Computability Final Test — 2009-07-06

Part 1

Exercise 1. State whether these sets are λ -definable.

 $A = \{ \#M | \mathbf{I}M =_{\beta\eta} \Omega M \}$ $B = \{ \#M | \exists n. M =_{\beta\eta} \ulcorner n \urcorner \land n < 10 \}$ $C = \{ \#M | \forall n. n < 10 \implies M =_{\beta\eta} \ulcorner n \urcorner \rbrace$ $D = \{ \#M | \exists N. \#M + 1 = \#N \land N =_{\beta\eta} \mathbf{K} \}$ $E = \{ \#M | \neg (MM =_{\beta\eta} M) \}$ $F = \{ 2 \cdot \#M | M \text{ unsolvable } \}$

Answer. (short sketch)

Below, I will apply Rice without checking for closure under $\beta\eta$, but this must be done! Even if it is only a matter of expanding the definition, and replacing M with N where possible, you can not omit this check in your answers.

- A is not λ -definable, by Rice. $(\#\mathbf{I} \notin A, \#(\mathbf{\Theta}\Omega) \in A)$
- B is not λ -definable, by Rice. $(\# \ 5 \ \in B, \# \ 20 \ \notin B)$
- C is empty, since $M = \llbracket 0 \rrbracket = \llbracket 1 \rrbracket = \dots = \llbracket 9 \rrbracket$ is impossible.
- D is not λ -definable. Otherwise, assuming V_D we could build a verifier for $D' = \{\#M | M = \mathbf{K}\}$ which is not λ -definable by Rice. Indeed, $V_{D'} = \lambda x. V_D(\mathbf{Pred} x)$. Also, note that the set D is **not** closed under $\beta \eta$, while D' is.
- E is not λ -definable, by Rice.
- F is not λ -definable. Otherwise, assuming V_F we could build a verifier for $\{\#M|M \text{ unsolvable}\}$ which is not λ -definable by Rice. Also, note that this set is **not** closed under $\beta\eta$.

Exercise 2. Define Triple, P1, P2, P3 such that for all M, N, O,

 $\mathbf{P1}(\mathbf{Triple}MNO) = M$ $\mathbf{P2}(\mathbf{Triple}MNO) = N$ $\mathbf{P3}(\mathbf{Triple}MNO) = O$

Answer. A possible solution:

 $\begin{aligned} \mathbf{Triple} &= \lambda abc. \, \mathbf{Cons} \, a(\mathbf{Cons} \, b \, c) \\ \mathbf{P1} &= \lambda x. \, \mathbf{Fst} \, x \\ \mathbf{P2} &= \lambda x. \, \mathbf{Fst} \, (\mathbf{Snd} \, x) \\ \mathbf{P3} &= \lambda x. \, \mathbf{Snd} \, (\mathbf{Snd} \, x) \end{aligned}$

Exercise 3. Define $M \in \Lambda^0$ such that

$$M^{\ulcorner}\lambda x_i. N^{\urcorner} = \ulcorner\lambda x_i. \ulcornerN^{\urcorner} \\ M^{\ulcorner}NO^{\urcorner} = \ulcornerN^{\ulcorner}O^{\urcorner} \\ M^{\ulcorner}x_i^{\urcorner} = \ulcorneri^{\urcorner}$$

Answer.

$$\begin{split} M &= \lambda x. \operatorname{\mathbf{Case}} x A B \\ A &= \lambda y. y \\ B &= \lambda x. \operatorname{\mathbf{Case}} x C D \\ C &= \lambda y. \operatorname{\mathbf{App}} \left(\operatorname{\mathbf{Proj1}} y \right) \left(\operatorname{\mathbf{Num}} \left(\operatorname{\mathbf{Proj2}} y \right) \right) \\ D &= \lambda y. \operatorname{\mathbf{InR}} \left(\operatorname{\mathbf{InR}} \left(\operatorname{\mathbf{Pair}} \left(\operatorname{\mathbf{Proj1}} y \right) \left(\operatorname{\mathbf{Num}} \left(\operatorname{\mathbf{Proj2}} y \right) \right) \right) \right) \end{split}$$

(2010 note: this is now done using **Sd** in a simpler way.)

Exercise 4. Optional: solve this only if time allows. Prove of refute the following:

$$M =_{\beta\eta} MM \implies M =_{\beta\eta} \mathbf{I}$$

Answer. Falsified by $M = \Theta(\lambda x. xx)$, which has no normal form.

Exercise 5. Prove or refute the following. If $A \leq_m B$, there exists an injective total recursive function h such that $\forall x \in \mathbb{N}. x \in A \iff h(x) \in B$.

Answer. Falsified by $A = \{1, 2\}$ and $B = \{1\}$. They satisfy the hypothesis (easy), but any reduction between them must satisfy h(1) = h(2) = 1, so it is not injective.

