally, the substitution in step 2 is
denoted with M{y/x}.

Note that formally defining the result of the substitution is not as trivial
as it might seem. For instance, consider the following:

λx. λy. x+ y

Renaming the x in the body of the λx is done by

(λy. x+ y){y/x}

A wrong result for this would be λy. y+y. This is wrong because otherwise
we would have the following α-conversion:

λx. λy. x+ y =α λy. λy. y + y wrong

In the right hand side there is no information about which declaration (λy)
is related to each use of y in y+y. The meaning of the original expression is
lost. Causing this kind of confusion must therefore be forbidden. If we really
want to rename x to y, we also need to rename the “other” y to something
different beforehand, e.g. as follows:

λx. λy. x+ y =α λy. λz. y + z

In order to do that, we should define substitution such that e.g.

(λy. x+ y){y/x} = (λz. y + z)

This is done as follows. Below we generalize the variable-variable substi-
tution M{y/x} to the more general variable-term substitution M{N/x},
allowing x to be replaced with an arbitrary term N , rather than just a
variable y.
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Definition 45. The result of applying a substitution M{N/x} is defined as
follows.

xi{N/xi} = N
xi{N/xj} = xi when i 6= j
(MO){N/xi} = (M{N/xi})(O{N/xi})
(λxi.M){N/xi} = (λxi.M)
(λxj.M){N/xi} = λxk. (M{xk/xj}{N/xi}) when i 6= j

where k = min{k | xk 6∈ free(N) ∪ free(λxj .M)}

Definition

In the last line we avoid variable clashes. First, we rename xj to xk, a
“fresh” variable, picked1 so that it does not occur (free) in N and λxj.M .
Then, we can apply the substitution in the body of the function.

Note: as a consequence of having (λxi.M){N/xi} = (λxi.M) we get

λx. λx. x+ x =α λy. λx. x+ x

This means that, whenever the same variable x appears in two nested decla-
rations, the inner one “shadows” the outer one. That is, the x occurring in
x+x is the one declared by the inner λ-binder. This follows the same static
scoping conventions found in programming languages: each occurrence of a
variable is bound by the innermost definition.

We can finally formally define our =α relation.

Definition 46 (α-conversion). The (equivalence) relation =α between λ-
terms is inductively defined by the following inductive rules:

• equivalence relation rules for =α (see Def. 20)
• λ-structural rules for =α (see Def. 41)
• rule α
λx. M =α λy. M{y/x} when y 6∈ free(M)

Definition

For more details, see [Barendregt 2.1.11].
Following [Barendregt], unless otherwise stated, we will often consider

λ-terms up to =α; i.e. we will consider α-congruent terms as identical. To
stress this fact we will include the following inference rule in our inductive
definitions.

1We pick the variable xk having minimum index k. This peculiar choice is actually
irrelevant. Picking any other “fresh” variable would lead to exactly the same α-conversion
relation.



2.4. β AND η RULES 23

Definition 47 (Up-to-α rule). The “up-to-α” inference rule for a relation
R between λ-terms is the following.

M =α M ′ M ′ RN ′ N ′ =α N

M RN

2.4 β and η Rules

Definition 48 (β rule). Here’s the β rule, used to compute the result of
function application.

(λx.M)N →t
β M{N/x}

(Note: the t stands for “at the top-level”) Definition

Example:
(λx.x2 + x+ 1)5→t

β 52 + 5 + 1

The meaning is straightforward: we can apply a function (λx.M) by taking
its body (M) and replacing x with the actual argument (N).

Definition 49 (η rule). Here’s the η rule, used to remove redundant λ’s. Definition

(λx.Mx)→t
η M if x 6∈ free(M)

When x is not free in M , it is obvious that (λx.Mx) denotes the same
function as M : it just forwards its argument x to M .

Exercise 50. Can you state the η rule in Java (or another procedural lan-
guage), at least in some loose form?

Relations →t
β and →t

η can be extended so that β and η rules can be
applied to subterms as well, i.e. not only at the top level.

Definition 51. Given a reduction relation →t
R (e.g. with R = β or R = η),

we define the relation →R on λ-terms as per the inductive rules below. Definition

• λ-structural rules for →R (see Def. 41)
• up-to-α rule for →R (see Def. 47)
• top-level rule R
M →R N when M →t

R N

Example 52. Here’s an example which shows that in some cases it is
mandatory to α-convert λ-bound variables.

(λx. ((λy.(λx. y x)) (x x)))
→β (λx. (λx. y x){(x x)/y})
= (λx. (λx̂. x x x̂))
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In the last line, the inner λx must be renamed, since x ∈ free(x x). Forget-
ting to rename x leads to the wrong result (λx. (λx. x x x)), in which all
the x’s are bound by the inner λx, i.e. the wrong result can be α-converted
to (λy. (λx. x x x)), which is completely different from the correct result.

Suggestion. Since the definition of →β includes the “up-to-α” rule, we
are allowed to rename variables before applying β. A simple thumb rule to
avoid mistakes such as the above one is

always keep λ-bound variables distinct:
immediately rename multiple occurrences of λx for the same x

In the example above, the rule suggest to immediately perform this renaming:

(λx. ((λy.(λx. y x)) (x x))) =α (λx. ((λy.(λx̂. y x̂)) (x x)))

We can now apply β in a safe way without caring about needed α-conversions:
since we renamed everything earlier, no further α-conversion is needed.
This thumb rule can cause you to perform more α-conversions than strictly
needed, but will never lead you to a wrong result.

Unlike →t
R, the above relations are non-deterministic, i.e. they can lead

to different residual λ-terms.

Exercise 53. Prove that the relations →R, R ∈ {β, η} above are non-
deterministic, i.e.

M →R M1 ∧M →R M2 ∧M1 6= M2

for some M,M1,M2.

Sometimes a single →t
βη or →βη relation is used to denote either the β

or η reduction relation.

Definition 54. We letDefinition

M →t
βη N iff M →t

β N or M →t
η N

M →βη N iff M →β N or M →η N

A λ-term that can not be further reduced is said to be in normal form.

Definition 55 (Normal form). Given a reduction relation →R (e.g. with
R = β, R = η, or R = βη), we say that a term M is in R-normal form iff
M 6→R.Definition
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2.4.1 β Normal Forms

We now consider the repeated application of →β starting from a given λ-
term M . This constructs a sequence such as the following one:

Definition 56. A β-reduction2 for M is a finite or infinite sequence of
terms Mi such that:

M →β M1 →β M2 →β M3 · · ·

Intuitively, this corresponds to “executing” program M : at each step
the expression at hand is rewritten in an equivalent form (according to β).
Exactly one of the following must hold:

• The β-reduction stops: that is, we reach some Mk which is a β-normal
form. Intuitively, this is the result of running M . We say that the
β-reduction above halts.

• The β-reduction never stops: that is, it is infinite. So, the β-reduction
is non-halting.

When a normal form is reached, we regard that λ-term as the result (the
“output”) of the β-reduction. If instead it does not exist, we regard the
β-reduction as a non-terminating one (is “divergent”).

Recall that the relation →β is non-deterministic. So, a term might have
multiple different β-reductions.

Exercise 57. Construct different β-reductions for

(λx. x)((λy.y)5)

As far as we know, a term M could have different β-reductions leading
to different β-normal forms.

Definition 58. We say that N is a β-normal form of M if and only if M
has some β-reduction ending with N , and N is a β normal form.

Here’s an example of a term having no β-normal form.

Exercise 59. Show that Ω = (λx. xx)(λx. xx) has no halting β-reduction,
hence no β normal form. Definition

2We follow the terminology of [Barendregt] here. Reductions as the above are also
called runs, or traces for M .
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Here’s an example of a term having no β-normal form and having a
β-reduction made of distinct terms.

Exercise 60. Check the above on Ω3 = (λx. xxx)(λx. xxx).

Here’s an example of a term having one β-normal form.

Exercise 61. Show that λx. x has exactly one β normal form. (Yes, it is
trivial.)

Here’s an example of a term having exactly one β-normal form, despite
having infinitely many halting reductions, and infinitely many non-halting
reductions.

Exercise 62. Prove the above using (λx.5)(Ω3Ω3).

Now, a question arises. Can a λ-term have more than one β-normal
form? The following result states that, while there might be multiple dif-
ferent β-reductions, any term M has at most one β-normal form (up to
α-conversion3). Alas, we omit the proof.

Definition 63. A relation →R is a Church-Rosser relation iff ∀M,N1, N2

M →∗
R N1 ∧M →∗

R N2 =⇒ ∃N.N1 →
∗
R N ∧N2 →

∗
R N

Theorem 64 (Church-Rosser). The relation →β is a Church-Rosser rela-
tion. As a consequence, each λ-term has at most one β-normal form (up-to
α-conversion).

[Barendregt 3.2.8 — no proof].

Now we know that a given M has either zero or one β-normal forms.
So, we are now entitled to say “the β-normal form” instead of “a β-normal
form”.

So, how can we compute the β-normal form of a term M (assuming
there is one)? Fortunately, we do not need to search among all possible
β-reductions of M (which may be infinite): by the following result, it is
enough to check just one specific β-reduction.

Definition 65 (Leftmost-outermost reduction relation). The leftmost-outermost
β-reduction relation is →β constrained as follows: it must be applied as to
the left as possible, i.e. to the first occurrence of an applied λ binder, reading

3That is, if N1 and N2 are two β-normal forms for M , then N1 =α N2.
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the λ-term left-to-right. Below we show a procedure to compute the leftmost-
outermost residual.

procedure L(M)
Input: a λ-term M
Output: either a leftmost-outermost residual of M ,

or the special constant NormalForm if no residual exists
if M = xi then return NormalForm

else if M = λxi.N then
if L(N) 6= NormalForm then return λxi. L(N)
else return NormalForm

else if M = NO then
if N = λxi.P then return P{O/xi}
else if L(N) 6= NormalForm then return (L(N))O
else if L(O) 6= NormalForm then return N(L(O))
else return NormalForm

Exercise 66. Prove that the above procedure indeed applies β in a leftmost-
outermost way. Proceed by induction on the structure of M .

By the following theorem, to find a normal form we just need to apply
L repeatedly. Alas, we omit the proof.

Theorem 67 (Normalization). The leftmost-outermost strategy (i.e. repeat-
edly applying procedure L above) is normalizing, i.e. it finds the β-normal
form as long as it exists. Statement

Nota Bene: when no β-normal form exists, this strategy constructs to
an infinite β-reduction, so it never halts.

[Barendregt 13.2.2 — no proof]

The fact that the normalizing procedure above may fail to halt (as it
does when M has no normal forms) is no coincidence. Indeed, we will use
results from computability theory to explain that there is actually no way
we can improve the above procedure by very much. More concretely, we will
later on prove that each algorithm to find the β-normal form4 of a term M
must fail to halt for some M . In other words, “fixing” the normalization
procedure to print the message “there is no normal form” when that is the
case is simply impossible.

4When it exists.
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2.4.2 η Normal Forms

While finding β-normal forms can be a hard task, η-normal forms are almost
trivial. This is because η-normal forms always exist, unlike for β.

A η-reduction is defined as for β-reduction, mutatis mutandis. Similarly
for the notion of “N is a η-normal form of M”, etc.

Exercise 68. Define a function size(M) which counts the number of syn-
tactic elements (abstractions, applications, variables) in M .

Then, prove that if M →η N then size(M) > size(N).
Finally use the above result to prove that no infinite η-reduction.

Exercise 69. Prove that →η is Church-Rosser.

Theorem 70 (Existence and uniqueness of η). Each given M admits exactly
one η-normal form.

Proof. The above exercises imply the statement.

Exercise 71. Let M be a β-normal form, and M →η N . Prove that N is
still a β-normal form.

Exercise 72 (Commuting η and β). Prove the following. If M →η N →β

O, then M →β N ′ →∗
η O for some N ′.

Theorem 73. M has a β-normal form if and only if M has a βη-normal
form.

Proof. (⇒) Immediate from Ex.71. (exercise)
(⇐) Assume M →∗

βη N with N βη-normal form. This means that there
is a reduction

M →γ1 · · · →γn N

with γi ∈ {β, η}. By repeated application of Ex. 72 we get that there is also
a reduction

M →∗
β N ′ →η N

for some N ′ in β-normal form. This concludes.

The previous results allow us to state the following.

