Computability Final Test — 2009-02-06

Part 1

Exercise 1. Write a A-term defining the following function.

an={ 37 22

3 otherwise
Answer. \zy.Ltyxz(Subzy)™3™
Exercise 2. Construct A-terms My, My such that:

My ="Mjy"
er)\CCl'.N—l =TT
Ml,_xi—l — H_Z—I'I
Mi"NoN1'= M;" Ny

for all A-terms N, Ng, N1 and natural i.

Answer. M is from the second recursion theorem applied on I.
My=M"M" M = w.I(App w(Numw))
M requires recursion:

M; = ©(\gn.CasenlIA)
A = \y.Casey BProjl
B = \z.¢g(Projlz)

(2010 note: now this can be solved using Sd in a more direct fashion.)

Exercise 3. State whether these sets are A\-definable. Justify your answers.

A= {#M|M =5, ©(KM)}

B ={#M|Vne N.M™n+5" =g, T}

C = {#A\zi. M)|M =g, "i "}

D = {#M|In e N.Add"M1™nT =g, M}
E = {#M|MM =g, MMM}

Answer (sketch).



e Since O(KM) = KM(®O(KM)) = M, A= {#M|M =g, © KM)} =
A which is A-defined by KT.

e B is not A-definable, since Rice’s theorem applies. #(KT) belongs to
B, while #€) does not. B is trivially closed under 7.

e (' is not A-definable. By contradiction, let Vo be a verifier. Then,
we can build a verifier Vv for C' = {#M|M =g, "0} which is not
A-definable, as can be seen through Rice’s theorem. Here is how to
construct Ver:

Vor = An. Vo(InR (InR (Pair "0 n)))

(This can also be justified through the <,, relation.)

(2010 note: now we would simply use Lam above.)

e D is A-definable, since

D = {m[3n € N.Add ™m0 =5, "Tm T}
={m|In e N.Tm +n™" =g, TH#" M}
={m|3n e NNm+n=#"m™m}

= {m|m < num(m)}

and the last condition is trivial to check.

e [/ is not A-definable. By Rice: FE is clearly closed under fn. #I
trivially belongs to E. To check that #K does not belong to E, we
proceed by contradiction: if KK = KKK, then KK = K, hence
(Aryz.y) =gy (Ayz.y), which is impossible since both are normal forms.

Exercise 4. State whether, for all G € A°, there exists some M € A° such
that M = GMG™M G M™.

Answer (sketch). Yes. First rewrite the equation as M = FM"™M™ for
a suitable F. Then apply ® to remove the recursion, transforming the
equation in M = F'"M™. Finally, apply the second recursion theorem.

Part 2

Exercise 5. State whether the following functions belong to R. Justify your



answers.

®n(3) if ¢n(3) is even
f(n) =< én(3)+11 if p(3) is odd

8 if &n(3) is undefined

®n(3) if on(3) is even
gn) =< on(3) +11 if ¢pn(3) is odd

18 if ¢n(3) is undefined

h(n) = undefined if ¢n(3 +n) is defined
1 3+n otherwise

Answer (sketch).
o f ¢ R. Otherwise, by checking whether f(n) =8, we could decide the

set
{n|¢n(3) = 8V ¢,,(3) = undefined }

which is not recursive, as can be seen through Rice.

e g ¢ R. Otherwise, by checking whether f(n) = 18, we could decide
the set

{n|én(3) = 18 V ¢,,(3) = undefined V ¢, (3) =7 }
which is not recursive, as can be seen through Rice.

e h & R. Otherwise, consider the following total recursive function:
a(n) = #(Az. pp(n))

We have that b(n) = h(a(n)) is recursive, and defined whenever ¢, (a(n)+
3) is not defined, i.e. whenever (Az. ¢,(n))"a(n) + 3™ does not eval-
uate to a numeral, i.e. when ¢,(n) is not defined. So, dom(b) = K,
hence K € RE. Contradiction.

Exercise 6. State whether the following sets belong to either R, RE \ R,
or they do not belong to RE. Justify your answers.

