
Computability Final Test — 2009-06-03

Part 1

Exercise 1. State whether these sets are λ-definable.

A = {#M | M =βη SM}
B = {#M + 1 | MΩ =βη MI}
C = {#M | ∃N.NM =βη I}
D = {#M | ∀N.NM =βη I}
E = {#M | EpMq =βη pp4qq}
F = {#M | ∀N.MN =βη pNq}
G = {#M | ∃N.MN =βη pNq}
H = {#M | Even (Mul pMqpMq) =βη T}

Answer. (sketch)

• By Rice. We have #(ΘS) ∈ A, Ω 6∈ A. If #M ∈ A and M = N , then
from M = SM we get N = SN , so #N ∈ A. So A is not λ-def.

• By contradiction, assume that VB is a verifier. Then, V = λn. VB(Succn)
is a verifier for B′ = {#M | MΩ =βη MI}, which is not λ-def., as can
be seen by Rice (easy to check).

• For any M , if we take N = KI, we have NM = I. So C = N and is
λ-def.

• For any M , if we take N = Ω, we have ΩM 6= I, since ΩM has no
normal form (since Ω is unsolvable), while I has. So D = ∅ is λ-def.

• A not completely correct (yet acceptable) answer: EpMq = M , so
E = {#M | M =βη pp4qq}, which is not λ-def. by Rice (easy to
check). The formally correct answer: E = {#M | M{Ω/free(M)} =βη

pp4qq}, and to apply Rice you have to show that M{Ω/free(M)} =βη

N{Ω/free(N)} whenever M =βη N .

• F = ∅, otherwise MI = pIq 6= pIIq = M(II) = MI (contradiction).
So F is λ-def.



• #Ω 6∈ G, since ΩN can not have a normal form. #(KpIq) ∈ G since
we can take N = I. If M = O, and #M ∈ G, then MN = pNq for
some N , and ON = pNq (for the same N), so #O ∈ G. By Rice, G
is not λ-def.

• VH = λn.Even(Mulnn) is a verifier, so H is λ-def.

Exercise 2. Find M,N ∈ Λ0 such that

MIN 6=βη NIM

Answer. Take M = F and N = I. Then, MIN = FII = I while
IIF = F. Since I and F are distinct normal forms, we conclude.

Exercise 3. Define M ∈ Λ0 such that

Mpλxi. Nq = MpNNq

MpNOq = MpOq

Mpxiq = ppi+ 2qq

Answer.

M =Θ(λgn.Casen (Addpp2qq)A)

A =λy.Case y B C

B =λz. g(Proj2 z)

C =λz. g(App(Proj2 z)(Proj2 z))

(2010 note: this can now be solved using Sd in a simpler way.)

Exercise 4. Prove of refute the following:

MMMM =βη MM =⇒ MM =βη M

Answer. We refute it by taking M = K. We have MMMM =
KKKK = (KKK)K = KK = MM . However MM = KK = λx.K =
λxyz.y which is a normal form different from K = λxy. x, so MM 6= M .

Part 2

Exercise 5. Let f ∈ (N → N). Assume that f is total, and that for all

i, j, whenever φi = φj, we have f(i) = f(j). State whether, under these

assumptions, we can conclude any of the following:

• f must be computable

• f may be computable, but may as well be non computable
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• f must be non computable

Further, assume that ran(f) is a finite set with an even number of elements.

Does the answer to the above change?

Answer. The function f may be computable (take f(x) = 0), and may
be non computable, e.g. f = χK0

, the characteristic of

K0 = {n|φn(0) is defined}

If we assume that ran(f) is a finite set with an even cardinality, then f must
be non computable. This is because, since f is total, we have f(3) ∈ ran(f),
so ran(f) is not empty. Since 1 is odd, ran(f) can not be a singleton, so we
have x, y ∈ ran(f) for some distinct naturals x, y, that is x = f(a) 6= f(b) = y
for some a and b. We can then consider

A = {n|f(n) = x}

The set is semantically closed since f returns the same value on indexes of
equivalent programs. The set is not empty since a ∈ A. The set is not N since
b 6∈ A. By Rice, A is not recursive. However, is f were recursive, we could
use it on n and check the result against x to verify n ∈ A. Contradiction.

