Computability Final Test — 2009-06-03

Part 1

Exercise 1. State whether these sets are λ -definable.

$$\begin{split} A &= \{ \#M \mid M =_{\beta\eta} \mathbf{S}M \} \\ B &= \{ \#M + 1 \mid M\Omega =_{\beta\eta} M\mathbf{I} \} \\ C &= \{ \#M \mid \exists N. NM =_{\beta\eta} \mathbf{I} \} \\ D &= \{ \#M \mid \forall N. NM =_{\beta\eta} \mathbf{I} \} \\ E &= \{ \#M \mid \forall N. MM =_{\beta\eta} \ulcornerA^{\neg} \} \\ F &= \{ \#M \mid \forall N. MN =_{\beta\eta} \ulcornerN^{\neg} \} \\ G &= \{ \#M \mid \exists N. MN =_{\beta\eta} \ulcornerN^{\neg} \} \\ H &= \{ \#M \mid \mathbf{Even} (\mathbf{Mul} \ulcornerM^{\neg}\ulcornerM^{\neg}) =_{\beta\eta} \mathbf{T} \} \end{split}$$

Answer. (sketch)

- By Rice. We have $\#(\Theta S) \in A$, $\Omega \notin A$. If $\#M \in A$ and M = N, then from $M = \mathbf{S}M$ we get $N = \mathbf{S}N$, so $\#N \in A$. So A is not λ -def.
- By contradiction, assume that V_B is a verifier. Then, $V = \lambda n. V_B(\mathbf{Succ}n)$ is a verifier for $B' = \{\#M \mid M\Omega =_{\beta\eta} M\mathbf{I}\}$, which is not λ -def., as can be seen by Rice (easy to check).
- For any M, if we take $N = \mathbf{KI}$, we have $NM = \mathbf{I}$. So $C = \mathbb{N}$ and is λ -def.
- For any M, if we take $N = \Omega$, we have $\Omega M \neq \mathbf{I}$, since ΩM has no normal form (since Ω is unsolvable), while \mathbf{I} has. So $D = \emptyset$ is λ -def.
- $F = \emptyset$, otherwise $M\mathbf{I} = \lceil \mathbf{I} \rceil \neq \lceil \mathbf{II} \rceil = M(\mathbf{II}) = M\mathbf{I}$ (contradiction). So F is λ -def.

• $\#\Omega \notin G$, since ΩN can not have a normal form. $\#(\mathbf{K}^{\top}\mathbf{I}^{\neg}) \in G$ since we can take $N = \mathbf{I}$. If M = O, and $\#M \in G$, then $MN = {}^{\frown}N{}^{\neg}$ for some N, and $ON = {}^{\frown}N{}^{\neg}$ (for the same N), so $\#O \in G$. By Rice, Gis not λ -def.

•
$$V_H = \lambda n. \mathbf{Even}(\mathbf{Mul} n n)$$
 is a verifier, so H is λ -def.

Exercise 2. Find $M, N \in \Lambda^0$ such that

$$MIN \neq_{\beta\eta} NIM$$

Answer. Take $M = \mathbf{F}$ and $N = \mathbf{I}$. Then, $M\mathbf{I}N = \mathbf{FII} = \mathbf{I}$ while $\mathbf{IIF} = \mathbf{F}$. Since \mathbf{I} and \mathbf{F} are distinct normal forms, we conclude.

Exercise 3. Define $M \in \Lambda^0$ such that

$$M^{\ulcorner}\lambda x_{i}. N^{\urcorner} = M^{\ulcorner}NN^{\urcorner}$$
$$M^{\ulcorner}NO^{\urcorner} = M^{\ulcorner}O^{\urcorner}$$
$$M^{\ulcorner}x_{i}^{\urcorner} = {}^{\ulcorner}i + 2^{\urcorner}$$

Answer.

$$M = \Theta(\lambda g n. \operatorname{Case} n (\operatorname{Add}^{\mathbb{T}} 2^{\mathbb{T}}) A)$$

$$A = \lambda y. \operatorname{Case} y B C$$

$$B = \lambda z. g(\operatorname{Proj2} z)$$

$$C = \lambda z. g(\operatorname{App}(\operatorname{Proj2} z)(\operatorname{Proj2} z))$$

(2010 note: this can now be solved using **Sd** in a simpler way.)