A= {n|p, Cid} whereid € (N — N) is the identity function
B = {n|Vz. ¢, (2 - x) is defined}

C = {n|Vx. ¢, (2-x + 1) is not defined}

D = {pair(max(1000, k),n)|¢pn(n) halts in k steps}

E = {pair(min(1000, k), n)|dy (n) halts in k steps}

Answer.

e A ¢ RE, by Rice-Shapiro. Indeed, otherwise, we let F = {f € R|f C
id}. Clearly, A = {n|¢,, € F}. We have that the always undefined
function fp belongs to F. By Rice-Shapiro (direction: <), since
dom(fy) = 0 is finite, any computable super-function of fj belongs
to F. So, g(n) =5 belongs to F. Contradiction, since g C id is false.



A ¢ RE, by Rice-Shapiro. Indeed, otherwise, we let F = {f €
R|Vzx. f(2-x) is defined}. Clearly, B = {n|¢,, € F}. We have that the
always zero function f(n) = 0 belongs to F. By Rice-Shapiro (direc-
tion: =), there is some finite g € F such that g C f. However, no
finite g can belong to F, since g must be defined for all even inputs.
Contradiction.

C ¢ RE, by Rice-Shapiro. Indeed, otherwise, we let F = {f €
R|Vx. f(2 - + 1) is not defined}. Clearly, C = {n|¢, € F}. We
have that the always undefined function fj belongs to F. By Rice-
Shapiro (direction: <), since dom(fp) = 0 is finite, any computable
super-function of fy belongs to F. So, g(n) = 5 belongs to F. Con-
tradiction, since g(1) is defined (as 5).

D belongs to R. To check whether a given x belongs to D, first we
compute y = projl(z) and n = proj2(x). If y < 1000, we return false.
If y = 1000 then we need to check whether ¢,(n) halts in 1000 steps
or fewer (note that k could be less than y in this case). This requires
running the program for 1000 steps at most, so it can be computed.
If y > 1000, we check whether ¢, (n) halts in y steps.

FE does not belong to R. By contradiction, assume that Vg is a verifier
for E. Then, we can compute the function

(n) = 1 if Vg(pair(y,n)) for some 0 <y < 1000
I = 0 otherwise

We can see that g is the characteristic function of K. Indeed, if n ¢ K,
then clearly all the 1000 checks performed by ¢ fail, and g(n) = 0.
Otherwise, if n € K, we consider two sub-cases.

— If ¢,,(n) halts in & steps, with & < 1000, then the verifier Vg must
answer 1 on pair(min(1000, k), n). Since k& < 1000, that actually
is pair(k,n). Again, since k < 1000, g checks for this case (that
is we check the case y = k), so g(n) = 1.

— If ¢, (n) halts in k steps, with k£ > 1000, then the verifier Vg must
answer 1 on pair(min(1000, k), n). Since k& > 1000, that actually
is pair(1000,7n). Our g checks for this case, since y can be 1000,
so g(n) = 1.

FE however belongs to RE, since it is the range of the following partial
recursive function:

pair(min (1000, proj2(z)), projl(z))
h(z) = if Pproji(z)(Proj1(x)) halts in proj2(x) steps
undefined otherwise



Exercise 7. Prove or refute the following statements:
o f¢R = ran(f) € RE
e AdRE = A<, A\ {3}

Answer.

o f ¢ R — ran(f) ¢ RE is false. Take f = xk, the characteristic
function of the set K. We know that f ¢ R, but ran(f) is {0, 1} which

1s recursive.

e AdRE = A<, A\{3}istrue. If 3 & A, then the identity function
is a m-reduction. Otherwise, assume 3 € A. We have A # {3},
otherwise A would be RE. We can then pick an element a € A, a # 3.
We build the reduction function as follows:

x ifx#3

a otherwise

)= {

Obviously, f € R. If x € A, with « # 3, then f(z) =z € A\ {3}.
If v € A, with x = 3, then f(z) = a € A\ {3}. If z € A, then
fl)=a & A\ {3}.
Exercise 8. Let R! be the set of total recursive functions. Prove or refute
the following.
VieR . IneNYmeNzeN.  ¢ppm () = dn(m,z)

Answer. The statement is true. Given a total recursive f, we build n as
follows. First, consider the following g, written in the usual notation:

g(y) = #()‘mx (bf(y,m) (x))

The function g is a recursive function, since we can define it using the uni-
versal program, general composition, and the usual App, Num functions.
function g is also total, by construction. From the second recursion theorem,
for some n we have

¢g(n) (m7 .%') = ¢n(m7 1‘)
and, by definition of g, the left hand side is equal to ¢ f(n m) (7).



