Computability Final Test — 2009-06-03

Part 1

Exercise 1. State whether these sets are A-definable.

A={#M | M =p, SM}

B={#M+1 | MQ =5, MI}

C ={#M | AN.NM =4, 1}

D= {#M | YN.NM =g, I}

E={#M | ETM =5, ™47}

F={#M | VN.MN =5, "N}

G = {#M | 3N.MN =4, "N}

H = {#M | Even (Mul "M ™M) =5, T}

Answer. (sketch)

e By Rice. We have #(©S) € A, Q¢ A. If #M € A and M = N, then
from M = SM we get N =SN,so #N € A. So A is not A-def.

e By contradiction, assume that Vp is a verifier. Then, V' = An. Vp(Succn)
is a verifier for B’ = {#M | M =g, M1}, which is not A-def., as can
be seen by Rice (easy to check).

e For any M, if we take N = KI, we have NM =1. So C = N and is
A-def.

e For any M, if we take N = €2, we have QM = I, since QM has no
normal form (since €2 is unsolvable), while I has. So D = () is A-def.

e A not completely correct (yet acceptable) answer: ETM™ = M, so
E = {#M | M =g, 4™}, which is not A-def. by Rice (easy to
check). The formally correct answer: E = {#M | M{Q/free(M)} =g,
T47}, and to apply Rice you have to show that M{Q/free(M)} =g,
N{Q/free(N)} whenever M =g, N.

e F = (), otherwise MI = "I" # "II"" = M (II) = MT (contradiction).
So F'is A-def.



o #0 ¢ G, since QN can not have a normal form. #(K™I") € G since
we can take N = 1. If M = O, and #M € G, then MN = "N for
some N, and ON = "N7 (for the same N), so #0 € G. By Rice, G
is not A-def.

e Vi = An.Even(Mulnn) is a verifier, so H is A\-def. O
Exercise 2. Find M,N € A° such that

MIN +#4, NIM

Answer. Take M = F and N = I. Then, MIN = FII = I while
ITF = F. Since I and F are distinct normal forms, we conclude. O

Exercise 3. Define M € A° such that

M™A\z;. N7= MTNN™
MT™NO" = M™O"
M =" 427

Answer.
M =0O(Agn.Casen (Add™2™) A)
A =\y.Casey BC
B =\z.g(Proj2 z)
C =)\z.g(App(Proj2 z)(Proj2 z))
(2010 note: this can now be solved using Sd in a simpler way.) O

Exercise 4. Prove of refute the following:
MMMM =g, MM = MM =g, M

Answer. We refute it by taking M = K. We have MMMM =
KKKK = (KKK)K = KK = MM. However MM = KK = \z.K
Azyz.y which is a normal form different from K = \zy.z,so MM # M. [

Part 2

Exercise 5. Let f € (N — N). Assume that f is total, and that for all
i,j, whenever ¢; = ¢;, we have f(i) = f(j). State whether, under these
assumptions, we can conclude any of the following:

e f must be computable

e f may be computable, but may as well be non computable



e f must be non computable

Further, assume that ran(f) is a finite set with an even number of elements.
Does the answer to the above change?

Answer. The function f may be computable (take f(x) = 0), and may
be non computable, e.g. f = xk,, the characteristic of

Ko = {n|¢,(0) is defined}

If we assume that ran(f) is a finite set with an even cardinality, then f must
be non computable. This is because, since f is total, we have f(3) € ran(f),
so ran(f) is not empty. Since 1 is odd, ran(f) can not be a singleton, so we
have z,y € ran(f) for some distinct naturals z, y, that isx = f(a) # f(b) =y
for some a and b. We can then consider

A={nlf(n) =)

The set is semantically closed since f returns the same value on indexes of
equivalent programs. The set is not empty since a € A. The set is not N since
b ¢ A. By Rice, A is not recursive. However, is f were recursive, we could
use it on n and check the result against x to verify n € A. Contradiction. U

Exercise 6. State whether these functions are computable.

