Computability Final Test — 2009-09-03

Reminder: write your name, surname, and student number. Letters x, y, m, n, i range over \mathbb{N} ; A, B, \ldots range over subsets of \mathbb{N} ; M, N, O range over Λ . Justify your answers.

Part 1

Exercise 1.

- 1. Show that the set $A = \{\#M | MM =_{\beta\eta} M(\lambda x. xx)\}$ is closed under $\beta\eta$. Then, apply Rice by 1) checking the other hypotheses (**K**, **I** may be useful here), and 2) stating the conclusion.
- 2. Show that the set $B = \{\#M | MM =_{\beta\eta} (\lambda x. xx)M\}$ is closed under $\beta\eta$. Can we apply Rice here?
- 3. Show that if V_C is a verifier for $C = \{(\#M)^2 | M =_{\beta\eta} \mathbf{I}\}$ then there is a verifier V_D for $D = \{\#M | M =_{\beta\eta} \mathbf{I}\}$. Show that, whenever $x \in D$, we have $V_D \llbracket x \rrbracket = \mathbf{T}$ and dually, whenever $x \notin D$, then $V_D \llbracket x \rrbracket = \mathbf{F}$. What can we conclude about C?
- 4. Construct M such that $M \lceil NO \rceil = \lceil O \rceil$, for all closed N,O. Then construct P such that $P \lceil NO \rceil = O$, for all closed N,O.
- 5. Does #(MNO) = #(MN'O) imply #N = #N'?
- 6. Does $MNO =_{\beta\eta} MN'O$ imply $N =_{\beta\eta} N'$?

Exercise 2. State whether these sets are λ -definable.

$$\begin{split} E &= \{ \#M | \boldsymbol{\Theta} M =_{\beta\eta} (\lambda x. x) \} \\ F &= \{ \#M | M\mathbf{T} =_{\beta\eta} M\mathbf{F}^{\scriptscriptstyle \top} M^{\scriptscriptstyle \top} \} \\ G &= \{ 2^{\#M} \cdot 3^{\#N} | M =_{\beta\eta} N \} \\ H &= \{ \mathsf{pair}(\#M, n) | M^{\scriptscriptstyle \top} 5^{\scriptscriptstyle \top} =_{\beta\eta} {}^{\scriptscriptstyle \sqsubset} n^{\scriptscriptstyle \top} \} \end{split}$$

Exercise 3. Optional: solve this only if time allows. Adapt the definition of "A is a λ -definable set" (Def. 80 in the notes) to define "A is a λ -semi-definable set" so that its is equivalent to $A \in \mathcal{RE}$. Provide a proof sketch of this fact.

Part 2

Exercise 4.

1. Define two sets A, B such that $A \notin \mathcal{R}, B \in \mathcal{R}$, but $A \cup B \in \mathcal{R}$.

- 2. Apply Rice to the set $A = \{n | \phi_n(3) \text{ is even}\}$. Show that it is semantically closed, and define the related set \mathcal{F}_A , check the hypotheses of Rice, and conclude.
- 3. Show that $\mathsf{K} \leq_m A$, where A is as above.
- 4. Can we conclude that $A \in \mathcal{RE}$ from the result above?
- 5. Prove that if $f \notin \mathcal{R}$, then dom(f) is infinite.
- 6. A set A is co-finite iff $\mathbb{N} \setminus A$ is finite. Show that co-finite sets belong to \mathcal{RE} .
- 7. If dom(f) is finite, can we conclude $f \in \mathcal{R}$? What if instead dom(f) is co-finite?
- 8. Consider the set $B = \{n | \forall x. \phi_n(x) \text{ either undefined or } > 300 \cdot x\}$. Show that it is semantically closed, and define the related set \mathcal{F}_B .
 - Show that \mathcal{F}_B is not empty.
 - Try to apply Rice-Shapiro in the (⇒) direction: what can we conclude in this way?
 - Then, try to apply Rice-Shapiro in the (⇐) direction: what can we conclude in this way?

Exercise 5. *Pick five sets from these.* State whether the chosen sets belong to $\mathcal{R}, \mathcal{RE} \setminus \mathcal{R}$, or neither.

 $\begin{aligned} A &= \{n | \phi_n(\phi_n(5)) = 4\} \\ B &= \{n | \phi_n(5+n) = 4\} \\ C &= \{n | \mathsf{dom}(\phi_n) = \{2 \cdot m | m \in \mathbb{N}\}\} \\ D &= \{n | \mathsf{ran}(\phi_n) = \{2 \cdot m | m \in \mathbb{N}\}\} \\ E &= \{2 \cdot n | \mathsf{dom}(\phi_n) = \{2 \cdot m | m < 100\}\} \\ F &= \{n | \mathsf{ran}(\phi_n) = \{2 \cdot m | m < 100\}\} \\ G &= \{n | \mathsf{dom}(\phi_n) \text{ finite or equal to } \mathbb{N}\} \\ H &= \{n | \forall x. \phi_n(x) = \phi_n(x+1) \text{ (and both defined) }\} \end{aligned}$

Nota Bene. Be <u>clear</u> about how you apply the theorems. E.g. if you want to apply Rice-Shapiro, make it clear whether you are using the (\Rightarrow) or the (\Leftarrow) direction.

Exercise 6. Optional: solve this only if time allows. Prove whether there exists a total recursive function g such that

$$\forall x. \Big(\mathsf{dom}(\phi_x) \subseteq \bar{\mathsf{K}} \implies g(x) \in \bar{\mathsf{K}} \setminus \mathsf{dom}(\phi_x) \Big)$$