
Computability Final Test — 2009-02-06

Part 1

Exercise 1. Write a λ-term defining the following function.

f(x, y) =

{

x− y if x > y

3 otherwise

Answer. λxy.Lt y x(Sub x y)pp3qq

Exercise 2. Construct λ-terms M0,M1 such that:

M0 = pM0q

M1pλxi. Nq = ppiqq

M1pxiq = ppiqq

M1pN0N1q = M1pN0q

for all λ-terms N,N0, N1 and natural i.

Answer. M0 is from the second recursion theorem applied on I.

M0 = MpMq M = λw. I(Appw(Numw))

M1 requires recursion:

M1 = Θ(λgn.Casen IA)

A = λy.Case y BProj1

B = λz. g(Proj1z)

(2010 note: now this can be solved using Sd in a more direct fashion.)

Exercise 3. State whether these sets are λ-definable. Justify your answers.

A = {#M |M =βη Θ(KM)}
B = {#M |∀n ∈ N.Mppn+ 5qq =βη T}
C = {#(λxi.M)|M =βη ppiqq}
D = {#M |∃n ∈ N.Add pMq ppnqq =βη ppMqq}
E = {#M |MM =βη MMM}

Answer (sketch).



• Since Θ(KM) = KM(Θ(KM)) = M , A = {#M |M =βη Θ(KM)} =
Λ which is λ-defined by KT.

• B is not λ-definable, since Rice’s theorem applies. #(KT) belongs to
B, while #Ω does not. B is trivially closed under βη.

• C is not λ-definable. By contradiction, let VC be a verifier. Then,
we can build a verifier VC′ for C ′ = {#M |M =βη pp0qq} which is not
λ-definable, as can be seen through Rice’s theorem. Here is how to
construct VC′ :

VC′ = λn. VC(InR (InR (Pair pp0qqn)))

(This can also be justified through the ≤m relation.)

(2010 note: now we would simply use Lam above.)

• D is λ-definable, since

D = {m|∃n ∈ N.Add ppmqq ppnqq =βη pppmqqq}

= {m|∃n ∈ N. ppm+ nqq =βη pp#ppmqqqq}

= {m|∃n ∈ N.m+ n = #ppmqq}

= {m|m ≤ num(m)}

and the last condition is trivial to check.

• E is not λ-definable. By Rice: E is clearly closed under βη. #I
trivially belongs to E. To check that #K does not belong to E, we
proceed by contradiction: if KK = KKK, then KK = K, hence
(λxyz.y) =βη (λyz.y), which is impossible since both are normal forms.

Exercise 4. State whether, for all G ∈ Λ0, there exists some M ∈ Λ0 such

that M = GMG pM GMq.

Answer (sketch). Yes. First rewrite the equation as M = FMpMq for
a suitable F . Then apply Θ to remove the recursion, transforming the
equation in M = F ′

pMq. Finally, apply the second recursion theorem.

Part 2

Exercise 5. State whether the following functions belong to R. Justify your
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answers.

f(n) =







φn(3) if φn(3) is even

φn(3) + 11 if φn(3) is odd

8 if φn(3) is undefined

g(n) =







φn(3) if φn(3) is even

φn(3) + 11 if φn(3) is odd

18 if φn(3) is undefined

h(n) =

{

undefined if φn(3 + n) is defined

3 + n otherwise

Answer (sketch).

• f 6∈ R. Otherwise, by checking whether f(n) = 8, we could decide the
set

{n|φn(3) = 8 ∨ φn(3) = undefined }

which is not recursive, as can be seen through Rice.

• g 6∈ R. Otherwise, by checking whether f(n) = 18, we could decide
the set

{n|φn(3) = 18 ∨ φn(3) = undefined ∨ φn(3) = 7 }

which is not recursive, as can be seen through Rice.

• h 6∈ R. Otherwise, consider the following total recursive function:

a(n) = #(λx. φn(n))

We have that b(n) = h(a(n)) is recursive, and defined whenever φa(n)(a(n)+
3) is not defined, i.e. whenever (λx. φn(n))ppa(n) + 3qq does not eval-
uate to a numeral, i.e. when φn(n) is not defined. So, dom(b) = K̄,
hence K̄ ∈ RE . Contradiction.

Exercise 6. State whether the following sets belong to either R, RE \ R,

or they do not belong to RE . Justify your answers.

A = {n|φn ⊆ id} where id ∈ (N → N) is the identity function

B = {n|∀x. φn(2 · x) is defined}
C = {n|∀x. φn(2 · x+ 1) is not defined}
D = {pair(max(1000, k), n)|φn(n) halts in k steps}
E = {pair(min(1000, k), n)|φn(n) halts in k steps}

Answer.