Theorem 74 (Normalization for →βη). To find the βη-normal form for M
(when existing), it is enough to apply the normalizing leftmost-outermost
strategy, take its output (a β-normal form of M), and apply →η as far as
possible.

Proof. Direct from the lemmata above.
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2.4.3 Equational Theory

The relation →βη describes how to “compute” with the λ-calculus. We now
exploit this relation to define an equivalence between λ-terms.

Definition 75 (Axiomatic semantics for the untyped λ-calculus). The equiv-
alence relation =βη between λ-terms is inductively defined below. Definition

• equivalence relation rules for =βη (see Def. 20)
• rule βη
M =βη N when M →βη N

We also write =β (respectively, =η) for the equivalence relations defined by
using →β (resp. →η) instead of →βη.

Convention: when unambiguous we shall often write M = N instead of
M =βη N .

Note that using the structural rules one can apply the β and η rules even
to subterms of the λ-term at hand, e.g.

λx. ((λy. y)a) =βη λx. a

Indeed, the following holds.

Exercise 76. Prove that =βη is closed under the λ-structural rules of Def. 41.

Exercise 77. Use the η rule to prove the ext rule.

Mx = Nx ∧ x 6∈ free(MN) =⇒ M = N (ext)

Exercise 78. Show that the η rule is actually equivalent to the ext rule
above.

This also provides a nice link between the equational theory and the
βη-reduction relation:

Theorem 79. If M =βη N and N is a βη-normal form, then M →∗
βη N . Statement

Proof. Left as an exercise. Suggestion: prove the following stronger state-
ment, instead.

• If M =βη O both the following properties hold:

– if O →∗
βη N and N is a βη-normal form, then M →∗

βη N
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– if M →∗
βη N and N is a βη-normal form, then O →∗

βη N

Proceed by induction on =βη. You might want to exploit the Church-Rosser
property in some case.

See also [Barendregt 3.2.9] for a proof.

Figure 2.1 provides a summary of the syntax and semantics of the λ-
calculus.

2.5 Useful Combinators

Below, we list several common λ-terms.Definition

I = λx. x

K = λxy. x

S = λxyz. xz(yz)

T = λxy. x = K

F = λxy. y

The λ-term I represents the identity function. The λ-term K is used to
build constant functions: e.g. K 5 is a function which always returns 5,
since K 5 x = 5 for all x.

The λ-terms T and F are used to represent the boolean values “true”
and “false”. We will provide a justification for this choice below.

Example 80. We have the following:

KISS = ((KI)S)S = IS = S

SKKx = Kx(Kx) = x = Ix

so, by the ext rule

SKK = I

KIxy = Iy = y = Fxy

so, by the ext rule

KIx = Fx

again, by the ext rule

KI = F
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λ-terms (M , Λ)

M ::= xi | (M M) | (λxi. M)
Λ = {M |M is a λ-term }

free variables (free(M),Λ0)

free(xi) = {xi}
free(NO) = free(N) ∪ free(O)
free(λxi.N) = free(N) \ {xi}

Λ0 = {M | free(M) = ∅}

equivalence relation rules for R

x R x

x R y

y R x

x R y y R z

z R z

λ-structural rules for R

M R N

(MO) R (NO)

M R N

(OM) R (ON)

M R N

(λx.M) R (λx.N)

substitution (M{N/x})
xi{N/xi} = N
xi{N/xj} = xi if i 6= j
(MO){N/xi} = (M{N/xi})(O{N/xi})
(λxi.M){N/xi} = (λxi.M)
(λxj .M){N/xi} = λxk. (M{xk/xj}{N/xi}) if i 6= j
where k = min{k | xk 6∈ free(N) ∪ free(λxj .M)}

α conversion (=α)

• equivalence relation rules for =α

• λ-structural rules for =α

• λx. M =α λy. (M{y/x}) if y 6∈ free(M)

up-to-α inference rule for R

M =α M ′ M ′ RN ′ N ′ =α N

M RN

β reduction relation (→t
β,→β)

• (λx.M)N →t
β M{N/x}

• λ-structural rules for →β

• up-to-α rule for →β

• top-level rule
M →t

β N

M →β N

η reduction relation (→t
η,→η)

• (λx.M x)→t
η M if x 6∈ free(M)

• λ-structural rules for →η

• up-to-α rule for →η

• top-level rule
M →t

η N

M →η N

βη reduction relation (→t
βη,→βη)

M →t
βη N iff M →t

β N or M →t
η N

M →βη N iff M →β N or M →η N

βη equivalence (=βη)

• equivalence relation rules for =βη

•
M →βη N

M =βη N

Figure 2.1: The syntax and semantics of the untyped λ-calculus
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Exercise 81. Prove that we do not have T =βη F. See Sol. 225.

Exercise 82. Define

if M then N else O = MNO

and check the usual “if-laws” for M = T and M = F.

if T then N else O =βη N
if F then N else O =βη O

This justifies the names for T and F.

Exercise 83. Define the usual logical operators: And, Or, Not. (See
Sol. 226)

Lemma 84. Application is not associative, that is

¬∀MNO. (MN)O = M(NO)

Proof. By contradiction,

(K(IT))F = IT = T

((KI)T)F = IF = F

General Hint. To prove that some equation do not hold in general
under βη, you can show it implies T = F. To this aim, it is useful to consider
simple combinators such as K, I first. Also, applying everything to a generic
term (to be chosen later) usually helps: for instance, you can proceed like
this in the lemma above. First, guess M = K. So, KNO = K(NO). Now,
the K on the right hand side expects two arguments, and has only one, so
we provide it as a generic term P , which we can choose later. We obtain
KNOP = K(NO)P , implying NP = NO. Now it is easy to guess N = I,
so to obtain P = O. Guessing P,O is then made trivial.

Exercise 85. Show that, in general, these laws do not hold

MN = NM

M(NO) = O(MN)

M(MO) = MO

MO = MOO

MM = M

MN = λx.M(Nx)
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Exercise 86. Check whether these terms have a β-normal form

KIK

KKI

K(K(KI))

SII

SII(SII)

KIΩ

(λz. (λx. xxz)(λx. xxz))

2.5.1 Pairs

Pairs can be encoded as follows: Definition

Cons = λxyc. cxy

Fst = λx. xT

Snd = λx. xF

Exercise 87. Prove the usual pair laws:

Fst(ConsM N) = M Snd(ConsM N) = N

Exercise 88. Define F so that (standalone exercises):

• F (Cons x y) = Consx (Cons y x)

• F (Cons x (Cons y z)) = Cons z (Cons x y)

2.6 Recursive Functions and Fixed Points

Can we build recursive functions? For instance, consider the factorial func-
tion:

f = λn.if n = 0 then 1 else n · (f(n− 1)) (2.1)

Is there some λ-term f that satisfies the equation above? Of course, the
equation itself has f on both sides so it does not define a λ-term f (unlike
e.g. f = λx. x2 + 5).

What if we abstract the recursive call?

F = λg. λn. if n = 0 then 1 else n · (g(n − 1)) (2.2)
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This is now a valid λ-term, since it is a non-recursive definition. However,
we must now force g to act, very roughly, as f . A first attempt would be to
simply pass a copy of f to f itself, as this:

f = MM where M = λg. λn. if n = 0 then 1 else n · (g(n − 1))

This however has a problem: g will be bound to M , which is only “half”
of f . So, the recursive call g(n − 1) is actually M(n − 1), and that is not
f(n − 1). However, the latter would be MM(n − 1), and we can express
this by just writing the recursive call as gg(n− 1). So we can fix5 the above
definition as follows:

f = MM where M = λg. λn. if n = 0 then 1 else n · (gg(n − 1))

Note that this is a proper definition for a λ-term f .

Exercise 89. Use the above definition of f to compute the factorial of 3.

Exercise 90. Write a λ-term for computing
∑n

i=0 i
2.

It is important to note that the body of any recursive function f can be
written as in (2.2), that is abstracting all the recursive calls. Writing F for
the (abstracted) body, we can see that the key property we are interested
in is

f = Ff

Indeed, by the β rule, the above is equivalent to the recursive definition, see
e.g. (2.1). So finding such a term f means to find a fixed point for F .

What if we had a λ-term Θ such that ΘF = F (ΘF ) for any F? That
would be great, because we can use that to express any recursive function,
just by writing the abstracted body and applying Θ to that. Such a Θ is
called a fixed point combinator.

Exercise 91. Write such a Θ.
(Hint. This seems hard, but we know all the tricks now. Start from the
equation Θ = λF.F (ΘF ).)
After you solve this, compare your solution to that in the Appendix, Sol. 224.Definition

5Oh, the irony. . .
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Exercise 92. Check whether these terms have a β-normal form

Θ

KIΘ

KΘI

ΘI

ΘK

Θ(KI)

2.7 Church’s Numerals

The λ calculus does not have any numbers in its syntax. In spite of this, it is
possible to encode naturals into λ-terms, and compute with them. That is,
we shall pick an infinite sequence of (closed) λ-terms, and use them to denote
naturals in the λ calculus. We shall name these λ-terms the numerals.

There are several ways to encode naturals; we shall use a simple way
found by Church. Recall the structure of naturals, seen as terms in first-
order logic:

z, s(z), s(s(z)), s(s(s(z))), . . .

where z is a constant representing zero, and s is the successor function. We
just convert that notation to the λ calculus by abstracting over s and z:

λsz. z, λsz. sz, λsz. s(sz), λsz. s(s(sz)), . . .

We shall write the above sequence as pp0qq,pp1qq,pp2qq, and so on.

Definition 93. The sequence of Church numerals is inductively defined as
follows. Let s and z be variables6. Definition

M0 = z

Mn+1 = sMn

ppnqq = λsz.Mn

Another way to define the same numerals is through the function com-
position operator:

◦ = λfgx. f(gx)

6E.g. let us pick s = x0 and z = x1.
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Then, we can define a “zero” and “successor” λ-terms as follows

0 = λf. I

Succ = λnf. ◦ f(nf)

The sequence of Church’s numerals indeed satisfies the following.

pp0qq = 0

ppn + 1qq = Succppnqq

We can check a numeral against zero using the following combinator:

IsZero = λn. n(KF)T

Exercise 94. Check that IsZeropp0qq = T and IsZeroppn + 1qq = F.

The predecessor function. Note that we let Pred0 = 0.

Pred = λn.Snd(nM(ConsF0))

M = λp.ConsT(Fst p (Succ(Snd p))0)

Exercise 95. Check that Pred is correct.

Exercise 96. Define the usual arithmetic operators and comparisons. Also
see the solution in the appendix (Sol. 226).

Exercise 97. Assume lists of positive naturals such as [1, 2, 3] are encoded
as Cons pp1qq (Cons pp2qq (Cons pp3qq (Cons 0,Ω))), using 0 to mark the end
of the list. Write the following functions:

• Length returning the length of a list

• Even removing from the input list all odd numbers

• Append appending two lists

• Reverse reversing a list

• Sort sorting the list (use e.g. merge-sort)

See Sol. 227.

Exercise 98. Find an encoding for lists of arbitrary (opaque) data, and
adapt the functions seen above. What about binary trees?
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2.8 λ-definable Functions

In this section, we define when a λ-term M can be regarded as the imple-
mentation of some (partial) function f ∈ (N N). Clearly, we must require
at least the following:

when f(n) is defined, then Mppnqq =βη ppf(n)qq

But what to require when f(n) is not defined? That is, when n 6∈ dom(f),
what should we require for Mppnqq?

when f(n) is not defined, then Mppnqq . . . (what to put here?). . .

Intuitively we want to state “Mppnqq does not provide a result”. Below, we
list several available options to state this:

Definition 99. Options for representing undefinedness:

1. when f(n) is not defined, then Mppnqq has no numeral βη-normal form.

2. when f(n) is not defined, then Mppnqq has no βη-normal form.

3. when f(n) is not defined, then MppnqqN1 · · ·Nk has no βη-normal
form, for all N1, . . . , Nk.

Option 1 above is the most simple one: we regard anything which is not
a numeral (according to βη) as “undefined”. According to this definition,
each λ-term M has an associated function f such that M λ-defines f . Un-
fortunately, some technical difficulties arise with this option. For instance,
consider the following programs:

G = λx. xK Ω H = λxyz. y pp0qqΩ

According to option 1 above, both these programs implement the always-
undefined function. Indeed Gppnqq = ppnqqKΩ = λx1 . . . xn. Ω which is
not a numeral (it does not even have a βη-normal form). Also, Hppnqq =
λyz. y pp0qqΩ which is not a numeral (as before).