Exercise 6. State whether these functions are computable.

f(n) =

{

x if x is the least x such that φn(x) = 3
0 if no such x exists

g(n) = φφn(n+1)(n+ 1)

Answer. (sketch)

• By contradiction, assume f ∈ R. Then take

A = {n|f(n) = 1} = {n|φn(1) = 3 ∧ φn(0) is not defined or 6= 3 }

Since f ∈ R, A ∈ R since we can write a verifier for A computing f
and checking its result against 1. However, its is easy to show that
A 6∈ R using Rice.

• Take the universal function u(x, y) = φx(y). Then g(n) = u(u(n, n +
1), n + 1) is a composition of u and +, so g ∈ R.

Exercise 7. Define two total functions f, g ∈ (N → N) such that (f ◦g) ∈ R,

f 6∈ R, and g 6∈ R.
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Answer. Take

g(n) = χK(n) f(n) =

{

0 if n < 2
χK(n− 2) otherwise

We have g 6∈ R because K 6∈ R. We have g 6∈ R because otherwise χK(n)
could be computed using g(n+2). For the composition we have that f(g(n))
is either f(0) or f(1), depending on whether n ∈ K. In both cases, f(g(n)) =
0. So f ◦ g is the constant null function, which is recursive.

Exercise 8. State whether these sets belong to R,RE \ R, or neither.

A = {pair(n,m)|∀x. ( φn(x) and φm(x) defined ∧ φn(x) < φm(x) )}
B = {pair(n,m)|∃x. ( φn(x) and φm(x) defined ∧ φn(x) < φm(x) )}
C = {φn(n)|n > 1000 ∧ φn(n) defined}
D = {φn(n)|n < 1000 ∧ φn(n) defined}
E = {k|∃n > k. φn(n) does not halt in k steps}
F = {n|∃k. φn(k) = φn(k + 1) ∧ both defined }
G = {n|∃k∀x. φn(x) = k}

Answer.

• A 6∈ RE . By contradiction, assume that SA is a semi-verifier for A.
Then, SA′ = λn. VA(Pairn pKpp1qqq) is a semi-verifier for the set

A′ = {n|∀x. φn(x)defined ∧ φn(x) < 1} = {n|∀x. φn(x) = 0}

That is, A′ = {n|φn ∈ F} where F = {f} and f is the constant null
function. By Rice-Shapiro (⇒), we have that some finite restriction g
of f must belong to F , but F only contains the f which has infinite
domain.

• The predicate

p(x, n,m, k, j) = φn(x) halts in k steps∧φm(x) halts in i steps∧φn(x) < φn(x)

is recursive, since we only need to run programs for a bounded number
of steps. This means that the predicate

q(n,m) = ∃x, k, i. p(x, n,m, k, j)

isRE , and we have a semi-verifier Sq for it. Then, SB = λy. Sq (Proj1 y) (Proj2 y)
shows that B ∈ RE .

We also have B 6∈ R, otherwise from VB we can construct VB′ =
λn. VB(Pairn pKpp1qqq) for the set B′ = {n|∃x. φn(x) = 0} which is
not recursive, as we can see using Rice: #(Kpp0qq) ∈ B′, #(Kpp1qq) 6∈
B′, and B′ depends only on φn so it is semantically closed.
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• C = N ∈ R. To prove that x ∈ C for all x, take i = pad(pad(· · ·#(Kppxqq)))
where pad is applied 1000 times. Clearly, i > 1000 and φi(i) = x.

• D is finite (contains at most 1000 elements), and so R.

• Given any k, take n = pad(pad(· · ·#Ω)) where pad is applied k + 1
times. This ensures that n > k and φn(n) never halts. Since we can
always find n for any k, the condition expressed in set E is always
true. So E = N ∈ R.

• F ∈ RE . Indeed, the predicate

p(n, k, i, j) = φn(k) halts in i steps∧φn(k+1) halts in j steps∧φn(k) = φn(k+1)

is R since we run programs for only a bounded number of steps. so,
the predicate q(n) = ∃k, i, j. p(n, k, i, j) is RE .

The set E is not recursive, as we can see using Rice. Clearly #(Kpp5qq) ∈
F , while #I 6∈ F . The set depends only on φn, so it is semantically
closed.

• G 6∈ RE . Otherwise we apply Rice-Shapiro (⇒) to

F = {f ∈ R|f is a constant function}

If we take f(n) = 0 we have f ∈ F , but no finite restriction of f
belongs to F .
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