F(n) = x if x is the least x such that ¢,(x) =3
=10 if no such x exists

9(n) = bg, 1y (n +1)
Answer. (sketch)

e By contradiction, assume f € R. Then take
A= {n|f(n) =1} ={n|on(1) = 3 A $,(0) is not defined or # 3 }

Since f € R, A € R since we can write a verifier for A computing f
and checking its result against 1. However, its is easy to show that
A ¢ R using Rice.

e Take the universal function u(z,y) = ¢,(y). Then g(n) = u(u(n,n +
1),n + 1) is a composition of v and +, so g € R.

O

Exercise 7. Define two total functions f,g € (N — N) such that (fog) € R,
fE€R, and g€ R.



Answer. Take

g(n) = xk(n) f(n) = { 0 ifn <2

xk(n —2) otherwise

We have g € R because K ¢ R. We have g ¢ R because otherwise xk(n)
could be computed using g(n+2). For the composition we have that f(g(n))
is either f(0) or f(1), depending on whether n € K. In both cases, f(g(n)) =
0. So f o g is the constant null function, which is recursive. U

Exercise 8. State whether these sets belong to R, RE \ R, or neither.

A = {pair(n,m)|Vz. ( ¢n(z) and ¢m(x) defined A ¢n(z) < Ppm(x) )}
B = {pair(n,m)|3z. ( ¢n(x) and ¢ (z) defined A ¢n(x) < dm(z) )}
C = {¢pn(n)|n > 1000 A ¢,,(n) defined}

D = {¢n(n)|n < 1000 A ¢, (n) defined}

E = {k|3n > k. ¢n(n) does not halt in k steps}

F = {n|3k. ¢n(k) = ¢pn(k + 1) A both defined }

G = {n|3kVx. ¢, (z) = k}

Answer.

e A ¢ RE. By contradiction, assume that S4 is a semi-verifier for A.
Then, Sy = An. V4(Pairn"K™177) is a semi-verifier for the set

A" = {n|Vx. ¢, (z)defined A ¢y, (z) < 1} = {n|Vz. ¢, (z) = 0}

That is, A" = {n|¢, € F} where F = {f} and f is the constant null
function. By Rice-Shapiro (=), we have that some finite restriction g
of f must belong to F, but F only contains the f which has infinite
domain.

e The predicate
p(xz,n,m,k,j) = ¢n(x) halts in k stepsA¢y,(z) halts in ¢ stepsAdy(z) < épn(x)

is recursive, since we only need to run programs for a bounded number
of steps. This means that the predicate

qg(n,m) = 3z, k,i.p(x,n,m,k, j)

is RE, and we have a semi-verifier S, for it. Then, Sp = A\y. S, (Projly) (Proj2y)
shows that B € RE.

We also have B ¢ R, otherwise from Vp we can construct Vg =
An. Vp(Pairn"K™1™7) for the set B' = {n|3z. ¢, (x) = 0} which is
not recursive, as we can see using Rice: #(K™07") € B/, #(K™17) ¢
B’, and B’ depends only on ¢, so it is semantically closed.



C =N e R. Toprove that x € C for all z, take i = pad(pad(--- #(K™z™)))
where pad is applied 1000 times. Clearly, i > 1000 and ¢;(i) = x.

D is finite (contains at most 1000 elements), and so R.

Given any k, take n = pad(pad(---#)) where pad is applied k + 1
times. This ensures that n > k and ¢, (n) never halts. Since we can
always find n for any k, the condition expressed in set E is always
true. So E=NeR.

F € RE. Indeed, the predicate
p(n,k,i,7) = ¢n(k) halts in i stepsA¢y, (k+1) halts in j stepsA¢y, (k) = ¢n(k+1)

is R since we run programs for only a bounded number of steps. so,
the predicate ¢(n) = 3k, i, 5. p(n, k,i,7) is RE.

The set E is not recursive, as we can see using Rice. Clearly #(K™5™) €
F, while #I ¢ F. The set depends only on ¢, so it is semantically
closed.

G ¢ RE. Otherwise we apply Rice-Shapiro (=) to
F ={f € R|f is a constant function}

If we take f(n) = 0 we have f € F, but no finite restriction of f
belongs to F. U