So, what is wrong with the programs G,H above? Let us try to compose
them. Intuitively, composing the always-undefined function with itself, will
yield again the always-undefined function. However, this is not the case
with the G,H programs above:

λn. G(Hn) =βη λn. H n K Ω =βη λn. K pp0qq Ω =βη λn. pp0qq
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So, according to option 1 above, we can have two always-non-terminating
programs which, once composed, implement the always-defined constant
function 0. This is highly counter-intuitive, and we want to avoid this.

A possible solution would be to use a more sophisticated way of compos-
ing functions. That is instead of using λn. G(Hn) we would use something
more complex. Even when doing this, it is still unclear how to watch out
for “garbage” such as the one found above.

For the time being, it is easier if we just rule out this garbage, and
require that when f(n) is not defined, Mppnqq must not only differ from
numerals, but also differ from the garbage above. So, we discard option 1
for something stronger. Note that option 2 above is stronger, yet not strong
enough to disallow H. Instead, we shall take option 3: H is now ruled out
since

H ppnqq (λab. I) Ω =βη I

G is instead not ruled out: GppnqqN1 . . . Nk = K(. . . (KΩ))N1 . . . Nk has no
normal form, no matter how we choose the Ni. Hence Gppnqq complies with
option 3.

Option 3 is best described in terms of solvability.

Definition 100 (solvability). A closed λ-term M is solvable if there are
some N1, . . . , Nk, with k ≥ 0, such that MN1 · · ·Nk = I.Definition

[Barendregt 8.3.1]

Exercise 101. Show that if M is unsolvable, then MN is also unsolvable,
for any N .

Exercise 102. For each term in the following list, state whether it is solvable
or not.

Ω, (λx. Ω), (λx. x Ω), (λx. Ω x), KKI, Θ, SII

Exercise 103. Show that Church’s numerals can be uniformly solved by
finding M,N such that ∀n ∈ N. ppnqqMN = I.

Theorem 104. Any closed β-normal form is solvable.Statement

Proof. We leave this as an exercise.
Hint: first, show that the normal form has the form

λx1 . . . xn. xiM1 . . .Mk

for some i ∈ {1..n}. (This is called a head normal form)
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We can now define λ-definability for (partial) functions:

Definition 105 (λ-definability). Given a partial function f ∈ (N N), we
say that a closed λ-term M defines f iff for all n ∈ N

Mppnqq = ppf(n)qq if n ∈ dom(f)
Mppnqq unsolvable otherwise

A partial function f is λ-definable iff it is defined by some M . This definition
is naturally extended to partial functions Nk

 N. Definition

Note that according to the above definition, the “garbage” λ-term H
seen before does not λ-define any function. Indeed, it returns something
which is not a numeral, yet solvable, and this is forbidden by the definition
above.

Exercise 106. Show that if f, g are partial λ-definable functions, then their
composition f ◦ g is such.
Hint: exploit Ex. 103, 101.

Definition 107. A set A ⊆ N is λ-defined by G iff

n ∈ A =⇒ Gppnqq = T

n 6∈ A =⇒ Gppnqq = F

A set of λ-terms L ⊆ Λ is λ-defined by G iff {#M |M ∈ L} is such. Definition

Exercise 108. Change T with 1 and F with 0 in the definition above, and
prove this alternative notion of λ-definability for sets to be equivalent.

Exercise 109. Show that finite subsets of N are λ-definable.

Lemma 110. λ-definable sets are closed under

• union (∪)

• complement (\)

• intersection (∩)
Statement

Proof. Left as an exercise.

Lemma 111. Let f be a total injective λ-definable function. Let A ⊆ N,
and let B = {f(n)|n ∈ A}. If B is λ-definable, then A is such.

Proof. Let f,B be λ-defined by F,MB . Then let MA = λn.MB(Fn). Note
that MAppnqq = MBppf(n)qq. If n ∈ A, then the above evaluates to T. If
n 6∈ A, then f(n) 6∈ B since f is injective, andMBppf(n)qq evaluates to F.



40 CHAPTER 2. THE λ CALCULUS

2.9 Classical Computability Results in the λ cal-

culus

Recall the cardinality argument: Λ is a denumerable set, while N → N is
larger. So, we expect to find some function which is not λ-definable. We
can indeed define it through a diagonalisation process.

First, we need to enumerate the λ-terms. To this aim, recall the recursive
definition Λ ≃ Var ⊎ ((Λ×Λ)⊎ (Var×Λ)). We define a bijection between Λ
and N; we write the natural corresponding to M as #M .

Definition 112. We define the bijection # as follows.Definition

(#−) ∈ (Λ↔ N)

#M =







inL(i) if M = xi
inR(inL(pair(#N,#O))) if M = NO
inR(inR(pair(i,#N))) if M = λxi. N

We can then represent the natural #M in the calculus in the usual way.

Definition 113. The function pMq is defined as follows.Definition

p−q ∈ (Λ→ Λ0)

pMq = pp#Mqq

We can now define a non-computable function, following the diagonali-
sation argument. We define f ∈ (N→ N) as follows

f(n) =

{

1 if MpMq has a β-normal form, where n = #M
0 otherwise

Note that this is a total function, by construction. Also note we are applying
a term M to its own numeral index pMq. Suppose that the function above
is λ-defined by F . Then, define

M = λx.Eqpp0qq(Fx)IΩ

We now consider f(#M): by definition of f , this is either 1 or 0. If f(#M)
were equal to 1, then MpMq would have a normal form, but then

MpMq = Eqpp0qq(FpMq)IΩ = Eqpp0qqpp1qqIΩ = FIΩ = Ω
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which has not a normal form — a contradiction. We must conclude that
f(#M) is equal to 0, and that MpMq has no normal form, but then

MpMq = Eqpp0qq(FpMq)IΩ = Eqpp0qqpp0qqIΩ = TIΩ = I

has a normal form — another contradiction.
Hence, such a λ-term F can not exist, i.e. the function f can not be

λ-defined.

Lemma 114. The function f defined above is not λ-definable. Proof

Exercise 115. Compare this result with Th. 37. You should find the proof
to be similar.

Nota Bene. Having M =βη N does not imply that #M = #N . That
is, even if two programs are semantically equivalent, their source code may
be different!

Exercise 116. Find some closed M,N such that M =βη N but #M 6= #N .

Nota Bene. Having M =α N does not imply that #M = #N . That
is, even if two programs only differ because of α-conversion (i.e. choice of
variable names), their index is different!

Exercise 117. Show that #(λx0. x0) 6= #(λx1. x1).

We can now define one of the most famous sets in computability.

Definition 118. Kλ = {#M |MpMq has a β-normal form} Definition

Note that Kλ ⊆ N.

Lemma 119. Kλ is not λ-definable Proof

Proof. By contradiction, if Kλ were λ-definable by e.g. G, then we could
λ-define the function f shown above using this F :

F = λx.Gx pp1qq pp0qq

Indeed, f is χKλ
, the characteristic function of the set Kλ.

We want to show that many syntactic transformations of λ-terms, e.g. trans-
forming #(MN) into #(NM), can be done in the λ-calculus. To manipulate
an index #O we basically need to compute the pair, encode⊎ functions and
their inverses.
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Exercise 120. Show that pair and inL, inR can be λ-defined, as well as their
inverses. In order to do that, construct the following functions:

• Pair,Proj1,Proj2 such that

– Pairppnqqppmqq, Proj1ppnqq and Proj2ppnqq return numerals

– Proj1(Pairppnqqppmqq) = ppnqq

– Proj2(Pairppnqqppmqq) = ppmqq

– Pair(Proj1ppnqq)(Proj2ppnqq) = ppnqq

• InL, InR,Case such that

– InLppnqq and InRppnqq return numerals

– Case(InLppmqq)MN = Mppmqq

– Case(InRppnqq)MN = Nppnqq

– Case ppnqq InL InR = ppnqq

Also see Solution 226 in the appendix.Definition

Exercise 121. Construct a “shallow decoder” for our bijection #. A shal-
low decoder is a function which decodes just the top-level structure of the
encoded λ-term. More in detail, it satisfies the following.

Sd pxiq V A L = V ppiqq
Sd pλxi.Mq V A L = L ppiqq pMq
Sd pMNq V A L = A pMq pNq

See also Solution 229.Definition

2.9.1 Parameter Lemma

Now we tackle an useful, yet quite simple, code manipulation:

Lemma 122 (Parameter lemma, s-m-n lemma — simple version). There
exists App ∈ Λ0 such that, ∀M,N

ApppMqpNq =βη pMNq

Exercise 123. Prove it. See Solution 230.Proof

Exercise 124. Define a G ∈ Λ0 such that: (standalone exercises follow)

• GpMq = pMMq
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• GpMq = pMMMq

• GpMq = pM(MM)q

• GpMNq = pNMq

• Gpλx.Mq = pMq

• Gpλx. λy.Mq = pλy. λx.Mq

• GpIMq = pMq and GpKMq = pIq

• Gpλxi.Mq = pλxi+1.Mq

• GpMq = pNq where N is obtained from M replacing every variable
xi with xi+1

• GpMq = pM{I/x0}q (this does not require α-conversion)

See Solution 228 in the Appendix.

2.9.2 Padding Lemma

Intuitively, many different programs actually have the same semantics. In-
deed, recall Ex. 116. We can actually automatically generate an infinite
number of equivalent programs.

Lemma 125 (Padding lemma). Given M , there exists N such that M =βη

N and #N > #M . Such an N can be effectively computed by a λ-term
Pad such that

PadpMq =βη pNq

Proof. Left as an exercise. See Solution 233. Proof

Using Pad we can generate an infinite number of programs equivalent
to M by just using ppnqqPadpMq, which generates a distinct program for
each n ∈ N.

2.9.3 Universal Program

Another useful construction is a “self-interpreter”, i.e. a λ-term E (“eval-
uate”) that, given the code pMq, can run it and behave as M . This E is
said to be a universal program, since it can be used to compute anything
that can be computed in λ-calculus. It is, in a sense, “the most general
program”.
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Note that we only allow closed M here7.

Lemma 126 (Self-interpreter). There exists E ∈ Λ0 such that

EpMq =βη M

for all closed M .Statement

Proof. We proceed by defining two auxiliary operators.

• E′
pMqρ = M ′ where M ′ is M with each free variable xi replaced by

ρppiqq. Here, the rôle of the parameter ρ is to define the meaning of the
free variables in M , defining the value of xi as ρppiqq. This ρ is called
the environment function.

• Upd ρ ppiqq a = ρ′ where ρ′ is the “updated” environment, obtained
from ρ by replacing the value of xi with the new value a. Formally,

(Upd ρ ppiqq a)ppiqq = a
(Upd ρ ppiqq a)ppjqq = ρppjqq where i 6= j

These equations are satisfied by

Upd = λρiaj.Eq j i a (ρ j)

We can now formalize the E′ function:

E′
pxiqρ = ρppiqq

E′
pMNqρ = E′

pMqρ(E′
pNqρ)

E′
pλxi.Mqρ = λa.E′

pMq(Upd ρ ppiqq a)

These equations are satisfied by:

E′ = Θ
(

λfmρ.SdmρAL
)

A = λno. f n ρ (f o ρ)

L = λin.
(

λa. f n (Upd ρ i a)
)

After defining E′, we can just let E = λm.E′ mΩ. Here we use Ω as
the initial environment. Indeed, when M ∈ Λ0, the λ-term M has no free
variables, so the initial environment will never be invoked by E′. That is, we
only invoke the environment ρ on variables that have been defined through
Upd.

Exercise 127. Check the correctness of E in some concrete (small) cases.
For instance check that EpIq = I and EpKq = K.

7Unfortunately, extending E to all the open terms is not possible, since free(E) would
need to be the whole Var in that case.
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2.9.4 Kleene’s Fixed Point Theorem

This is also known as the second recursion theorem. We establish some
preliminary result.

Lemma 128. There exists Num ∈ Λ0 such that for all n ∈ N Statement

Numppnqq =βη pppnqqq

Proof.
Num = λy. InR (InR (Pair pp0qqA))
A = InR (InR (Pair pp1qqB))
B = y (App (InLpp0qq))(InLpp1qq)

Note that B = n (App px0q)px1q = px0(x0(· · · (x0 x1)))q, where x0 is ap-
plied n times, when y = ppnqq. Then, A = pλx1. x0(x0(· · · (x0 x1)))q, and so
Numppnqq = pλx0. λx1. x0(x0(· · · (x0 x1)))q = pppnqqq.

