
Computability Final Test — 2009-01-20

Reminder: write your name, surname, and student number. Letters x,m, n

range over N; A,B,C,D range over subsets of N; M,N range over Λ.

Part 1

Exercise 1. Show that f(x, y) = (x+ y)(y+1) is λ-definable.

Answer.
F = λxy.Exp(Addxy)(Succy)
Exp = λxy. y(Mul x)pp1qq

Exercise 2. Compute #(λx6x2. x2).

Answer.
inR(inR(pair(6, inR(inR(pair(2, inL(2))))))) = . . .

Exercise 3. Construct λ-terms Lambda,Apply,Var,Parse such that:

Lambda ppnqqpMq = pλxn.Mq

Apply pMqpNq = pMNq

Var ppnqq = pxnq

Parse pxnqV AL = V ppnqq

Parse pMNqV AL = ApMqpNq

Parse pλxn.MqV AL = LppnqqpMq

for all λ-terms M,N, V,A,L and natural n.

Answer.

Lambda = λnm. InR(InR(Pairnm))
Apply = App
Var = InL
Parse = λxval.Casex v (λy.A)
A = Case y(λz. a(Proj1z)(Proj2z))(λz. l(Proj1z)(Proj2z))

(2010 update: these are now included in the notes as Var,App,Lam,Sd.)



Exercise 4. State whether these sets are λ-definable. Justify your answers.

A = {#M | M =βη ConsTF ∧ KMIF =βη T}
B = {#M | ∃n. pMq =βη pp3nqq}
C = {#M | ∃n.Mpp3nqq =βη I}
D = {#(MN) | MM =βη N}

Answer. (sketch) Set A is empty, since KMIF = MF = ConsTFF =
F, and that is a distinct normal form from T. So, A is λ-definable.

For set B, pMq =βη pp3nqq holds iff #M = 3n, so the set B is actually
equal to {3n|n ∈ N}. That is clearly λ-definable.

For set C, Rice’s theorem applies, so it is not λ-definable.
For set D, assume by contradiction that is λ-definable. If so, VD′ =

λn. VD(ApppIqn) is a verifier forD′ = {#N |I =βη N}. Indeed, if #N ∈ D′,
then N = I, and VD′pNq = VDpINq = T since II = N . Otherwise, if
#N 6∈ D′, then N 6= I and VD′pNq = VDpINq = F since II 6= N . We reach
a contradiction since D′ is not λ-definable, as can be shown by Rice.

Exercise 5. Show that, for all F,G ∈ Λ, there exist X,Y ∈ Λ such that:

X = F pY q Y = G pXq

You might want to consider Z = ConsX Y .

Answer. Consider the following equation:

Z = Cons(FpSndZq)(G pFstZq)

That can be written as:

Z = (λz.Cons(F (ApppSndqz))(G(ApppFstqz)))pZq

By the second recursion theorem, such a Z exists. Using that, define X to
be FstZ and Y to be SndZ. Then, a simple check shows that X = F pY q

and Y = G pXq.

Part 2

Exercise 6. State whether the following functions belong to R. Justify your

answer.

f(n) =

{

2 · φn(n) + 1 if φn(n) is defined

6 otherwise

g(n) =

{

n2 + 5 · (5 + 2 · n) if φn(n) is defined

n · (n+ 10) + 25 otherwise

h(n) =

{

φn(5) + 51 if φn(5) is defined

700 otherwise
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Answer.
For f , we have f(n) = 6 iff n ∈ K̄, because f(n) is odd otherwise. So, if

we assume f ∈ R we reach a contradiction, since we can use that to build a
verifier for K.

For g, we have that g(n) = (n + 5)2 is all cases, and that is surely
computable.

For h, we have that h(n) = 700 iff φn(5) is not defined OR φn(5) is
defined to be 649. Therefore, h enables us to decide the set A = {n|φn(5) =
undefined or φn(5) = 649}. This is a contradiction, since A is not recursive,
as can be shown by Rice (simple check).

Exercise 7. State whether the following sets belong to either R, RE \ R,

or they do not belong to RE . Justify your answers.

A = {n | dom(φn) ∩ ran(φn) 6= ∅}
B = {n | dom(φn) \ ran(φn) 6= ∅}
C = {n | φn total ∧ ∀x. φn(x) = φn(φn(x) + 1)}
D = {pair(n,m) | n ∈ K ∧m ∈ K̄}

Answer.
For A, we have

A = {n|∃xyij. φn(x) halts in i steps ∧ φn(y) halts in j steps, with result x}

The part under the ∃xyij is a decidable predicate, and thus A ∈ RE . Finally,
Rice shows A 6∈ R: the always undefined function does not belong to A, the
identity does, and A is clearly semantically closed.

For B, Rice-Shapiro shows that B 6∈ RE . If it were, consider g such
that g(0) = 1 and is undefined otherwise. Then the indexes of g belong to
B. By Rice-Shapiro (⇐), all the indexes of every computable extension of g
are in B. We reach a contradiction taking the extension f(0) = 1, f(1) = 0
(undefined otherwise).

For C, Rice-Shapiro shows that C 6∈ RE . If it were, consider f such that
f(x) = 5 for all x’s. Then the indexes of f belong to C. By Rice-Shapiro
(⇒), there is some finite restriction g having its indexes in the set. Since g

can not be total, we have a contradiction.
For D, we note that #I ∈ K. By contradiction, assume D ∈ RE . We

can then build a semi-verifier for K̄ using S = λn. SD(PairpIqn). Indeed,
SD is halting iff #I belongs to K (which is true) and n belongs to K̄, so S

indeed works. This is a contradiction since K̄ 6∈ RE .

Exercise 8. Prove or refute the following statements:

• A,B ∈ RE =⇒ {pair(n,m) | n ∈ A ∧m ∈ B} ∈ RE

• A,B 6∈ RE =⇒ {pair(n,m) | n ∈ A ∧m ∈ B} 6∈ RE
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Answer. (sketch) The first implication is true: to check whether x be-
longs to the set, take proj1(x) and proj2(x) and apply them to SA and SB,
respectively. This algorithm halts iff both semi-verifiers halt. A simple check
shows that this is indeed the case.

The second implication is true: first note that A is not empty (otherwise
would be in RE) and pick some i ∈ A. Then we can repeat the argument
for set D above, to conclude that {pair(n,m) | n ∈ A ∧m ∈ B} 6∈ RE .

Exercise 9. State whether there exists a total f ∈ R such that, for all n,

φf(n) = φn and f(n) > 2n

Justify your answer.

Answer. Define f as follows, using the padding function:

f(n) = g(n, 2n + 1)
g(n, 0) = n

g(n, x+ 1) = pad(g(n, x))

Then, clearly

φn = φg(n,0) = φpad(g(n,0)) = φg(n,1) = . . . = φg(n,2n+1) = φf(n)

and
n = g(n, 0) < pad(g(n, 0)) = g(n, 1) < . . . < g(n, 2n + 1)

The last line implies f(n) ≥ 2n + 1 + n.

Exercise 10. Prove or refute the following statement:

A ∈ RE =⇒ ∃f ∈ R.(A = ran(f) ∧ f injective)

Answer. Let SA be such that SAppnqq = I when n ∈ A, and unsolvable
otherwise. Then, f can be λ-defined as F = λn. SAnn. Indeed, it is easy to
check that f = id|A, therefore f is injective and ran(f) = A.
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