Computability Midterm Test 1 — 2008-10-29

Exercise 1. For each of the following λ -terms, state whether it has a $\beta\eta$ -normal form. Justify your answer.

Answer.

- Yes, $\Theta(\mathbf{KI}) =_{\beta\eta} \mathbf{KI}(\Theta(\mathbf{KI})) =_{\beta\eta} \mathbf{I} \not\to_{\beta\eta}$
- Yes, $\mathbf{KI}\Omega =_{\beta\eta} \mathbf{I} \not\rightarrow_{\beta\eta}$
- Yes, $\llbracket 2 \rrbracket \llbracket 2 \rrbracket =_{\beta\eta} (\lambda sz. s(sz)) \llbracket 2 \rrbracket =_{\beta\eta} \lambda z. \llbracket 2 \rrbracket (\llbracket 2 \rrbracket z) =_{\beta\eta} \lambda z. (\lambda sz. s(sz))(\llbracket 2 \rrbracket z) =_{\beta\eta} \lambda z. (\lambda z. (\lfloor 2 \rrbracket z)(\llbracket 2 \rrbracket z)\bar{z})) =_{\beta\eta} \lambda z\bar{z}. \llbracket 2 \rrbracket z(\llbracket 2 \rrbracket z\bar{z}) =_{\beta\eta} \lambda z\bar{z}. \llbracket 2 \rrbracket z(z(z\bar{z})) =_{\beta\eta} \lambda z\bar{z}. [\llbracket 2 \rrbracket z] =_{\beta\eta} \lambda z\bar{z}. \llbracket 2 \rrbracket z(z(z\bar{z})) =_{\beta\eta} \lambda z\bar{z}. [\llbracket 2 \rrbracket z] =_{\beta\eta} \lambda z\bar{z}. \llbracket 2 \rrbracket z(z(z\bar{z})) =_{\beta\eta} \lambda z\bar{z}. [\llbracket 2 \rrbracket z] =_{\beta\eta} \lambda z\bar{z}. \llbracket 2 \rrbracket z(z(z\bar{z})) =_{\beta\eta}$
- Yes, $\operatorname{Mul} \mathbf{0} \Omega =_{\beta \eta} \mathbf{0} (\operatorname{Add} \Omega) \mathbf{0} =_{\beta \eta} \mathbf{0} \not\rightarrow_{\beta \eta}$

Exercise 2. Compute the natural number $\#(\lambda x_0.\lambda x_1.x_1)$. Then, define M such that #M = 224. Then, define N such that #N = 49.

Answer.

- $\#(\lambda x_0.\lambda x_1.x_1) = inR(inR(pair(0, \#(\lambda x_1.x_1))))$ and $\#(\lambda x_1.x_1) = inR(inR(pair(1, \#(x_1))))$ and $\#x_1 = inL(1) = 2$. Unfolding the definitions, we get 1987.
- 224 is even: 224 = inL(112). So, $M = x_{112}$.
- 49 is odd: 49 = inR(24). 24 is even: 24 = inL(12). So, N is an application N_1N_2 . By a table lookup, 12 = pair(2,2). So, $\#N_1 = \#N_2 = 2$. 2 is even: 2 = inL(1). So, $N = x_1x_1$.

Exercise 3. State whether these functions and sets are λ -definable, and justify your answer.

$$f(n) = \prod_{i=0}^{n-1} (i^2 + 1)$$

$$A = \{\#M | (\lambda x.M) =_{\beta\eta} \mathbf{I}\} \quad B = \{\#M | \exists N. \#M = \#(NN)\}$$

$$C = \{\#M | M =_{\beta\eta} \mathbf{K}M\} \quad D = \{\#M + 1 | M =_{\beta\eta} \ulcorner M \urcorner \mathbf{Pred} \ulcorner M \urcorner\}$$

$$g(n) = \begin{cases} 2 \cdot n & \text{when } n = \#M \text{ and } M =_{\beta\eta} \mathbf{I} \\ 5 & \text{otherwise} \end{cases}$$

Answer.