Note that NumpMq = Numpp#Mqq = ppp#Mqqq = ppMqq.

Theorem 129 (Kleene’s fixed point). For all F ∈ Λ, there is X ∈ Λ such
that Proof

FpXq =βη X

Proof. A “standard” fixed point such that FX = X could be constructed
using

X = MM M = λw.F (ww)

(compare it with the definition of Θ). We adapt this to obtain:

X = MpMq M = λw.F (Appw(Numw))

Hence,

X = MpMq

= F (App pMq(Num pMq))

= F (App pMqppMqq)

= FpMpMqq

= FpXq

Note the difference between Th. 129 and Lemma 126. Roughly, the for-
mer says that ∀F.∃X.FpXq = X. The latter instead says that ∃F.∀X.FpXq =
X.
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Exercise 130. Show whether it is possible to construct a program P ∈ Λ0

such that. . . (each point below is a standalone exercise)

• PM = pPq for all M

• PpPq = pp1qq and Pppnqq = 0 otherwise

• P0 = pPq and Pppnqq = pEq otherwise

• Pppnqq = ppn+ 2qq

• Pppnqq = Pppn+ 1qq

• Pppnqq = Pppn+#Pqq

• Pppnqq = Succ(Pppnqq)

• Pppnqq = pP (Pppnqq)q

• #P = #P + 1

• #P = #(PpPq)

• #P = #K

Exercise 131. Show that there exists a G ∈ Λ0 such that for all F ∈ Λ0

FpGpFqq = GpFq

The set K0
λ is related to the set Kλ. As for Kλ, this set is not λ-definable.

Definition 132. K0
λ = {#M | M0 has a β-normal form}

Exercise 133. Prove that K0
λ is not λ-definable. (See sol. 232)

2.9.5 Rice’s Theorem

This is one of the most important results in computability, since it shows
that a large class of interesting problems are non-λ-definable.

Definition 134. A set L ⊆ Λ is closed under βη iff ∀M,N

M ∈ L ∧M =βη N =⇒ N ∈ L

Theorem 135 (Rice’s theorem). Let L ⊆ Λ be closed under βη, and let
{#M |M ∈ L} be λ-defined by F . Then, L is trivial, i.e. either empty or
equal to Λ.Proof
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Proof. By contradiction, assume L non trivial, so M1 ∈ L and M0 6∈ L for
some M1 and M0. Then, by Kleene’s fixpoint theorem, for some G

G = FpGqM0M1

Then, if G ∈ L,

G = FpGqM0M1 = TM0M1 = M0 6∈ L

which is a contradiction since L is closed under βη. Otherwise, if G 6∈ L,

G = FpGqM0M1 = FM0M1 = M1 ∈ L

which is a contradiction, again.

[see also Barendregt 6.5.9 to 6.6]
Rice’s theorem has a large number of consequences, stating that no non-

trivial property about the semantics of the code can be inferred from the
code itself.

Exercise 136. Which ones of these sets are λ-definable? Justify your an-
swer.

• {#M |M λ-defines f} where f is some function in N→ N

• {#M |Mpp5qq evaluates to an even numeral}

• {#M |Mpp0qq has a normal form}

• {#M |Mpp0qq has not a normal form}

• {#M |M is solvable}

• {#M |#(MM) is even}

• {#M |M has at most three λ’s inside itself}

• {#M |Mppnqq has a normal form for a finite number of n}

• {#M |Mppnqq has a normal form for a infinite number of n}

• {2 ·#M + 1|Mpp0qq = I}

• {f(#M)|Mpp0qq = I} where f(n) = 3 if n is even; otherwise f(n) = 2

• {2 ·#M + 1|MpMq = I}
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2.10 Other Facts

2.10.1 Step-by-step Interpreter

Here we build a more “traditional” interpreter, i.e. another version of E.
This intrepreter evaluates the λ-term step-by-step, computing the result of
repeatedly applying the β rule (in a leftmost fashion). This allows us to
specify a “timeout” parameter, if we want to. That is, we can ask the
interpreter to run a program M for n steps, and tell us whether M reached
normal form within that time constraint.

Exercise 137. Define Subst such that

SubstpxqpMqpNq = pN{M/x}q

Watch out for the needed α-conversions.

Exercise 138. Define Beta such that BetapMq = pM ′
q where M ′ is the

result of applying →β on M in a leftmost fashion (recall Def. 65). When M
is in β-normal form, we just let M ′ = M instead.

See also Sol. 231.

Exercise 139. Define Eta to apply →η until η-normal form is reached.

Exercise 140. Define IsNF to check, given pMq, whether M is in βη-
normal form.

Exercise 141. Define IsNumeral to check, given pMq, whether M is a nu-
meral. That is, is M is syntactically of the (normal) form λsz. s(s(· · · (sz) · · · )),
for some variables s, z. (Return T on all possible α-conversions.)

Exercise 142. Define IsClosed to check, given pMq, whether M is in Λ0.

Note. All the above functions can be conveniently defined using the
Θ operator, which implements recursive calls. While Θ allows arbitrarily
nested recursive calls, for the functions above we can predict a bound for
the depth of these calls. Roughly, the bound is strictly connected with
the size of the λ-term. Here, by “size” we mean the maximum nesting of
λ-abstractions or applications that occur in the syntax of the λ-term at
hand. So, for instance, a Subst operation computing N{M/x} will never
require more recursive calls than the size of N , if we write Subst in the
straightforward way — i.e. by induction on the structure of N .
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Definition 143. The size of M , written |M | is defined as

|x| = 1 |NO| = 1 +max(|N |, |O|) |λx.N | = 1 + |N |

Exercise 144. Show that #M + 1 ≥ |M |, for all M .

So, all the function seen above can be rewritten, roughly, replacing Θ
with a “lesser” version of the fixed point operator, which unfolds recursive
calls only until depth #M + 1. This operator could be, e.g.

LimFix = λfnz.nfz

For instance LimFixF pp3qqΩ = F (F (FΩ)). By comparison, ΘF would
generate an unbounded number of F ’s.

Exercise 145. Write Subst using LimFix instead of Θ. Start from Subst =
λxmn.LimFixF (Succn) and then find F . Do the same for the other func-
tions seen above in this section.

We shall return on this “bounded recursion” approach when we shall
deal with primitive recursion.

Exercise 146. Construct another version of E using the results above (see
Lemma 126). Name this variant Eval. Define it so that, when M has no
normal form, EvalpMq is unsolvable. Definition

Exercise 147. It can be often useful to consider only the λ-terms that pro-
duce numerals. To this aim define a Term operator such that

TermpMq = I if M =βη ppnqq for some n
TermpMq is unsolvable otherwise

You might want to start from:

TermInppkqqpMq = T if M
leftmost
−−−−→

∗

β N →∗
η ppnqq for some n and N

using at most k β-steps
TermInppkqqpMq = F otherwise

which is satisfied by

TermIn = λkm. IsNumeral(Eta(kBetam))

Then, show that ∀M ∈ Λ0, TermpMqM either evaluates to a numeral or
is unsolvable.
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2.11 Summary

The most important facts in this section:

• syntax of the untyped λ-calculus

• how to program in the untyped λ-calculus:

– encoding numbers, data structures

– control flow: conditionals, loops, recursion

• well-known combinators (including fixed-point)

• λ-definability

– constructing a non-λ-definable function

– non-λ-definable sets, Kλ

– classical results: parameter lemma, padding lemma, universal
program, Kleene’s fixed point theorem, Rice’s theorem

• intuition underlying the construction of a step-by-step interpreter



Chapter 3

Logical Characterization of
Computable Functions

3.1 Primitive Recursive Functions

Lemma 148. The function f(n) = 0 is λ-definable. Proof

Proof. Take K0.

Lemma 149. The function f(n) = n+ 1 is λ-definable. Proof

Proof. Take Succ.

Lemma 150. The projection functions fi(n1, . . . , nk) = ni with 1 ≤ i ≤ k
are λ-definable. Proof

Proof. Take λn1 · · · nk. ni.

Note: the above includes the identity function f(n) = n.

Lemma 151. The λ-definable (partial) functions are closed under compo-
sition. Proof

Proof. Let f, g be λ-defined by F,G. Then, f ◦ g can be λ-defined by

M = λx.J(F (Gx))

where J is the jamming factor Gx(KI)I, as per Ex. 103. Let us check this:

• When f(g(n)) is defined, then g(n) is defined as some m ∈ N and f(m)
is defined as well. Then, when x = ppnqq, we have J = I, Gppnqq = ppmqq,
and Fppmqq = ppf(g(n))qq. It is then trivial to check that Mppnqq =
ppf(g(n))qq.

51
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• When f(g(n)) is undefined, then either g(n) is undefined, or g(n) =
m ∈ N but f(m) is undefined.

– If g(n) is undefined, then Gppnqq is unsolvable, so J is also un-
solvable by Ex. 101, so Mppnqq is also unsolvable by the same
Exercise.

– If g(n) = m ∈ N but f(m) is undefined, then J = I, Gppnqq =
ppmqq, and Fppmqq is unsolvable. So, Mppnqq = J(Fppmqq) =
Fppmqq is unsolvable as well.

The above result can be generalized to n-ary functions:

Lemma 152. The λ-definable (partial) functions are closed under general
composition. That is, if f ∈ (Nk

 N) and g1, . . . , gk ∈ (Nj
 N), then the

function

h(x1, . . . , xj) = f(g1(x1, . . . , xj), . . . , gk(x1, . . . , xj))

is λ-definable.

Proof. Easy adaptation of Lemma 151.

Lemma 153. The λ-definable functions are closed under primitive recur-
sion. That is, if g, h are λ-definable, so is f(n, n1, . . . , nk), inductively de-
fined as:Statement

f(0, n1, . . . , nk) = g(n1, . . . , nk)
f(n+ 1, n1, . . . , nk) = h(n, n1, . . . , nk, f(n, n1, . . . , nk))

Proof. Let G,H be the λ-terms defining g, h. Then f is λ-defined by

F =λnn1 · · · nk.

J n
(

λc. J ′ Cons(Succ(cT))(H(cT)n1 · · ·nk(cF))
)

(Cons 0 (Gn1 · · ·nk))F

where J and J ′ are the usual jamming factors to force the evaluation of h
and g:

J = Gn1 · · ·nk(KI)I
J ′ =H(cT)n1 · · ·nk(cF)(KI)I

The F above works starting from the pair 〈0, g(n1, . . . , nk)〉. Then we apply
n times a function to this pair, incrementing the first component, and ap-
plying h to the second. Finally, we take the resulting pair and extract the
second component (the F at the end).
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Definition 154. The set of the primitive recursive functions PR is defined
as the smallest set of (total) functions in Nk → N which: Definition

• includes the constant zero function, the successor function, and the
projections (“the initial functions”); and

• is closed under general composition; and

• is closed under primitive recursion.

Some facts about primitive recursive functions:

• If f ∈ PR, then f is a total function.

• PR, being inductively defined, is a denumerable set.

Exercise 155. Show that the following functions are in PR.

• the “conditional” function (“if-then-else”):

cond(0, x, y) = x cond(k + 1, x, y) = y

• the addition,subtraction (return e.g. 0 when negative), multiplication,division
(return e.g. 0 when impossible)

• the factorial function

• the equality comparison: eq(x, x) = 0, and 1 otherwise

• the less-than-or-equal comparison: lt(x, x+ k) = 0, and 1 otherwise

• the pair and encode⊎ functions for pairs and disjoint union (easy), as
well as their inverses (not so easy).

Exercise 156. Show that if f is a binary function and f ∈ PR, then the
function g given by g(x, y) = f(y, x) is in PR as well.

We can compare PR to the set of λ-definable functions. By the lemmata
above, each f ∈ PR is λ-definable. Clearly, if we take a λ-definable non-
total function, this is not in PR, so the λ-definable functions form a larger
set that PR.

What if we restrict to total λ-definable functions, then? We can prove
that the set of total λ-definable functions is still larger than PR.