Exercise 6. *Pick five sets from these. State whether the chosen sets belong* to $\mathcal{R}, \mathcal{RE} \setminus \mathcal{R}$, or neither.

$$\begin{split} A &= \{n | \phi_n(2 \cdot n) \text{ halts } \} \\ B &= \{n | \nexists x. \phi_n(x) \text{ is even } \} \\ C &= \{n | \text{dom}(\phi_n) \notin \mathcal{RE} \} \\ D &= \{n | \text{dom}(\phi_n) \in \mathcal{R} \} \\ E &= \{n | h \subseteq \phi_n\} \text{ where } h(0) = h(2) = 1, \text{ and undefined otherwise} \\ F &= \{n | \exists g. \text{ dom}(g) \text{ finite } \land \phi_n \subseteq g \} \\ G &= \{\text{pair}(n, m+1) | \phi_n(m) = \phi_m(n) \land \text{ both defined } \} \\ H &= \{\text{proj1}(n) | \phi_{\text{proj2}(n)}(\text{proj1}(n)) \text{ halts} \} \\ I &= \{n | n \in \text{ran}(\phi_n) \} \end{split}$$

Answer. (sketch)

- $A \in \mathcal{RE}$ since $A = \{n | \exists k. \phi_n(2 \cdot n) \text{ halts in } k \text{ steps } \}$. Moreover, $A \notin \mathcal{R}$ since $\mathsf{K} \leq_m A$ with reduction $h(n) = \#(\lambda x. \phi_n(n))$.
- *B* is not \mathcal{RE} , since \mathcal{F}_B contains the always undefined function, so by Rice-Shapiro (\Leftarrow) it would contain f(x) = 4 contradiction.
- $C = \emptyset$, by the definition of \mathcal{RE} , so it is recursive.
- $D \notin \mathcal{RE}$, since \mathcal{F}_D contains the always undefined function, so by Rice-Shapiro (\Leftarrow) it would contain $f(n) = \phi_n(n)$ contradiction since dom $(f) = K \notin \mathcal{R}$.
- $E \notin \mathcal{R}$ by Rice. $E \in \mathcal{RE}$ since a semi-verifier can run $\phi_n(0)$ and $\phi_n(1)$ and check the results against 1, and diverge if they are different.
- $F = \{n | \mathsf{dom}(\phi_n) \text{ finite}\} \notin \mathcal{RE}$ by Rice Shapiro (\Leftarrow)
- $G \in \mathcal{RE} \setminus \mathcal{R}$ since $\mathsf{K} \leq_m G$ and we can build a semi-verifier for G.
- $H = \mathbb{N} \in \mathcal{R}$
- $I \in \mathcal{RE} \setminus \mathcal{R}$ since we can build a semi-verifier and $\mathsf{K} \leq I$ with reduction

$$h(n) = \# \left(\lambda x. \begin{cases} x & \text{if } \phi_n(n) \text{ halts } \\ undef & \text{otherwise} \end{cases} \right)$$

Exercise 7. State whether these functions are recursive:

$$g(n,k) = \begin{cases} 1 & \text{if } \phi_n(n) \text{ halts in } k \text{ steps} \\ 0 & \text{otherwise} \end{cases}$$
$$h(n,m) = \begin{cases} 1 & \text{if } \phi_n = \phi_m \\ 0 & \text{otherwise} \end{cases}$$

Answer.

- $g \in \mathcal{R}$ since we can run the step-by-step interpreter for k steps, and observe termination within that bound.
- $h \notin \mathcal{R}$, since otherwise we can build a verifier for the set

$$A = \{n \mid \phi_n = \mathsf{id}\}$$

Indeed $V_A = \lambda n. h(n, \#\mathbf{I})$. However, $A \notin \mathcal{R}$ by Rice.

Exercise 8. Optional: solve this only if time allows. Assume f to be a partial function $\mathbb{N}^2 \rightsquigarrow \mathbb{N}$ such that

$$\operatorname{dom}(\phi_n) = \operatorname{dom}(\phi_m) = \mathbb{N} \implies f(n,m) = h(n,m)$$

where h is from Ex. 7. Note that this does not constrain f on the indexes of non-total functions. Under this assumption, can we conclude that $f \in \mathcal{R}$? Can we conclude that $f \notin \mathcal{R}$?

Answer. Define

$$a(n) = f(\#(\mathbf{K}^{\square} \mathbf{0}^{\neg}), \#(\lambda k. g(n, k)))$$

where g is from Ex. 7. Note that a is total, since

If $f \in \mathcal{R}$, then $a \in \mathcal{R}$. However, we have that a(n) = 1 if and only if $g(n, 0) = g(n, 1) = g(n, 2) = \cdots = 0$, that is iff $n \in \overline{K}$. This is a contradiction, so we can conclude $f \notin \mathcal{R}$.