• f(0) = 1 and $f(n) = ((n-1)^2 + 1) \cdot f(n-1)$ otherwise. So f is λ -defined by

 $F = \Theta(\lambda fn. \operatorname{Eq} n0^{\operatorname{d}} 1^{\operatorname{d}} (\operatorname{\mathbf{Succ}}(\operatorname{\mathbf{Mul}}(\operatorname{\mathbf{Pred}} n)(\operatorname{\mathbf{Pred}} n)))(f(\operatorname{\mathbf{Pred}} n)))$

- We apply Rice's Theorem to A. Clearly, $\#x \in A$, so $A \neq \emptyset$. Also, $\#y \notin A$, so $A \neq \mathbb{N}$. Then, assuming $\#M \in A$ and $M =_{\beta\eta} N$, we get $\mathbf{I} = \lambda x. M =_{\beta\eta} \lambda. N$, so also $\#N \in A$, and A is closed under $\beta\eta$. Result: A is not λ -definable.
- B is λ -defined by

 $V_B = \lambda m. \operatorname{Case} m (\mathbf{KF})(\lambda y. \operatorname{Case} y (\lambda z. \operatorname{Eq}(\operatorname{Proj1} z)(\operatorname{Proj2} z))(\mathbf{KF}))$

(2010 note: this is now done using **Sd** in a simpler way.)

- *C* is not λ -definable: we apply Rice's Theorem. $\#(\Theta \mathbf{K}) \in C$ by the fundamental fixed point property. $\#\mathbf{I} \notin C$, otherwise $\mathbf{I} =_{\beta\eta} \mathbf{KI} =_{\beta\eta} \lambda xy.y$ and the latter is a normal form distinct from \mathbf{I} , so $\neq_{\beta\eta}$. So, $\emptyset \neq C \neq \mathbb{N}$. To show *C* closed under $\beta\eta$, take $\#M \in C$ and $M =_{\beta\eta} N$, we then get $N =_{\beta\eta} M =_{\beta\eta} \mathbf{K} M =_{\beta\eta} \mathbf{K} N$, so $\#N \in C$. This concludes.
- D is not λ -definable. We first note that $\lceil n \rceil \operatorname{Pred} \lceil n \rceil = 0$, for any n. So, we get $D = \{\#M + 1 | M =_{\beta\eta} \mathbf{0}\}$. By contradiction, assume D to be λ -defined by V_D . Then, $V_E = \lambda m$. $V_D(\operatorname{Succ} m)$ proves that $E = \{\#M | M =_{\beta\eta} \mathbf{0}\}$ is λ -definable: if $n \in E$, then $n + 1 \in D$ and $V_E \lceil n \rceil = V_D \lceil n + 1 \rceil = \mathbf{T}$; otherwise if $n \notin E$, then $n + 1 \notin D$ and $V_E \lceil n \rceil = V_D \lceil n + 1 \rceil = \mathbf{F}$. We get a contradiction by showing that E is actually λ -undefinable. By Rice, $\#\mathbf{0} \in E$ and $\# \lceil 1 \rceil \notin E$. Also, taking $\#M \in E$ and $M =_{\beta\eta} N$, we then get $N =_{\beta\eta} M =_{\beta\eta} \mathbf{0}$, so $\#N \in E$. This concludes.
- g is not λ -definable. By contradiction, assume G defines it. Then the set $A = \{\#M | M =_{\beta\eta} \mathbf{I}\}$ can be λ -defined by $V_A = \lambda m$. Even(Gm). Indeed, if $n \in A$, then $g(n) = 2 \cdot n$ and $V_A \sqcap n \urcorner = \mathbf{T}$; otherwise if $n \notin A$, then g(n) = 5 and $V_A \sqcap n \urcorner = \mathbf{F}$. We get a contradiction by showing that A is actually λ -undefinable. By Rice, $\#I \in A$ and $\#\Omega \notin A$. Also, taking $\#M \in A$ and $M =_{\beta\eta} N$, we then get $N =_{\beta\eta} M =_{\beta\eta} \mathbf{I}$, so $\#N \in A$. This concludes.

Exercise 4. Prove or refute the following statements.

- A is λ -definable if and only if $A \setminus \{5\}$ is λ -definable.
- If A and B are not λ -definable, then $A \cup B$ is not λ -definable.
- If A is not λ -definable and $A \subseteq B$, then B is not λ -definable.