Basically, each f ∈ PR is either one of the basic functions or obtained
from them through composition/primitive recursion in a finite number of
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steps. This is not different from having a kind of programming language
“PR” having exactly the constructs mentioned in Def. 154. As we did for the
λ-calculus we can enumerate this PR language using the encode functions.
After that, we use a diagonalization argument, and construct a function
f(n) as follows: 1) take the PR program which has n as its encoding, 2)
run it using n as input, 3) take the result r, and 4) let f(n) = r + 1. By
diagonalization, we have f 6∈ PR. Yet, f can be λ-defined! We just need
to write an interpreter for this PR language in the λ calculus in order to
define f . This can done as we did for E.

Exercise 157. Define the “PR language” as we did for Λ, and an encoding
PR ↔ N. Then, λ-define an interpreter for this PR language.

Using this interpreter, we can clearly λ-define the total f defined above,
proving that λ-definable functions form a larger set than PR functions.

Theorem 158. The set of λ-definable functions is strictly larger than PR
functions.Statement

3.1.1 Ackermann’s Function

This is another interesting total function that is λ-definable but not in PR.

ack(0, y) = y + 1
ack(x+ 1, 0) = ack(x, 1)
ack(x+ 1, y + 1) = ack(x, ack(x+ 1, y))

[also see Cutland page 46]

Exercise 159. Show that ack is λ-definable.

Note the “double recursion” in the last line. This is not a problem in
the λ calculus, but in PR we can only express “single” recursion. It is not
obvious whether this form of double recursion can be somehow expressed
using the single recursion of PR.

It turns out that ack is not a primitive recursive function. So, this form
of “double recursion” is (generally) not allowed in PR. The actual proof for
ack 6∈ PR is rather long, so we omit it. We however provide some intuition
below.

Roughly, the proof relies on ack to grow at a very, very high speed.
Observe the following. We have ack(1, y) = y + 2, as well as ack(2, y) =
3 + 2 · y > 2 · y. Note the rôle of y and 2 here: from y + 2 (addition) we
went to 2 ·y (multiplication) by just incrementing the first parameter to ack.
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Moreover, ack(3, y) > 2y (exponential), and ack(4, y) > 22
2
...

where there
are y exponents. And this goes on, generating very fast-growing functions.

Indeed, the ack beats each function in PR:

∀f ∈ PR.∃k ∈ N.∀y ∈ N. ack(k, y) > f(y)

The above can be proved by induction on the derivation of f (we omit
the actual proof). From here, one can prove that ack 6∈ PR by contradic-
tion: if ack ∈ PR, we also would have that f(y) = ack(y, y) is a primi-
tive recursive function. By the statement above, we get some k such that
∀y ∈ N. ack(k, y) > ack(y, y). If we now choose y = k, we get a contradiction.

Exercise 160. Let us recap the main proof techniques:

• If we take A = PR ∪ {ack}, do we get the whole set of total functions
N→ N ?

• Let B be the closure of A under general composition and primitive
recursion. Is B the whole set N→ N ?

• Is B the set of total λ-definable functions?

3.2 General Recursive Functions

Exercise 161. Let f(x, y) be a total λ-definable function. Show that

g(x, z) = µy < z. f(x, y) = 0

is a total λ-definable function. By µy < z. f(x, y) = 0 we mean the least y
such that y < z and f(x, y) = 0. If such a y does not exist, we let the result
to be z. This operation is called bounded minimalisation.

Exercise 162. Let f(x, y) be in PR. Show that

g(x, z) = µy < z. f(x, y) = 0

is in PR. So primitive recursive functions are closed under bounded mini-
malisation.

We now investigate what is missing from the definition of PR that makes
it different from the whole λ-definable functions. Basically, the problem
boils down to constructing an interpreter of the λ calculus using the PR
operators, that is:
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“What is missing for (a variant of) E to be a function in PR ?”

Consider the construction of the step-by-step interpreter Eval, given in
Ex. 146. All the basic constituents (Beta, Eta, IsNumeral, IsNF, Subst)
can be defined using LimFix, which is basically the same thing of the prim-
itive recursion operator: it iterates a function for a fixed number of times.
So, these constituents can be indeed constructed inside PR. For instance,
∃ subst ∈ PR such that

subst(#x,#M,#N) = #(N{M/x})

and so on for the other basic functions. This means that the “single-step”
function, implementing a single leftmost →β step, is actually in PR.

Lemma 163. The functions

subst ∈ N3 → N

beta ∈ N→ N

eta ∈ N→ N

isNumeral ∈ N→ N

isNF ∈ N→ N

app ∈ N2 → N

num ∈ N→ N

which are the arithmetic equivalents of the λ-terms Subst,Beta,Eta,IsNumeral,
IsNF,App,Num, are in PR.

Proof. Left as a (long, and not so trivial) exercise. You might want to start
from subst(x, n,m) = aux(x, n,m, 2m).

Exercise 164. Show that the function extract(#ppnqq) = n is in PR. (Make
it work on all possible α-conversions of ppnqq. Also, define extract(x) = 0 for
other inputs x.)

So what is missing for a full interpreter? We do not know how many
→β steps are needed to reach normal form. For a full interpreter, we need
unbounded iteration of the single-step function. So, we can augment PR
with an unbounded minimalisation operator.

Definition 165. The set of (partial) general recursive functions (R) is
defined as the smallest set of partial functions in Nk

 N which:Definition
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• includes the constant zero function, the successor function, and the
projections (“the initial functions”); and

• is closed under general composition; and

• is closed under primitive recursion ; and

• is closed under unbounded minimalisation.

Unbounded minimalisation is defined as follows: given f(x, y), we construct
g(x) as

g(x) = (µy. f(x, y) = 0)

where the above, intuitively, means “the least y ∈ N such that f(x, y) = 0,
provided f is defined for smaller values of y”. More formally,

g(x) = min{y | f(x, y) = 0 ∧ ∀z < y.f(x, z) defined}

Note that g(x) is undefined whenever the set above is empty: this may happen
because e.g. f(x, y) > 0 for all y, or even because f(x, y) > 0 for y ∈ {0 . . . 4}
but f(x, 5) is undefined. In that case, g is a strictly partial (i.e. non-total)
function. This definition is naturally extended to n-ary functions in Nk

 N.

Exercise 166. Show that the following functions are in R:

• f = ∅ (the always-undefined function)

• f(2 · n) = 1 and f(2 · n+ 1) undefined

• ack(x, y) (this is not so easy)
Hint: one way to do it is by implementing a stack using pair.

Lemma 167. The λ-definable functions are closed under unbounded mini-
malisation. Statement

Proof. Let f be λ-defined by F . Then, g(x) = (µy. f(x, y) = 0) can be
λ-defined by

G = Θ(λgyx.Eq0 (Fxy) y (g(Succ y)x))0

Lemma 168. The set of recursive functions R is included in the set of
λ-definable functions.

Proof. Immediate by all the lemmata above.
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Theorem 169. The set of λ-definable functions is exactly the same as the
set of recursive functions R. Statement

Proof. We already proved that each f ∈ R is λ-definable. Now we prove that
if f is λ-definable (say by F ), then f ∈ R. By Exercise 155, proj1, proj2 ∈
PR, so by Lemma 163, and Exercise 164, we can define the following func-
tions in R:

steps(x, 0) = x

steps(x, n + 1) = beta(steps(x, n))

eval(x) = extract(proj1(µn. and(A,B) = 0)

where A = isNumeral(C)

B = eq(C, proj1(n))

C = eta(steps(x, proj2(n)))

f(y) = eval(app(#F, num(y)))

We now claim that we indeed have ∀y. f(y) = f(y). First, we note that
app(#F, num(y)) = app(#F,#ppyqq) = #(Fppyqq).

• If f(y) is undefined, then Fppyqq has no normal form. So, no matter
what proj2(n) evaluates to, the function steps will perform that many
β-steps on x, but will not reach the index of a β-normal form. So, A
will always evaluate to “false” (i.e. nonzero), since isNumeral syntacti-
cally checks against numerals, which are in normal form. Hence, the
and(A,B) will always return “false”, and the minimalisation operator
µn will keep on trying every n ∈ N, in an infinite loop, and so making
f(y) undefined.

• If f(y) is defined, say f(y) = z ∈ N, then Fppyqq has as its normal
form the numeral ppzqq. Define k as the number of leftmost →β steps
needed to reach normal form. Therefore, eta(steps(#(Fppyqq), k)) will
completely evaluate Fppyqq until βη normal form, producing the index
of a λ-term M , which is an α-conversion1of ppzqq. The minimalisation
operator µn will try each n ∈ N, from 0 upwards.

– When 0 ≤ n < pair(#M,k), we show that and(A,B) returns
“false” (nonzero), so that the minimalisation will try the next

1Recall Exercise 117. While we know that M is of the form λab. a(a(a(· · · (a(ab))))),
it still might be syntactically different from ppzqq by picking different variable names for a
and b. This mainly depends on the fact that we do not require our beta function to choose
exactly the variables we use in the definition of ppzqq.
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n. By contradiction, assume that and(A,B) returns “true”. This
means that A andB are both “true”. SinceA is “true”, eta(steps(#(Fppyqq), proj2(n)))
is the index i of a numeral, hence the index of a normal form of
Fppyqq. Since we need to do k steps to reach normal form, we
have2 proj2(n) ≥ k. This implies that i = #M . Since B is
“true”, proj1(n) = i = #M . Hence n = pair(proj1(n), proj2(n)) =
pair(#M, proj2(n)) ≥ pair(#M,k), contradicting n = pair(proj1(n), proj2(n)) <
pair(#M,k).

– So, eventually the µn operator will try n = pair(#M,k). Here, it
is trivial to check that A andB are both “true”, so the loops halts.
Indeed, we have that eta(steps(#(Fppyqq), k)) is a numeral (so A is
“true”3), and indeed eta(steps(#(Fppyqq), k)) = #M = proj1(n)
(so B is “true”).

So, the result of the whole µn. · · · expression is pair(#M,k). After we
compute this, the definition of eval performs a proj1, hence obtaining
#M . Finally, the extract function is applied, extracting z from the
index of M =α ppzqq. We conclude that, when f(y) = z, we have
f(y) = z.

Since we proved both inclusions, we conclude that the set of λ-definable
functions coincides with R.

Exercise 170. Provide an alternative proof for Th. 169, following these
hints.

First, define a function g that given i, x, k will run program number i
on input x for k steps, assume the result is a numeral (hence a normal
form), and extract the result as a natural number. When the result is not
a numeral, return anything you want (e.g. 0). Show that g is recursive
(actually, in g ∈ PR).

Then, define a partial function h that given i, x returns the number of
steps k required for program number i to halt on input x, reaching normal
form. Function h is undefined when no such k exists. Use minimalisation
for this.

Finally, build eval using g and h.

2The function beta has to be applied at least k times to reach normal form. After
normal form is reached, we required beta to act as the identity.

3Recall we require isNumeral to return “true” on all α-conversions of numerals.
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3.3 T,U-standard Form

This classical result states that every partial recursive function can be ex-
pressed by using the primitive recursion constructs and a single use of the
unbounded minimalisation operator.

Theorem 171. There exist T,U ∈ PR such that, each (partial) recursive
function f ∈ R can be written as

f(x) = U(µn.T(i, x, n))

for some suitable natural i.

Proof. We have already proved this when we proved 169. Indeed, the defi-
nition of f in that proof mentions a single µn operator, using only primitive
recursive functions inside of the µn, as well as outside of it. So T and U

simply are defined in that way. The integer i is instead the index #F for
some λ-term F that defines the function f ∈ R. This F indeed exists by
Lemma 168.

3.4 The FOR and WHILE Languages

Consider an imperative language having the following commands. Below we
use x for variables (over N), e for arithmetic expressions over variables, and
c for commands.

• Assignment: x:= e

• Conditional: if x = 0 then c1 else c2

• Sequence: c1 ; c2

• For-loop: for x := e1 to e2 do c

Name this language “FOR”.

The semantics of this language should be mostly obvious. We assume
that e1 and e2 are evaluated only once, at the beginning of the for-loop.
For instance, the command

y := 6 ;

for x := 1 to y do

y := y + 1
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will terminate, performing exactly six loop iterations. Further, we assume
that the loop variable x is updated to the next value in the sequence from
e1 to e2, even if the loop body modifies the variable x. For instance,

sum := 0 ;

for x := 1 to 6 do

sum := sum + x ;

x := x - 1

will terminate, performing exactly six loop iterations. When the loop is
exited, the variable sum has value 0 + 1+ 2+ 3+ 4+ 5+ 6 = 21. Note that,
under these assumptions, our for-loops will always terminate.