Exercise 4. Prove of refute the following:

$$MMMM =_{\beta\eta} MM \implies MM =_{\beta\eta} M$$

Answer. We refute it by taking $M = \mathbf{K}$. We have $MMMM = \mathbf{K}\mathbf{K}\mathbf{K}\mathbf{K}\mathbf{K} = (\mathbf{K}\mathbf{K}\mathbf{K})\mathbf{K} = \mathbf{K}\mathbf{K} = MM$. However $MM = \mathbf{K}\mathbf{K} = \lambda x.\mathbf{K} = \lambda xyz.y$ which is a normal form different from $\mathbf{K} = \lambda xy.x$, so $MM \neq M$. \Box

Part 2

Exercise 5. Let $f \in (\mathbb{N} \to \mathbb{N})$. Assume that f is total, and that for all i, j, whenever $\phi_i = \phi_j$, we have f(i) = f(j). State whether, under these assumptions, we can conclude any of the following:

- f must be computable
- f may be computable, but may as well be non computable

• f must be non computable

Further, assume that ran(f) is a finite set with an even number of elements. Does the answer to the above change?

Answer. The function f may be computable (take f(x) = 0), and may be non computable, e.g. $f = \chi_{K_0}$, the characteristic of

$$\mathsf{K}_0 = \{n | \phi_n(0) \text{ is defined}\}\$$

If we assume that $\operatorname{ran}(f)$ is a finite set with an even cardinality, then f must be non computable. This is because, since f is total, we have $f(3) \in \operatorname{ran}(f)$, so $\operatorname{ran}(f)$ is not empty. Since 1 is odd, $\operatorname{ran}(f)$ can not be a singleton, so we have $x, y \in \operatorname{ran}(f)$ for some distinct naturals x, y, that is $x = f(a) \neq f(b) = y$ for some a and b. We can then consider

$$A = \{n | f(n) = x\}$$

The set is semantically closed since f returns the same value on indexes of equivalent programs. The set is not empty since $a \in A$. The set is not \mathbb{N} since $b \notin A$. By Rice, A is not recursive. However, is f were recursive, we could use it on n and check the result against x to verify $n \in A$. Contradiction. \Box

Exercise 6. State whether these functions are computable.

$$f(n) = \begin{cases} x & \text{if } x \text{ is the least } x \text{ such that } \phi_n(x) = 3\\ 0 & \text{if no such } x \text{ exists} \end{cases}$$
$$g(n) = \phi_{\phi_n(n+1)}(n+1)$$

Answer. (sketch)

• By contradiction, assume $f \in \mathcal{R}$. Then take

$$A = \{n | f(n) = 1\} = \{n | \phi_n(1) = 3 \land \phi_n(0) \text{ is not defined or } \neq 3\}$$

Since $f \in \mathcal{R}$, $A \in \mathcal{R}$ since we can write a verifier for A computing f and checking its result against 1. However, its is easy to show that $A \notin \mathcal{R}$ using Rice.

• Take the universal function $u(x, y) = \phi_x(y)$. Then g(n) = u(u(n, n + 1), n + 1) is a composition of u and +, so $g \in \mathcal{R}$.

Exercise 7. Define two total functions $f, g \in (\mathbb{N} \to \mathbb{N})$ such that $(f \circ g) \in \mathcal{R}$, $f \notin \mathcal{R}$, and $g \notin \mathcal{R}$.

Answer. Take

$$g(n) = \chi_{\mathsf{K}}(n) \qquad \qquad f(n) = \begin{cases} 0 & \text{if } n < 2\\ \chi_{\mathsf{K}}(n-2) & \text{otherwise} \end{cases}$$

We have $g \notin \mathcal{R}$ because $\mathsf{K} \notin \mathcal{R}$. We have $g \notin \mathcal{R}$ because otherwise $\chi_{\mathsf{K}}(n)$ could be computed using g(n+2). For the composition we have that f(g(n)) is either f(0) or f(1), depending on whether $n \in \mathsf{K}$. In both cases, f(g(n)) = 0. So $f \circ g$ is the constant null function, which is recursive.