Answer.

• The first point holds. (\Rightarrow) If A is defined by V_A , then $V_{A\setminus\{5\}} = \lambda n. \operatorname{Eq} n \, {}^{\square} \mathbf{F} (V_A n)$ defines $A \setminus \{5\}$ (trivial check).

(\Leftarrow) If $A \setminus \{5\}$ is defined by $V_{A \setminus \{5\}}$, then we consider two cases. If $5 \notin A$, then $A \setminus \{5\} = A$ and choosing $V_A = V_{A \setminus \{5\}}$ is enough to λ -define A (trivial check). Otherwise, if $5 \in A$, we choose $V_A = \lambda n$. Eq $n \sqcap 5 \sqcap \mathbf{T} (V_{A \setminus \{5\}}n)$, and this λ -defines A (trivial check).

- The second point does not hold, in general. Take A to be any λ undefinable set (e.g. A from Exercise 3). Pick $B = \mathbb{N} \setminus A$. We have that B is not λ -definable: otherwise $V_A = \lambda n$. Not $(V_B n)$ defines A. However, $A \cup B = \mathbb{N}$ which is trivially λ -defined by **KT**.
- The third point does not hold, in general. Take A to be any λ undefinable set (e.g. A from Exercise 3). Pick $B = \mathbb{N}$. Clearly, $A \subseteq B$, but B is trivially λ -defined by **KT**.

Exercise 5. Define λ -terms M_1, \ldots, M_5 such that

$\forall N.$	$M_1 \ulcorner N \urcorner =_{\beta \eta} \ulcorner N N \mathbf{K} \urcorner$
$\forall N, i.$	$M_2 \ulcorner \lambda x_i. N \urcorner =_{\beta \eta} \ulcorner \lambda x_{33}. N N \urcorner$
$\forall N.$	$M_3 \ulcorner N \urcorner =_{\beta \eta} \ulcorner \lambda x_{\#N}. N \urcorner$
$\forall N.$	$M_4 \ulcorner N \urcorner =_{\beta \eta} \ulcorner N \ulcorner M_4 \urcorner \urcorner$
$\forall N\in\Lambda^0.$	$M_5 \ulcorner N \urcorner =_{\beta \eta} N \ulcorner \# N + 1 \urcorner$

Answer.

(2010 note: all of these can now be done using **Sd**, **Var**, **App**, **Lam** in a simpler way.)

- $M_1 = \lambda n. \operatorname{App}(\operatorname{App} n n)^{\Gamma} \mathbf{K}^{\neg}$
- $M_2 = \lambda n. \operatorname{Case} n \Omega (\lambda y. \operatorname{Case} y \Omega (\lambda z. \operatorname{InR}(\operatorname{InR}(\operatorname{Pair}^{\Box} 33^{\Box} N))))$ $N = \operatorname{InR}(\operatorname{InL}(\operatorname{Pair}(\operatorname{Proj} 2z)(\operatorname{Proj} 2z)))$
- $M_3 = \lambda n. \operatorname{InR}(\operatorname{InR}(\operatorname{Pair} n n))$
- We rewrite the question as $M_4 \ulcorner N \urcorner = \mathbf{App} \ulcorner N \urcorner \ulcorner \ulcorner M_4 \urcorner \urcorner$, which is $M_4 \ulcorner N \urcorner = \mathbf{App} \ulcorner N \urcorner (\mathbf{Num} \ulcorner M_4 \urcorner)$, which is $M_4 = (\lambda mn. \mathbf{App} n (\mathbf{Num} m)) \ulcorner M_4 \urcorner$. The above is not yet a proper definition, but such an M_4 can be constructed through the second fixed point theorem. To be precise, $M_4 = M \ulcorner M \urcorner$, where $M = \lambda w. F(\mathbf{App} w (\mathbf{Num} w))$ $F = \lambda mn. \mathbf{App} n (\mathbf{Num} m)$.

• $M_5 = \lambda n. \mathbf{E} n (\mathbf{Succ} n)$ where \mathbf{E} is the universal program.