Computability Final Test — 2009-02-06

Part 1

Exercise 1. Write a λ -term defining the following function.

$$f(x,y) = \begin{cases} x-y & \text{if } x > y \\ 3 & \text{otherwise} \end{cases}$$

Answer. λxy . Lt $y x (\operatorname{Sub} x y)^{\square} 3^{\square}$

Exercise 2. Construct λ -terms M_0, M_1 such that:

$$\begin{split} M_0 &= \ulcorner M_0 \urcorner \\ M_1 \ulcorner \lambda x_i. \ N \urcorner = \ulcorner i \urcorner \\ M_1 \ulcorner x_i \urcorner = \ulcorner i \urcorner \\ M_1 \ulcorner N_0 N_1 \urcorner = M_1 \ulcorner N_0 \urcorner \end{split}$$

for all λ -terms N, N_0, N_1 and natural *i*.

Answer. M_0 is from the second recursion theorem applied on I.

 $M_0 = M^{\scriptscriptstyle \top} M^{\scriptscriptstyle \neg} \qquad M = \lambda w. \, \mathbf{I}(\operatorname{\mathbf{App}} w(\operatorname{\mathbf{Num}} w))$

 M_1 requires recursion:

$$M_1 = \Theta(\lambda gn. \operatorname{Case} n \operatorname{IA})$$
$$A = \lambda y. \operatorname{Case} y B \operatorname{Proj1}$$
$$B = \lambda z. g(\operatorname{Proj1} z)$$

(2010 note: now this can be solved using Sd in a more direct fashion.)

Exercise 3. State whether these sets are λ -definable. Justify your answers.

$$A = \{ \#M | M =_{\beta\eta} \Theta(\mathbf{K}M) \}$$

$$B = \{ \#M | \forall n \in \mathbb{N}. M^{\sqcap} n + 5^{\sqcap} =_{\beta\eta} \mathbf{T} \}$$

$$C = \{ \#(\lambda x_i. M) | M =_{\beta\eta} {}^{\sqcap} i^{\sqcap} \}$$

$$D = \{ \#M | \exists n \in \mathbb{N}. \mathbf{Add} {}^{\sqcap} M^{\sqcap} n^{\sqcap} =_{\beta\eta} {}^{\sqcap} M^{\sqcap} \}$$

$$E = \{ \#M | MM =_{\beta\eta} MMM \}$$

Answer (sketch).

- Since $\Theta(\mathbf{K}M) = \mathbf{K}M(\Theta(\mathbf{K}M)) = M$, $A = \{\#M|M =_{\beta\eta} \Theta(\mathbf{K}M)\} = \Lambda$ which is λ -defined by **KT**.
- B is not λ-definable, since Rice's theorem applies. #(KT) belongs to B, while #Ω does not. B is trivially closed under βη.
- *C* is not λ -definable. By contradiction, let V_C be a verifier. Then, we can build a verifier $V_{C'}$ for $C' = \{\#M | M =_{\beta\eta} \square 0 \$ which is not λ -definable, as can be seen through Rice's theorem. Here is how to construct $V_{C'}$:

 $V_{C'} = \lambda n. V_C(\mathbf{InR} (\mathbf{InR} (\mathbf{Pair} \ \Box \ n)))$

(This can also be justified through the \leq_m relation.) (2010 note: now we would simply use **Lam** above.)

• D is λ -definable, since

$$D = \{m | \exists n \in \mathbb{N}. \operatorname{Add} \ulcorner m \urcorner \ulcorner n \urcorner =_{\beta \eta} \ulcorner \ulcorner m \urcorner \urcorner \rceil \}$$
$$= \{m | \exists n \in \mathbb{N}. \ulcorner m + n \urcorner =_{\beta \eta} \ulcorner \# \ulcorner m \urcorner \urcorner \rceil \}$$
$$= \{m | \exists n \in \mathbb{N}. m + n = \# \ulcorner m \urcorner \urcorner \}$$
$$= \{m | m \le \operatorname{num}(m) \}$$

and the last condition is trivial to check.

• *E* is not λ -definable. By Rice: *E* is clearly closed under $\beta\eta$. #I trivially belongs to *E*. To check that #K does not belong to *E*, we proceed by contradiction: if **KK** = **KKK**, then **KK** = **K**, hence $(\lambda xyz.y) =_{\beta\eta} (\lambda yz.y)$, which is impossible since both are normal forms.

Exercise 4. State whether, for all $G \in \Lambda^0$, there exists some $M \in \Lambda^0$ such that $M = GMG^{\neg}MGM^{\neg}$.