Exercise 8. State whether these sets belong to $\mathcal{R}, \mathcal{RE} \setminus \mathcal{R}$, or neither.

$$\begin{split} A &= \{ \mathsf{pair}(n,m) | \forall x. (\phi_n(x) \text{ and } \phi_m(x) \text{ defined } \land \phi_n(x) < \phi_m(x)) \} \\ B &= \{ \mathsf{pair}(n,m) | \exists x. (\phi_n(x) \text{ and } \phi_m(x) \text{ defined } \land \phi_n(x) < \phi_m(x)) \} \\ C &= \{ \phi_n(n) | n > 1000 \land \phi_n(n) \text{ defined} \} \\ D &= \{ \phi_n(n) | n < 1000 \land \phi_n(n) \text{ defined} \} \\ E &= \{ k | \exists n > k. \phi_n(n) \text{ does not halt in } k \text{ steps} \} \\ F &= \{ n | \exists k. \phi_n(k) = \phi_n(k+1) \land \text{ both defined} \} \\ G &= \{ n | \exists k \forall x. \phi_n(x) = k \} \end{split}$$

Answer.

• $A \notin \mathcal{RE}$. By contradiction, assume that S_A is a semi-verifier for A. Then, $S_{A'} = \lambda n. V_A(\operatorname{Pair} n \ulcorner K \ulcorner 1 \urcorner \urcorner)$ is a semi-verifier for the set

$$A' = \{n | \forall x. \phi_n(x) \text{ defined} \land \phi_n(x) < 1\} = \{n | \forall x. \phi_n(x) = 0\}$$

That is, $A' = \{n | \phi_n \in \mathcal{F}\}$ where $\mathcal{F} = \{f\}$ and f is the constant null function. By Rice-Shapiro (\Rightarrow) , we have that some finite restriction g of f must belong to \mathcal{F} , but \mathcal{F} only contains the f which has infinite domain.

• The predicate

 $p(x, n, m, k, j) = \phi_n(x)$ halts in k steps $\wedge \phi_m(x)$ halts in i steps $\wedge \phi_n(x) < \phi_n(x)$

is recursive, since we only need to run programs for a bounded number of steps. This means that the predicate

$$q(n,m) = \exists x, k, i. p(x, n, m, k, j)$$

is \mathcal{RE} , and we have a semi-verifier S_q for it. Then, $S_B = \lambda y. S_q (\operatorname{Proj1} y) (\operatorname{Proj2} y)$ shows that $B \in \mathcal{RE}$.

We also have $B \notin \mathcal{R}$, otherwise from V_B we can construct $V_{B'} = \lambda n. V_B(\operatorname{Pair} n \ulcorner \mathbf{K} \ulcorner 1 \urcorner \urcorner)$ for the set $B' = \{n | \exists x. \phi_n(x) = 0\}$ which is not recursive, as we can see using Rice: $\#(\mathbf{K} \ulcorner 0 \urcorner) \in B', \#(\mathbf{K} \ulcorner 1 \urcorner) \notin B'$, and B' depends only on ϕ_n so it is semantically closed.

- $C = \mathbb{N} \in \mathcal{R}$. To prove that $x \in C$ for all x, take $i = \mathsf{pad}(\mathsf{pad}(\cdots \#(\mathbf{K}^{\top}x^{\neg})))$ where pad is applied 1000 times. Clearly, i > 1000 and $\phi_i(i) = x$.
- D is finite (contains at most 1000 elements), and so \mathcal{R} .
- Given any k, take $n = \mathsf{pad}(\mathsf{pad}(\cdots \# \Omega))$ where pad is applied k + 1 times. This ensures that n > k and $\phi_n(n)$ never halts. Since we can always find n for any k, the condition expressed in set E is always true. So $E = \mathbb{N} \in \mathcal{R}$.
- $F \in \mathcal{RE}$. Indeed, the predicate

 $p(n,k,i,j) = \phi_n(k)$ halts in *i* steps $\wedge \phi_n(k+1)$ halts in *j* steps $\wedge \phi_n(k) = \phi_n(k+1)$

is \mathcal{R} since we run programs for only a bounded number of steps. so, the predicate $q(n) = \exists k, i, j. p(n, k, i, j)$ is \mathcal{RE} .

The set E is not recursive, as we can see using Rice. Clearly $\#(\mathbf{K}^{\square}5^{\square}) \in F$, while $\#\mathbf{I} \notin F$. The set depends only on ϕ_n , so it is semantically closed.

• $G \notin \mathcal{RE}$. Otherwise we apply Rice-Shapiro (\Rightarrow) to

 $\mathcal{F} = \{ f \in \mathcal{R} | f \text{ is a constant function} \}$

If we take f(n) = 0 we have $f \in \mathcal{F}$, but no finite restriction of f belongs to \mathcal{F} .