• A 6∈ RE , by Rice-Shapiro. Indeed, otherwise, we let F = {f ∈ R|f ⊆
id}. Clearly, A = {n|φn ∈ F}. We have that the always undefined
function f∅ belongs to F . By Rice-Shapiro (direction: ⇐), since
dom(f∅) = ∅ is finite, any computable super-function of f∅ belongs
to F . So, g(n) = 5 belongs to F . Contradiction, since g ⊆ id is false.
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• A 6∈ RE , by Rice-Shapiro. Indeed, otherwise, we let F = {f ∈
R|∀x. f(2 ·x) is defined}. Clearly, B = {n|φn ∈ F}. We have that the
always zero function f(n) = 0 belongs to F . By Rice-Shapiro (direc-
tion: ⇒), there is some finite g ∈ F such that g ⊆ f . However, no
finite g can belong to F , since g must be defined for all even inputs.
Contradiction.

• C 6∈ RE , by Rice-Shapiro. Indeed, otherwise, we let F = {f ∈
R|∀x. f(2 · x + 1) is not defined}. Clearly, C = {n|φn ∈ F}. We
have that the always undefined function f∅ belongs to F . By Rice-
Shapiro (direction: ⇐), since dom(f∅) = ∅ is finite, any computable
super-function of f∅ belongs to F . So, g(n) = 5 belongs to F . Con-
tradiction, since g(1) is defined (as 5).

• D belongs to R. To check whether a given x belongs to D, first we
compute y = proj1(x) and n = proj2(x). If y < 1000, we return false.
If y = 1000 then we need to check whether φn(n) halts in 1000 steps
or fewer (note that k could be less than y in this case). This requires
running the program for 1000 steps at most, so it can be computed.
If y > 1000, we check whether φn(n) halts in y steps.

• E does not belong to R. By contradiction, assume that VE is a verifier
for E. Then, we can compute the function

g(n) =

{

1 if VE(pair(y, n)) for some 0 ≤ y ≤ 1000
0 otherwise

We can see that g is the characteristic function of K. Indeed, if n 6∈ K,
then clearly all the 1000 checks performed by g fail, and g(n) = 0.
Otherwise, if n ∈ K, we consider two sub-cases.

– If φn(n) halts in k steps, with k ≤ 1000, then the verifier VE must
answer 1 on pair(min(1000, k), n). Since k ≤ 1000, that actually
is pair(k, n). Again, since k ≤ 1000, g checks for this case (that
is we check the case y = k), so g(n) = 1.

– If φn(n) halts in k steps, with k > 1000, then the verifier VE must
answer 1 on pair(min(1000, k), n). Since k > 1000, that actually
is pair(1000, n). Our g checks for this case, since y can be 1000,
so g(n) = 1.

E however belongs to RE , since it is the range of the following partial
recursive function:

h(x) =







pair(min(1000, proj2(x)), proj1(x))
if φproj1(x)(proj1(x)) halts in proj2(x) steps

undefined otherwise
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Exercise 7. Prove or refute the following statements:

• f 6∈ R =⇒ ran(f) 6∈ RE

• A 6∈ RE =⇒ A ≤m A \ {3}

Answer.

• f 6∈ R =⇒ ran(f) 6∈ RE is false. Take f = χK, the characteristic
function of the set K. We know that f 6∈ R, but ran(f) is {0, 1} which
is recursive.

• A 6∈ RE =⇒ A ≤m A\{3} is true. If 3 6∈ A, then the identity function
is a m-reduction. Otherwise, assume 3 ∈ A. We have A 6= {3},
otherwise A would be RE . We can then pick an element a ∈ A, a 6= 3.
We build the reduction function as follows:

f(x) =

{

x if x 6= 3
a otherwise

Obviously, f ∈ R. If x ∈ A, with x 6= 3, then f(x) = x ∈ A \ {3}.
If x ∈ A, with x = 3, then f(x) = a ∈ A \ {3}. If x 6∈ A, then
f(x) = x 6∈ A \ {3}.

Exercise 8. Let Rt be the set of total recursive functions. Prove or refute

the following.

∀f ∈ Rt.∃n ∈ N.∀m ∈ N, x ∈ N. φf(n,m)(x) = φn(m,x)

Answer. The statement is true. Given a total recursive f , we build n as
follows. First, consider the following g, written in the usual notation:

g(y) = #(λmx. φf(y,m)(x))

The function g is a recursive function, since we can define it using the uni-
versal program, general composition, and the usual App,Num functions.
function g is also total, by construction. From the second recursion theorem,
for some n we have

φg(n)(m,x) = φn(m,x)

and, by definition of g, the left hand side is equal to φf(n,m)(x).
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