Computability Final Test — 2009-01-20

Reminder: write your name, surname, and student number. Letters x,m,n
range over N; A, B, C, D range over subsets of N; M, N range over A.

Part 1
Exercise 1. Show that f(z,y) = (z +y)¥TY is A\-definable.

Answer.
F = \zy. Exp(Addzy)(Succy)

Exp = \zy.y(Mulz)™ 17"

Exercise 2. Compute #(Axgza.22).

Answer.
inR(inR(pair(6, inR(inR(pair(2,inL(2))))))) = ...

O

Exercise 3. Construct A\-terms Lambda, Apply, Var, Parse such that:

Lambda™ ™M™ ="\x,. M
Apply "M N7 ="MN"
Var™n™="Tg,”

Parse "z, 'VAL=V"nT
Parse"MN'VAL=A"M"TN"
Parse™ \x,, MV AL =L"n"M"

for all A-terms M, N,V, A, L and natural n.

Answer.

Lambda = Anm. InR(InR(Pairnm))

Apply = App

Var = InL

Parse = \zval. Casez v (A\y. A)

A = Casey(Az.a(Projlz)(Proj2z))(Az.l(Projlz)(Proj2z))

(2010 update: these are now included in the notes as Var, App, Lam, Sd.)
O



Exercise 4. State whether these sets are A\-definable. Justify your answers.

A= {#M | M =3, ConsTF A KMIF =3, T}
B={#M | 3n."M" =g, "37 T}

C ={#M | 3n. M™3" 7 =5, T}

D =A{#(MN) | MM =3, N}

Answer. (sketch) Set A is empty, since KMIF = MF = ConsTFF =
F, and that is a distinct normal form from T. So, A is A-definable.

For set B, "M =g, "3" " holds iff #M = 3", so the set B is actually
equal to {3"|n € N}. That is clearly A-definable.

For set C, Rice’s theorem applies, so it is not A-definable.

For set D, assume by contradiction that is A-definable. If so, Vpr =
An. Vp(App™ITn) is a verifier for D' = {#N|I =g, N}. Indeed, if #N € D',
then N =1, and Vp:" N7 = Vp"IN' = T since II = N. Otherwise, if
#N & D' then N #T1and Vp," N7 = VpTIN™ = F since Il # N. We reach

a contradiction since D’ is not A-definable, as can be shown by Rice. U

Exercise 5. Show that, for all F,G € A, there exist X,Y € A such that:
X=FY? Y=G'X"
You might want to consider Z = Cons X Y.
Answer. Consider the following equation:
Z =Cons(F"Snd Z™)(G"Fst Z7)
That can be written as:
Z = (Az.Cons(F(App™Sndz))(G(App Fstz))) 2"

By the second recursion theorem, such a Z exists. Using that, define X to
be Fst Z and Y to be Snd Z. Then, a simple check shows that X = FTY!
andY =G X O

Part 2

Exercise 6. State whether the following functions belong to R. Justify your
answer.

6 otherwise
n2+5-(54+2-n) if pn(n) is defined
g(n):{ ( ) if duln) is def

f(n) = { 2-¢n(n) + 1 if ¢n(n) is defined

n-(n+10)+25  otherwise

| #n(5) +51 if ¢n(5) is defined
hln) = { 700 otherwise



Answer.

For f, we have f(n) = 6 iff n € K, because f(n) is odd otherwise. So, if
we assume f € R we reach a contradiction, since we can use that to build a
verifier for K.

For g, we have that g(n) = (n + 5)? is all cases, and that is surely
computable.

For h, we have that h(n) = 700 iff ¢,(5) is not defined OR ¢, (5) is
defined to be 649. Therefore, h enables us to decide the set A = {n|¢p,(5) =
undefined or ¢, (5) = 649}. This is a contradiction, since A is not recursive,
as can be shown by Rice (simple check). O

Exercise 7. State whether the following sets belong to either R, RE \ R,
or they do not belong to RE. Justify your answers.

A ={n | dom(¢,) Nran(¢,) # 0}

B ={n | dom(¢n) \ ran(¢n) # 0}

C={n| ¢ total N Vz.dn(z) - On(dn(z) +1)}
D = {pair(n,m) | n € KAm € K}

Answer.
For A, we have

A = {n|3zyij. ¢, (x) halts in i steps A ¢, (y) halts in j steps, with result x}

The part under the Jzyij is a decidable predicate, and thus A € RE. Finally,
Rice shows A € R: the always undefined function does not belong to A, the
identity does, and A is clearly semantically closed.

For B, Rice-Shapiro shows that B ¢ RE. If it were, consider g such
that ¢g(0) = 1 and is undefined otherwise. Then the indexes of g belong to
B. By Rice-Shapiro (<), all the indexes of every computable extension of g
are in B. We reach a contradiction taking the extension f(0) =1, f(1) =0
(undefined otherwise).

For C, Rice-Shapiro shows that C ¢ RE. If it were, consider f such that
f(x) =5 for all 2’s. Then the indexes of f belong to C. By Rice-Shapiro
(=), there is some finite restriction g having its indexes in the set. Since g
can not be total, we have a contradiction.

For D, we note that #I € K. By contradiction, assume D € RE. We
can then build a semi-verifier for K using S = An. Sp(Pair™I'n). Indeed,
Sp is halting iff #I belongs to K (which is true) and n belongs to K, so S
indeed works. This is a contradiction since K ¢ RE. O

Exercise 8. Prove or refute the following statements:
e A,BeRE = {pair(n,m) | n€ AAm e B} € RE

e A, B¢ RE = {pair(n,m) | n€ AAmée B} ¢ RE



Answer. (sketch) The first implication is true: to check whether z be-
longs to the set, take projl(x) and proj2(x) and apply them to S4 and Sp,
respectively. This algorithm halts iff both semi-verifiers halt. A simple check
shows that this is indeed the case.

The second implication is true: first note that A is not empty (otherwise
would be in RE) and pick some ¢ € A. Then we can repeat the argument
for set D above, to conclude that {pair(n,m) |n€ AAme B} ¢ RE. O

Exercise 9. State whether there exists a total f € R such that, for all n,

Justify your answer.

Answer. Define f as follows, using the padding function:

Then, clearly

On = ¢g(n,0) - ¢pad(g(n,0)) - ¢g(n,1) == ¢g(n,2"+1) - ¢f(n)
and
n=g(n,0) <pad(g(n,0)) =g(n,1) <... <g(n,2" +1)
The last line implies f(n) > 2" 4+ 1+ n. O

Exercise 10. Prove or refute the following statement:
AeRE = FfeR.(A=ran(f) N [ injective)

Answer. Let S4 be such that S4™n™ = I when n € A, and unsolvable
otherwise. Then, f can be A-defined as F' = An. Synn. Indeed, it is easy to
check that f = id|a, therefore f is injective and ran(f) = A. O