Exercise 172. Define the formal semantics of the FOR language, as a
function N→ N. Assume the input of FOR programs is just provided through
a special input variable. Similarly, read the output of the program through
a special output variable, to be read at the end of execution.

Definition 173. A function f is FOR-definable if there is some FOR-
program that has semantics f .

Theorem 174. The set of FOR-definable functions is exactly PR. Statement

Proof. Left as a (rather long) exercise. You basically have to 1) simulate all
the constructs of PR using the FOR-commands, and 2) simulate all FOR-
commands using the PR-constructs. This can be done by exploiting the
pair function to build arrays, so to store the whole execution state in a few
variables.

Now, we can extend the FOR language with the following construct:

• While-loop: while x > 0 do c

Name this language “WHILE”. Note that, unlike FOR programs, WHILE
programs might not terminate.

Exercise 175. Define the semantics of WHILE programs.

Definition 176. A function f is WHILE-definable if there is some WHILE-
program that has semantics f .

Theorem 177. The set of WHILE-definable functions is exactly R. Statement
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Proof. (sketch)
(⊆): a WHILE interpreter can be written in the λ-calculus (long exercise).
So, each WHILE-definable function is in R by Th. 169.
(⊇): Let f ∈ R. We must find a WHILE program defining f . Take T,U as in
Th. 171. By Th. 174, T and U are FOR-definable, hence WHILE-definable.
Following again Th. 171, all we have to do is to “add the missing µn” and
compose T and U so to actually compute f . A single while construct is
sufficient to try each n ∈ N, thus emulating the µn operator.

Theorem 178. Every WHILE-definable function can be WHILE-defined by
a program having a single while loop.

Proof. Direct consequence of Th. 171.

3.5 Church’s Thesis

Roughly, all programming languages can be proved equivalent w.r.t. the
λ-calculus as we did for the WHILE language; that is, the set of the {λ,
WHILE, Java, . . . }-definable functions does not depend on the choice of the
programming language L. All you need to check is that

• all λ-definable functions are definable in the language L; e.g. you can
write an interpreter for the λ-calculus in L

• all L-definable functions are definable in the λ-calculus; e.g. you can
write an interpreter for L in the λ-calculus

The Church’s Thesis is an informal statement, stating that

The set of intuitively computable functions is exactly the set
of functions definable in the λ-calculus (or Java, or Turing ma-
chines, or 〈insert your favourite programming language here〉).

Notable languages not equivalent to the λ-calculus:

• Plain HTML (with no Javascript). HTML just produces a hyper-
text, possibly formatted (e.g. by using CSS). However, you can not
use HTML to “compute” anything. Indeed, it is not a programming
language, but a hypertext description language.

• Plain SQL query language. It just searches the database for data, and
return the results. It can not be used for general computing. Again,
it is not a programming language, but only a query language. This
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is actually good, because SQL queries can therefore be guaranteed to
terminate.

Notable languages equivalent to the λ-calculus:

• PostScript and PDF. They should only describe a document. They al-
low for general recursion, so they could take a long time just to output
one page. They can also loop, and fail to terminate, while requir-
ing more and more memory. PostScript can even produce an infinite
number of pages. By Rice, there is no effective way of predicting how
many pages a PostScript file will print, since the number of pages is a
semantic property.

• XSLT and XQuery. They should only perform some simple manipu-
lation over XML. Due to some recursive constructs, they are actually
able to achieve the power of the λ-calculus. So, it might happen that
their execution does not terminate, allocating more memory, etc.

• Javascript. This is indeed a full-featured programming language. Run-
ning it inside a browser allows for arbitrary interaction with HTML,
but exposes the browser to denial of service attacks, since the Javascript
program can allocate more and more memory and fail to terminate.
Näıve execution of Javascript can easily cause the browser to freeze.
Firefox currently tries to mitigate the issue in this way. It runs the
Javascript for a given amount of time (say 20 seconds). If it fails to
halt, Firefox asks the user if he/she wants to abort the Javascript com-
putation, or wait for other 20 seconds, after which the same question
is asked to the user again.

• Turing Machines

• “conventional” programming languages

3.6 Summary

The most important facts in this section:

• primitive recursive functions (subset of total functions)

• general recursive functions (subset of partial functions)

• λ-definable functions coincide with general recursive functions
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– proof of ⊇

– intuition about the proof of ⊆



Chapter 4

Classical Results

In the previous sections, we studied λ-definability. While λ-definability is a
powerful notion, it does not provide a semantics (a function Nk

 N) for all
λ-terms.

• For instance, M = λn. nKΘ does not λ-define any partial function
f ∈ Nk

 N, for any k > 0. Indeed, if we let the first argument to be
k−1, we getMppk − 1qqppx2qq · · · ppxkqq = (λy2 . . . yk.Θ)ppx2qq · · · ppxkqq =
Θ which is solvable (by KI) but not a numeral.

• Another example is N = λn. nK (λy. yy). Assume this λ-defines f ∈
Nk
 N. We get a contradiction from Nppk − 1qqppx2qq · · · ppxkqq =

λy. yy which is solvable, but not a numeral.

However, we define an alternative semantics, relating each λ-term to a
partial function. So, φi shall be the function related to the program M
having index i.

Definition 179. φi(x) = y iff Mppxqq =βη ppyqq where #M = i Definition

The above is trivially generalized to k-ary functions.
First, note that φi(x) is well-defined, since there can be at most one y ∈ N

satisfying Mppxqq =βη ppyqq. Second, note that φi is a partial function, which
can be undefined when either Mppxqq has no normal form, or when Mppxqq
has a normal form, but that normal form is not a numeral. Essentially, the
definition above is using Option 1 from Def. 99 to model undefinedness.

Lemma 180. f is λ-definable iff f = φi for some i

Proof. (⇒) Let f be λ-defined by F . Then, we take i = #F , and check that
φi = f .

65
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• If f(x) is undefined, then we have that Fppxqq is unsolvable, so it has
no normal form, so it is 6=βη ppyqq for all y, and φi(x) is then undefined.

• If f(x) = y ∈ N, then Fppxqq = ppf(x)qq, and φi(x) = f(x).

Since the above holds for any x, we get φi = f .

(⇐) Let f = φi, and let M such that i = #M . Then, f can be λ-defined
by F = λn. J M n, where n 6∈ free(M) and J is the jamming factor

J = Term(App pMq (Num n))

and Term is from Ex. 147: TermpOq evaluates to I when O has a numeral
as its normal form; otherwise it is unsolvable.

It is easy to check that F indeed λ-defines f . When f(x) is undefined,
then Mppxqq has no numeral as normal form, and thus J is unsolvable. Oth-
erwise, when f(x) is defined, Mppxqq has ppf(x)qq as its normal form, and
thus J = I. In this case, Fppxqq = Mppxqq = ppf(x)qq.

4.1 Padding Lemma

Theorem 181 (Padding Lemma).
There is a function pad ∈ R such thatStatement

φn = φpad(n) ∧ pad(n) > n

Proof. Immediate from the Padding Lemma for the λ-calculus.

Also see [Cutland]

4.2 Parameter Theorem (a.k.a. s-m-n Theorem)

Theorem 182 (Parameter Theorem, s-m-n Theorem).
For all m > 0 and 0 < n ≤ m, there exists a total recursive function snm(i, x)
such that for all y1, . . . , ymStatement

φsnm(i,x)(y1, . . . , yn−1, yn+1, . . . , ym) = φi(y1, . . . , yn−1, x, yn+1, . . . , ym)

Proof. Easy adaptation of the Parameter Lemma for the λ-calculus.

Also see [Cutland]

Exercise 183. Show that pad and snm are primitive recursive functions.
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A typical application of the parameter theorem is to construct functions
“returning indexes of programs”, e.g. a total f such that

φf(x)(y) = g(x, y)

where g is a (partial) recursive function. Note that f is required to be total,
but g is not required to be such, so g can be non-total.

The above equation can be satisfied by e.g.:

f(x) = #(λy. G)

where G λ-defines g. The above f can be constructed by applying the usual
syntax manipulation functions App,Lam, . . ., so it is recursive.

More generally, without exploiting features of the λ-calculus, one can
instead build f as follows. First, fix an index of g, i.e. pick some j such that
φj = g. Then, let f(x) = s(j, x). Hence, by using the parameter lemma:

φf(x)(y) = φs(j,x)(y) = φj(x, y) = g(x, y)

Convention. The above technique is frequently used when dealing with
m-reductions (Sect. 4.6.2). Instead of repeating all the steps shown above,
we shall simply write f(x) = #(λy. G) without mentioning the implicit use
of the parameter lemma.

4.3 Universal Program

Theorem 184 (Universal Program).
The partial function f(x, y) = φx(y) is recursive.
This can be generalized to n-ary partial functions. Statement

Proof. Easy adaptation of the Universal Program for the λ-calculus. We
actually described such an f in the proof of Th. 169.

Also see [Cutland]

4.4 Fixed Point Theorem, a.k.a. Kleene’s Second

Recursion Theorem

Theorem 185 (Kleene’s Fixed Point Theorem (a.k.a. Second Recursion
Theorem)).
For each total computable function f , there is some n ∈ N such that Proof

φn = φf(n)
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Proof. We adapt the proof of Th. 129. By Th. 184, the following is recursive:

g(x, y) = φf(s(x,x))(y)

so φa = g for some a. Now take n = s(a, a). We then have, for all y,

φn(y) = φs(a,a)(y) = φa(a, y) = g(a, y) = φf(s(a,a))(y) = φf(n)(y)

Also see [Cutland]

4.5 Recursively Enumerable Sets

Definition 186. A set A ⊆ N is recursive iff the function χA is recursive.
With some abuse of notation, we write A ∈ R.Definition

So, a set A is recursive if and only if there is a verifier program, returning
“true” on A and “false” on its complement Ā.

One might wonder what happens if the verifier is not required to termi-
nate for all inputs. For instance the verifier could simply terminate on A,
and diverge on Ā. We might call this a “partial verifier”, or semi-verifier.

Definition 187. A set A ⊆ N is recursively enumerable (A ∈ RE) if and
only if A = dom(f) for some f ∈ R.Definition

Terminology: a recursive set is sometimes said to be decidable, com-
putable, effective, λ-definable, WHILE-definable, . . . These adjectives are
equivalent. Recursively enumerable sets are said to be semi-decidable, semi-
computable, . . . instead.

Exercise 188. Prove that the following properties of a set A are equivalent.

• A ∈ RE

• there is some λ-term SA such that A = dom(φ#SA
)

• there is some λ-term SA such that A = {n | SAppnqq has a normal form}

• there is some λ-term SA such that A is semi-λ-defined by SA, that is
A = {n | SAppnqq has a normal form} and Ā = {n | SAppnqq is unsolvable}

Hint: use the step-by-step interpreter and check the results using IsNumeral
and related functions. Apply jamming factors as needed.
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By the exercise above, we have that the many different formalizations of
“semi-verifier” are actually equivalent.

Definition 189. K = {n|φn(n) is defined}Definition

Lemma 190. K 6∈ R Proof

Proof. Similar the the argument for Kλ. By contradiction, if K ∈ R, then

f(n) =

{

φn(n) + 1 if n ∈ K

0 otherwise

would be a total recursive function. Hence, f = φa for some a. Since f is
total, a ∈ K, so we reach the contradiction φa(a) = f(a) = φa(a) + 1.

Lemma 191. K ∈ RE Proof

Proof. By Th. 184, f(n) = φn(n) is in R, and clearly dom(f) = K.

Lemma 192. A ∈ R =⇒ A ∈ RE Proof

Proof. If VA λ-defines A, then λn. VA n IΩ is a semi-verifier.

Lemma 193. A ∈ RE ∧ Ā ∈ RE =⇒ A ∈ R Proof

Proof. Given two semi-verifiers SA, SĀ for A and Ā, we execute them “in
parallel” to construct a verifier for A. That is, suppose we are checking
whether n ∈ A. An effective procedure could be:

• check whether SAppnqq halts in 1 step: if so, return “true”

• check whether SĀppnqq halts in 1 step: if so, return “false”

• check whether SAppnqq halts in 2 steps: if so, return “true”

• check whether SĀppnqq halts in 2 steps: if so, return “false”

• . . .