Answer (sketch). Yes. First rewrite the equation as $M = FM^{\neg}M^{\neg}$ for a suitable F. Then apply Θ to remove the recursion, transforming the equation in $M = F'^{\neg}M^{\neg}$. Finally, apply the second recursion theorem.

Part 2

Exercise 5. State whether the following functions belong to \mathcal{R} . Justify your

answers.

$$f(n) = \begin{cases} \phi_n(3) & \text{if } \phi_n(3) \text{ is even} \\ \phi_n(3) + 11 & \text{if } \phi_n(3) \text{ is odd} \\ 8 & \text{if } \phi_n(3) \text{ is undefined} \\ g(n) = \begin{cases} \phi_n(3) & \text{if } \phi_n(3) \text{ is even} \\ \phi_n(3) + 11 & \text{if } \phi_n(3) \text{ is odd} \\ 18 & \text{if } \phi_n(3) \text{ is undefined} \\ 18 & \text{if } \phi_n(3) \text{ is undefined} \\ 4 & \text{undefined} & \text{if } \phi_n(3 + n) \text{ is defined} \\ 3 + n & \text{otherwise} \end{cases}$$

Answer (sketch).

• $f \notin \mathcal{R}$. Otherwise, by checking whether f(n) = 8, we could decide the set

$$\{n|\phi_n(3)=8\lor\phi_n(3)=\text{undefined}\}$$

which is not recursive, as can be seen through Rice.

• $g \notin \mathcal{R}$. Otherwise, by checking whether f(n) = 18, we could decide the set

$$\{n|\phi_n(3) = 18 \lor \phi_n(3) = \text{undefined} \lor \phi_n(3) = 7 \}$$

which is not recursive, as can be seen through Rice.

• $h \notin \mathcal{R}$. Otherwise, consider the following total recursive function:

$$a(n) = \#(\lambda x. \phi_n(n))$$

We have that b(n) = h(a(n)) is recursive, and defined whenever $\phi_{a(n)}(a(n)+3)$ is not defined, i.e. whenever $(\lambda x. \phi_n(n))^{\mathbb{F}}a(n) + 3^{\mathbb{T}}$ does not evaluate to a numeral, i.e. when $\phi_n(n)$ is not defined. So, $\mathsf{dom}(b) = \bar{\mathsf{K}}$, hence $\bar{\mathsf{K}} \in \mathcal{RE}$. Contradiction.

Exercise 6. State whether the following sets belong to either \mathcal{R} , $\mathcal{RE} \setminus \mathcal{R}$, or they do not belong to \mathcal{RE} . Justify your answers.

$$\begin{split} A &= \{n | \phi_n \subseteq \mathsf{id}\} \quad where \ \mathsf{id} \in (\mathbb{N} \to \mathbb{N}) \ is \ the \ identity \ function \\ B &= \{n | \forall x. \ \phi_n(2 \cdot x) \ is \ defined\} \\ C &= \{n | \forall x. \ \phi_n(2 \cdot x + 1) \ is \ not \ defined\} \\ D &= \{\mathsf{pair}(\max(1000, k), n) | \phi_n(n) \ halts \ in \ k \ steps\} \\ E &= \{\mathsf{pair}(\min(1000, k), n) | \phi_n(n) \ halts \ in \ k \ steps\} \end{split}$$

Answer.

A ∉ RE, by Rice-Shapiro. Indeed, otherwise, we let F = {f ∈ R|f ⊆ id}. Clearly, A = {n|φ_n ∈ F}. We have that the always undefined function f_∅ belongs to F. By Rice-Shapiro (direction: ⇐), since dom(f_∅) = ∅ is finite, any computable super-function of f_∅ belongs to F. So, g(n) = 5 belongs to F. Contradiction, since g ⊆ id is false.