This loop will eventually stop, since either SAppnqq or SĀppnqqmust eventually
halt. When one of them halts, we “abort” the parallel execution of the other
and return the result.

Exercise 194. Construct the λ-term of the verifier used in the proof above.

Lemma 195. A ∈ RE ∧ Ā ∈ RE ⇐⇒ A ∈ R Proof
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Proof. Immediate by the lemmata above.

Lemma 196. K̄ 6∈ RE Proof

Proof. Immediate by Lemma 195 and K ∈ RE \ R.

Lemma 197. All the following properties of a set A ⊆ N are equivalentProof

1. A ∈ RE

2. A = ∅ or A is the range of a total recursive function

3. A = {n|∃m. pair(n,m) ∈ B} for some B ∈ R

4. A is the range of a partial recursive function

Proof. (1 =⇒ 2) If A is empty, it is straightforward. Otherwise, assume
x ∈ A, and let A = dom(φa). Then

f(n) =

{

proj1(n) if running φa(proj1(n)) halts in proj2(n) steps
x otherwise

Clearly f is a total recursive function. Also, ran(f) is included in A by
construction. Moreover, if y ∈ A, then running φa(y) must halt, say in k
steps, implying f(pair(y, k)) = y, so y ∈ ran(f).

(2 =⇒ 3) If A = ∅, take B = ∅. Otherwise, let A = ran(f), for a
total recursive f . Define B = {pair(f(x), x)|x ∈ N}. This B is in R: to
check whether n ∈ B, we check that f(proj2(n)) = proj1(n), which is doable
because f is total, so everything halts, and we can always effectively decide
that equation. It is trivial to check that A is indeed {n|∃m. pair(n,m) ∈ B}.

(3 =⇒ 4) Given B ∈ R, consider the following partial function:

f(x) =

{

proj1(x) if x ∈ B
undefined otherwise

Clearly, f ∈ R. Also, ran(f) = A.

(4 =⇒ 1) By hypothesis, A is the range of a partial recursive function f .
Take a such that f = φa. Take n as input, and “run” the following:

For each i ∈ N, starting from 0:
Run φa(proj1(i)) for at most proj2(i) steps
If that halts, and φa(proj1(i)) = n, stop (e.g. return 0)
Otherwise, try the next i
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This can be actually implemented in the λ-calculus using the step-by-step
interpreter. Let j be the index of that λ-term. It is easy to check that
dom(φj) = ran(f) = A, implying A ∈ RE . Indeed, if n ∈ ran(f), then
n = f(x), and φa(x) can be computed in y steps, for some x and y. So,
when i = pair(x, y) the loop above stops, therefore n ∈ dom(φj). For the
other direction, if n ∈ dom(φj), then the loop stops, so f(proj1(i)) = n, for
some i, and n ∈ ran(f).

Summary. The implications form a cycle 1 =⇒ 2 =⇒ 3 =⇒ 4 =⇒ 1,
so the properties 1, 2, 3, 4 are equivalent.

Lemma 198. Kλ ∈ RE

Proof. We have Kλ = {n|∃m. pair(n,m) ∈ B} where

B = {pair(n,m)|n = #M ∧MpMq reaches normal form in m steps}

B is recursive, since it checks only for a given number of steps, so by
Lemma 197, Kλ ∈ RE .

Lemma 199. K̄λ 6∈ RE

Proof. Immediate by Lemma 195 and Kλ ∈ RE \ R.

Lemma 200. K̄ 6∈ RE Proof

Proof. Immediate by Lemma 195 and K ∈ RE \ R.

4.6 Reductions

4.6.1 Turing Reduction

Sometimes, it is interesting to pretend that in the λ-calculus some function
or set is λ-definable, even if we do not know if they are, or even if we know
they are not. More precisely, we consider a specific function/set and extend
the λ-calculus with a specific construct to compute/decide that function/set.
The overall result is a new language where that function/set is just forced to
be computable. Clearly, this is a purely theoretical device, since we can not
actually build a “computer” which is able to run this extended λ-calculus.
To build that “computer” we would need a “magic” hardware component
which enables us to compute the function/set. This component is usually
named an “oracle”. Even if this construction is a bit bizarre, it is useful to
understand the relationships between undecidable sets.

To keep things simple, we just considers sets.
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Definition 201. When we extend the λ-calculus with an oracle for a set A,
we speak about (λ+A)-calculus.

The syntax of the (λ+A)-calculus is

M ::= x | MM | λx.M | VA

where VA is a specific constant. The semantics is given by =A
βη defined as

before, but extended with

VAppnqq→
A
β T when n ∈ A

VAppnqq→
A
β F otherwise

The notion of (λ + A)-definability is then derived from the notion of λ-
definability by using =A

βη instead of =βη.

Here’s an important definition for comparing sets, by reducing one set to
another. Informally, it states that A is no more difficult to decide than B.

Definition 202 (Turing-reduction). Given A,B ⊆ N, we write A ≤T B
when, the set A can be (λ + B)-defined. We write A ≡T B when A ≤T B
and B ≤T A.

Exercise 203. Prove the following statements:

• ≤T is a preorder (e.g. is reflexive and transitive)

• A ≤T B for any A ∈ R, and any B ⊆ N

• A ≡T Ā for all A, in particular Kλ ≡T K̄λ

• Kλ ≡T K

• If A,B ≤T C, then A ∪B ≤T C

• If A,B ≤T C, then {pair(x, y) | x ∈ A ∧ y ∈ B} ≤T C

• If A,B ≤T C, then {inL(x) | x ∈ A} ∪ {inR(x) | x ∈ B} ≤T C

• If A ∈ R and B ≤T A, then B ∈ R

• From A ∈ RE and B ≤T A, we can not conclude that B ∈ RE (in
general)

This notion of reduction is useful as it enables us to prove that a set A
is not λ-definable, by showing that B ≤T A for some B that is known to be
λ-undefinable.

Exercise 204. Consider the (λ+ Kλ)-calculus. Can every partial function
f ∈ N N be (λ+ Kλ)-defined?
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4.6.2 Many-one Reduction

Another useful notion of reduction is the following:

Definition 205 (many-one-reduction, a.k.a. m-reduction).
Given A,B ⊆ N, we write A ≤m B when there is a total recursive function
f (“a m-reduction”) such that Definition

∀n ∈ N. n ∈ A ⇐⇒ f(n) ∈ B

We write A ≡m B when A ≤m B and B ≤m A.

Exercise 206. Prove that the above requirement on f is equivalent to require
both Statement

• for all n, n ∈ A =⇒ f(n) ∈ B

• for all n, n 6∈ A =⇒ f(n) 6∈ B

Lemma 207. A ≤m B =⇒ A ≤T B

Proof. Trivial: let f be the total recursive m-reduction from A to B. Let
f be λ-defined by F . Then VA = λn. VB(Fn) defines A in the (λ + B)-
calculus.

Lemma 208. A ≤m B ⇐⇒ Ā ≤m B̄ Proof

Proof. Directly from the definition, using the same f .

Lemma 209. If B ∈ R and A ≤m B, then A ∈ R.
If B ∈ RE and A ≤m B, then A ∈ RE . Proof

Proof. The first part is a direct consequence of ≤m implying≤T , and Ex.203.
For the second part, let B = dom(φb), and f be the m-reduction from A to
B. Then g(x) = φb(f(x)) is a partial recursive function defined only when
f(x) ∈ B, i.e. x ∈ A. So, dom(g) = A and A ∈ RE .

Lemma 210. A ≤m K =⇒ A ∈ RE Proof

Proof. Immediate from the lemma above.

Exercise 211. Prove the following:

• ≤m is a preorder (reflexive and transitive)

• K 6≤m K̄ and K̄ 6≤m K Statement
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Lemma 212. K is RE-complete (or m-complete), that is: K ∈ RE and for
any A ∈ RE, A ≤m K. Proof

Proof. We have already proved that K ∈ RE . For the second part, let SA

be the semi-verifier for A, i.e. A = dom(φ#SA
). Consider

f(n) = # (λx. SAppnqq)

That is, f(n) is returning an index of a program M such that M discards its
input, and computes instead φ#SA

(n). This f is a total recursive function:
let us check that it is an m-reduction from A to K.

n ∈ A ⇐⇒ φ#SA
(n) defined ⇐⇒ φf(n)(f(n)) defined ⇐⇒ f(n) ∈ K

Lemma 213. A ∈ RE if and only if A ≤m KProof

Proof. Immediate from the lemmata above.

Exercise 214. Prove that K ≡m Kλ. From this, deduce that A ∈ RE if and
only if A ≤m Kλ.

4.7 Rice-Shapiro Theorem

This is a fundamental result.

Recall that, when f, g are partial functions, g ⊆ f means that

g(n) = m ∈ N =⇒ f(n) = m

That is, when g(n) is defined, f(n) is too, and has the same value m. Note
that when g(n) is not defined, f(n) may be anything: either undefined, or
defined to some m.

Theorem 215 (Rice-Shapiro).
Let F be a set of partial recursive functions, i.e. F ⊆ R. Further, let
A = {n|φn ∈ F} be RE. Then, for each partial recursive function f ,Proof

f ∈ F ⇐⇒ ∃g ⊆ f. dom(g) is finite ∧ g ∈ F

Proof. Since f is recursive, f is λ-defined by some F . Since A ∈ RE , we
can not have K̄ ≤m A: this will be used below.



4.7. RICE-SHAPIRO THEOREM 75

• (⇒) By contradiction, assume f ∈ F but for each finite g s.t. g ⊆ f
we have g 6∈ F .

We now obtain a contradiction by proving K̄ ≤m A. The reduction h
is the following:

h(n) = #

(

λx.

{

undefined if φn(n) halts in (at most) x steps
f(x) otherwise

)

Note that the above h is well-defined, since the condition “. . . halts in
x steps” is decidable, and f ∈ R. So, h ∈ R is total recursive.

Let us check h is indeed a reduction:

– If n 6∈ K, then φh(n) = f since “φn(n) halts in x steps” is always
false. So, φh(n) ∈ F , hence h(n) ∈ A

– If n ∈ K, we have that φn(n) halts in, say, j steps. So, for x < j
we have φh(n)(x) = f(x), while for x ≥ j we have that φh(n)(x) is
undefined. This implies that φh(n) is a finite restriction of f : φh(n)

finite and φh(n) ⊆ f . By assumption, no such finite restriction of
f belongs to F . Hence, h(n) 6∈ A.

• (⇐) By contradiction, there is some finite g ⊆ f with g ∈ F , but
f 6∈ F .

We now obtain a contradiction by proving K̄ ≤m A. The reduction h
is the following:

h(n) = #

(

λx.

{

f(x) if x ∈ dom(g) or n ∈ K

undefined otherwise

)

Such an h is well-defined because dom(g) is finite (hence decidable) and
K isRE , so we have a semi-verifier for the property “x ∈ dom(g) or n ∈
K” which is what we need above. Indeed, h(n) is a total recursive
function.

Let us check h is indeed a reduction:

– If n 6∈ K, then φh(n)(x) = f(x) when x ∈ dom(g), and undefined
otherwise. So, φh(n) is f restricted to dom(g), which implies
φh(n) = g since g ⊆ f . Therefore, φh(n) ∈ F . We conclude
h(n) ∈ A.

– If n ∈ K, then φh(n)(x) = f(x) for all x. This implies φh(n) = f 6∈
F , hence h(n) 6∈ A
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Common Use. Usually, Rice-Shapiro is used to prove that some set is
not RE . This can be done in two ways, depending whether we use the (⇒)
or (⇐) direction of the theorem. We summarize these typical arguments
below. Let A = {n|φn ∈ F} with F ⊆ R.

• Rice-Shapiro (⇒): to prove A 6∈ RE it suffices to

– pick some f ∈ F , and

– show that all the finite restrictions g of f do not belong to F .

• Rice-Shapiro (⇐): to prove A 6∈ RE it suffices to

– pick some f 6∈ F , and

– pick some finite restriction g of f which belongs to F .

4.8 Rice’s Theorem

Theorem 216. Let F ⊆ (N  N) be a set of partial recursive functions,
and A = {n|φn ∈ F}. If A ∈ R, then A is trivial, i.e. either A = ∅ or
A = N.Statement

Proof. We could prove Rice’s Theorem by adapting Th. 135, but we instead
apply Rice-Shapiro (Th. 215). We have A, Ā ∈ R, so A, Ā ∈ RE . Let φi be
the always-undefined function g∅, that has a finite domain. For all partial
functions f , we have g∅ ⊆ f . Clearly, i is in one of the sets A, Ā.

• If i ∈ A, then g∅ ∈ F . By Rice-Shapiro, we have f ∈ F for all f , and
so A = N.

• If i ∈ Ā, then g∅ 6∈ F . By Rice-Shapiro, we have f 6∈ F for all f , and
so Ā = N, implying A = ∅.

Also see [Cutland]

Exercise 217. For any of these sets, state whether the set is R, or RE \R,
or not in RE.

• Kλ ∪ {5}

• {1, 2, 3, 4}
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• {n|φn(2) = 6}

• {n|∃y ∈ N. φn(y) = 6}

• {n|∀y ∈ N. φn(y) = 6}

• {n|φn(n) = 6}

• {n|dom(φn) is finite}

• {n|dom(φn) is infinite}

• {n|φn is total}

• {n+ 4|dom(φn) is finite}

• { ⌊100/(n + 1)2⌋ | dom(φn) is infinite}

• A ∪B, A ∩B, A \B where A,B ∈ RE

• A ∪B, A ∩B, A \B where A ∈ RE , B ∈ R

• {inL(n) | n ∈ A} ∪ {inR(n) | n ∈ B} where A,B ∈ RE

• {n | ∀m. pair(m,n) ∈ A} where A ∈ RE

• {pair(n,m)|pair(m,n) ∈ A} where A ∈ RE

• {f(n)|n ∈ A} where A ∈ RE and f ∈ R, f total

• {f(n)|n ∈ A} where A ∈ RE and f ∈ R (may be non total)

• {n|f(n) ∈ A} where A ∈ RE and f ∈ R, f total

• {n|f(n) ∈ A} where A ∈ RE and f ∈ R (may be non total)

Exercise 218. (Hard) Show that f ∈ R where

f(n) =

{

k if running φn(n) halts in k steps
undefined otherwise

Then show that there is no total recursive g such that f ⊆ g.
Finally, show that {n|∃i. φn ⊆ φi ∧ φi total} 6∈ RE.

Exercise 219. Let A ∈ RE . Define B = {n|∃m ∈ A.n < m}. Can we
deduce B ∈ RE ? What about C = {n|∀m ∈ A.n < m} ?
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Exercise 220. Given a λ-term L and a Java program J , let φ#L and ϕ#J

be the respective semantics, as functions N N (assume #J to be the index
of the Java program J , defined using the usual encoding functions). Then,
consider A = {pair(#L,#J) | φ#L = ϕ#J}. Is A ∈ R? Is it RE?

Exercise 221. Let A ∈ R, and B = {n | ∃m. pair(n,m) ∈ A}. We know
that B ∈ RE by Lemma 197. Can we conclude that B ∈ RE \ R ?

Exercise 222. Consider the following formal language: (a, b are two con-
stants)

X := a | b | (XX)

and an equational semantics =γ given by

((aX)Y ) =γ X
(((bX)Y )Z) =γ ((XZ)(Y Z))
(XY ) =γ (X ′Y ′) when X =γ X ′ and Y =γ Y ′

=γ is transitive, symmetric, reflexive

Define #X as the index of X using the usual encoding functions. Discuss
whether you expect the sets below to be in R, RE\R, or not in RE , justifying
your assertions. (Note: I do not expect a real proof, but correct arguments.)

• {#X | X =γ a}

• {pair(#X,#Y ) | X 6=γ Y }
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Solutions

Solution 223.

encode−1
⊎ (n) = 〈n mod 2,

⌊n

2

⌋

〉

Solution 224. We want a Θ such that ΘF = F (ΘF ). We first write that
as Θ = λF.F (ΘF ). Then, we abstract the Θ recursive call, obtaining

M = λw. λF. F (wF )

Then we duplicate the w inside

M = λw. λF. F (wwF )

And finally, we let Θ = MM , that is

Θ = (λw. λF. F (wwF ))(λw. λF. F (wwF ))

We are done. Let us check Θ is really a fixed point combinator.

ΘF = (λw. λF. F (wwF ))(λw. λF. F (wwF ))F

=
(

λF.F
(

(λw. λF. F (wwF ))(λw. λF. F (wwF ))F
)

)

F

=
(

λF.F (ΘF )
)

F

= F (ΘF )

The Θ above was given by Turing. Church discovered this other fixed
point combinator

Y = λF.MM where M = λw.F (ww)

79
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There other ones, of course. The £ below is a peculiar one given by
Klop.

$ = ££££££££££££££££££££££££££

£ = λabcdefghijklmnopqstuvwxyzr. r(thisisafixedpointcombinator)

Solution 225. By contradiction, assume T =βη F. Clearly, T and F are
βη-normal forms. By Th. 79, we have T→∗

βη F. Since T is a normal form,
this is not possible unless T =α F, which is clearly not the case

Solution 226. Here are many useful combinators:

And = λxy. xyF

Or = λxy. xTy

Not = λx. xFT

Leq = λnm. IsZero (mPredn)

Eq = λnm.And(Leqnm)(Leqmn)

Lt = λnm.Leq(Succ n)m

Add = λnm.nSuccm

Mul = λnm.n(Addm)0

Even = λn. nNotT

LimMinF Zppnqq returns the smallest m ∈ {0..n} such that Fppmqq = T. If
no such m exists, it returns Z. Note that F must return only T or F for
this to work.

LimMin = λfzn.Succn (λgx.fxx(g(Succ x)))(Kz)0

Any = λfn.Leq(LimMin f (Succ n)n)n

All = λfn.Not(Any(◦Not f)n)

The following is integer division: Divppnqqppmqq = pp⌊n/m⌋qq

Div = λnm.LimMin (λx.Ltn(Mul(Succx)m))Ωn

The following is the λ-term defining the pair function. The definition is
straightforward from the formula for pair.

Pair = λnm.Add(Div (Mul(Addnm)(Succ (Addnm)))pp2qq)n
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We compute the inverse of c = pair(n,m) by “brute force”. We merely try all
the possible values of n,m, encode them, and stop when we find the unique
n,m pair which has c as its encoding. By Lemma 30, we only need to search
for n,m ∈ {0..c}, so we limit our search to that square.

Proj1 = λc.LimMin (λn.Any(λm.Eq c (Pairnm))c)Ω c

Proj2 = λc.LimMin (λm.Any(λn.Eq c (Pairnm))c)Ω c

InL = λn.Mul pp2qqn

InR = λn.Succ(Mul pp2qqn)

Case = λnlr.Evenn (l(Div n pp2qq)) (r(Div n pp2qq))

Above, when n is odd, we compute (n − 1)/2 by just using Divppnqqpp2qq =
pp⌊n/2⌋qq = pp(n− 1)/2qq. We could also apply Pred to n, leading to the same
result.

Solution 227.

Length = Θ(λgl.Eq0 (Fst l)0 (Succ(g(Snd l))))
Merge = Θ(λgab.Eq0 (Fst a) b (Eq0 (Fst b) aA))
A = Leq (Fst a) (Fst b)B C
B = Cons (Fst a) (g (Snd a) b)
C = Cons (Fst b) (g a (Snd b))
Split = Θ(λga.Eq0A1 (Cons a a) (Cons (ConsA1 B2)B1))
B1 = Fst (g Ar)
B2 = Snd (g Ar)
A1 = Fst a
Ar = Snd a
MergeSort = Θ(λga.Eq0A1 a (Eq0A2 aM))
M = Merge (g (Fst (Split a))) (g (Snd (Split a)))
A1 = Fst a
A2 = Fst (Snd a)

Solution 228.

• GpMq = pMMq

G = λm.Appmm
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• GpMNq = pNMq

G = λx.CasexΩ (λy.Case y (λz. InR (InL (Pair (Proj2 z) (Proj1 z))))Ω)

• Gpλx.Mq = pMq

G = λx.CasexΩ (λy.Case yΩ (λz.Proj2 z))

• Gpλx. λy.Mq = pλy. λx.Mq
This is rather complex:

G = λx.CasexΩ (λy.Case yΩ (λz.A (Proj2 z)))
A = λx′.Casex′Ω (λy′.Case y′ Ω (λz′. B))
B = InR (InR (Pair (Proj1 z′) (InR (InR (Pair (Proj1 z) (Proj2 z′))))))

• GpIMq = pMq and GpKMq = pIq

G = λx.CasexΩ (λy.Case y (λz.Eq(Proj1 z)pIq(Proj2 z)pIq)Ω)

• Gpλxi.Mq = pλxi+1.Mq

G = λx.CasexΩ (λy.Case yΩ (λz. InR (InR (Pair (Succ(Proj1z)) (Proj2z)))))

• GpMq = pNq where N is obtained from M replacing every (bound or
free) variable xi with xi+1

G = Θ(λgx.Case x (λi. InL(Succ i))(λy.Case y AB))
A = λz. InR (InL (Pair (g(Proj1 z)) (g(Proj2 z))))
B = λz. InR (InR (Pair (Succ(Proj1 z)) (g(Proj2 z))))

• GpMq = pM{I/x0}q (this does not require α-conversion)

G = Θ(λgx.Case xA(Case y B C))
A = λi.Eq i0 pIq (InL i)
B = λz. InR (InL (Pair (g(Proj1 z)) (g(Proj2 z))))
C = λz.Eq (Proj1 z)0 z (InR (InR (Pair (Proj1 z) (g(Proj2 z)))))

Solution 229.
Sd = λn v a l. Case n v O
O = λm. Case m A L
A = λx. a (Proj1 x) (Proj2 x)
L = λx. l (Proj1 x) (Proj2 x)
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Solution 230.

App = λm n. InR(InL(Pair m n))

Solution 231. The following program follows the algorithm for the leftmost-
outermost strategy of Def. 65. The “shallow decoder” Sd of Ex. 121 is also
exploited.

Lam = λi m. InR (InR (Pair i m))
Beta = λn. Be n T
IsBetaNF = λn. Be n F
Be = Θ(λb n. Sd n V A L)
V = λi. Cons n T
L = λi m. b m F (Cons n T) (Cons (Lam i (b m T)) F)
A = λm o. Sd m (K M) (K (K M)) L′

L′ = λi m′. Cons(Subst (InL i) o m′) F

M = b m F
(

b o F (Cons n T) (Cons (App m (b o T)) F)
)

(

Cons (App (b m T) o) F
)

Solution 232. By contradiction, suppose K0
λ is λ-defined by F . Then, we

consider

G = λx. F (App pKq (App x(Numx)))

We have that GpMq = FpK(MpMq)q. The latter evaluates to T of F
depending on whether K(MpMq)0 = MpMq has a normal form. So G
actually λ-defines Kλ, which is a contradiction.

Solution 233. Take Pad = λn.App pIqn. Then, PadpMq = pIMq, and
we have

#(IM) = 1 + 2 · (2 · ( (#I+#M)(#I+#M+1)
2 +#I)) ≥

≥ 1 + 4 · #M
2 > #M

A.1 More Proofs

Here we establish Church-Rosser for →β.

Definition 234. We define →p as a “parallel” variant of →β. Its inductive
definition comprises the “up-to-α” rule and the following ones.
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M →p M
(A.1)

M →p M
′ N →p N

′

MN →p M ′N ′
(A.2)

M →p M
′

λx. M →p λx. M ′
(A.3)

M →p M
′ N →p N

′

(λx. M)N →p M ′{N ′/x}
(A.4)

Lemma 235. While →β and →p are different relations, they have the same
transitive reflexive closure, i.e. →∗

β =→∗
p.

Proof. By simple induction.

Lemma 236. The (one-step, parallel) relation →p is Church-Rosser:

∀M M1 M2. M →p M1 ∧M →p M2 =⇒ ∃N.M1 →p N ∧M2 →p N

Proof. (Sketch) By induction and case analysis. Checking all the pairs of
rules (A.1),. . . ,(A.4) suffices.

Lemma 237. The (many-steps, parallel) relation →∗
p is Church-Rosser:

∀M M1 M2. M →
∗
p M1 ∧M →∗

p M2 =⇒ ∃N.M1 →
∗
p N ∧M2 →

∗
p N

Proof. By Lemma 236 and induction on the number of steps.