- $A \notin \mathcal{RE}$, by Rice-Shapiro. Indeed, otherwise, we let $\mathcal{F} = \{f \in \mathcal{R} | \forall x. f(2 \cdot x) \text{ is defined} \}$. Clearly, $B = \{n | \phi_n \in \mathcal{F}\}$. We have that the always zero function f(n) = 0 belongs to \mathcal{F} . By Rice-Shapiro (direction: \Rightarrow), there is some finite $g \in \mathcal{F}$ such that $g \subseteq f$. However, no finite g can belong to \mathcal{F} , since g must be defined for all even inputs. Contradiction.
- $C \notin \mathcal{RE}$, by Rice-Shapiro. Indeed, otherwise, we let $\mathcal{F} = \{f \in \mathcal{R} | \forall x. f(2 \cdot x + 1) \text{ is not defined} \}$. Clearly, $C = \{n | \phi_n \in \mathcal{F}\}$. We have that the always undefined function f_{\emptyset} belongs to \mathcal{F} . By Rice-Shapiro (direction: \Leftarrow), since dom $(f_{\emptyset}) = \emptyset$ is finite, any computable super-function of f_{\emptyset} belongs to \mathcal{F} . So, g(n) = 5 belongs to \mathcal{F} . Contradiction, since g(1) is defined (as 5).
- D belongs to R. To check whether a given x belongs to D, first we compute y = proj1(x) and n = proj2(x). If y < 1000, we return false. If y = 1000 then we need to check whether φ_n(n) halts in 1000 steps or fewer (note that k could be less than y in this case). This requires running the program for 1000 steps at most, so it can be computed. If y > 1000, we check whether φ_n(n) halts in y steps.
- E does not belong to \mathcal{R} . By contradiction, assume that V_E is a verifier for E. Then, we can compute the function

$$g(n) = \begin{cases} 1 & \text{if } V_E(\mathsf{pair}(y, n)) \text{ for some } 0 \le y \le 1000 \\ 0 & otherwise \end{cases}$$

We can see that g is the characteristic function of K. Indeed, if $n \notin K$, then clearly all the 1000 checks performed by g fail, and g(n) = 0. Otherwise, if $n \in K$, we consider two sub-cases.

- If $\phi_n(n)$ halts in k steps, with $k \leq 1000$, then the verifier V_E must answer 1 on pair(min(1000, k), n). Since $k \leq 1000$, that actually is pair(k, n). Again, since $k \leq 1000$, g checks for this case (that is we check the case y = k), so g(n) = 1.
- If $\phi_n(n)$ halts in k steps, with k > 1000, then the verifier V_E must answer 1 on pair(min(1000, k), n). Since k > 1000, that actually is pair(1000, n). Our g checks for this case, since y can be 1000, so g(n) = 1.

E however belongs to \mathcal{RE} , since it is the range of the following partial recursive function:

$$h(x) = \begin{cases} \mathsf{pair}(\min(1000,\mathsf{proj2}(x)),\mathsf{proj1}(x)) \\ & \text{if } \phi_{\mathsf{proj1}(x)}(\mathsf{proj1}(x)) \text{ halts in } \mathsf{proj2}(x) \text{ steps} \\ & \text{undefined} & \text{otherwise} \end{cases}$$

Exercise 7. Prove or refute the following statements:

- $f \notin \mathcal{R} \implies \operatorname{ran}(f) \notin \mathcal{RE}$
- $A \notin \mathcal{RE} \implies A \leq_m A \setminus \{3\}$

Answer.

- $f \notin \mathcal{R} \implies \operatorname{ran}(f) \notin \mathcal{RE}$ is false. Take $f = \chi_{\mathsf{K}}$, the characteristic function of the set K . We know that $f \notin \mathcal{R}$, but $\operatorname{ran}(f)$ is $\{0,1\}$ which is recursive.
- $A \notin \mathcal{RE} \implies A \leq_m A \setminus \{3\}$ is true. If $3 \notin A$, then the identity function is a m-reduction. Otherwise, assume $3 \in A$. We have $A \neq \{3\}$, otherwise A would be \mathcal{RE} . We can then pick an element $a \in A, a \neq 3$. We build the reduction function as follows:

$$f(x) = \begin{cases} x & \text{if } x \neq 3\\ a & \text{otherwise} \end{cases}$$

Obviously, $f \in \mathcal{R}$. If $x \in A$, with $x \neq 3$, then $f(x) = x \in A \setminus \{3\}$. If $x \in A$, with x = 3, then $f(x) = a \in A \setminus \{3\}$. If $x \notin A$, then $f(x) = x \notin A \setminus \{3\}$.

Exercise 8. Let \mathcal{R}^t be the set of total recursive functions. Prove or refute the following.

$$\forall f \in \mathcal{R}^t. \exists n \in \mathbb{N}. \forall m \in \mathbb{N}, x \in \mathbb{N}. \quad \phi_{f(n,m)}(x) = \phi_n(m,x)$$

Answer. The statement is true. Given a total recursive f, we build n as follows. First, consider the following g, written in the usual notation:

$$g(y) = \#(\lambda m \, x. \, \phi_{f(y,m)}(x))$$

The function g is a recursive function, since we can define it using the universal program, general composition, and the usual **App**, **Num** functions. function g is also total, by construction. From the second recursion theorem, for some n we have

$$\phi_{g(n)}(m,x) = \phi_n(m,x)$$

and, by definition of g, the left hand side is equal to $\phi_{f(n,m)}(x)$.