Computability Final Test — 2009-01-20

Reminder: write your name, surname, and student number. Letters x, m, n range over \mathbb{N} ; A, B, C, D range over subsets of \mathbb{N} ; M, N range over Λ .

Part 1

Exercise 1. Show that $f(x,y) = (x+y)^{(y+1)}$ is λ -definable.

Answer.

$$F = \lambda xy. \operatorname{Exp}(\operatorname{Add} xy)(\operatorname{Succ} y)$$
$$\operatorname{Exp} = \lambda xy. y(\operatorname{Mul} x)^{\Box} 1^{\Box}$$

Exercise 2. Compute $\#(\lambda x_6 x_2, x_2)$.

Answer.

 $inR(inR(pair(6, inR(inR(pair(2, inL(2))))))) = \dots$

Exercise 3. Construct λ -terms Lambda, Apply, Var, Parse such that:

Lambda "n" M = λx_n . M Apply M K N = MNVar "n" = x_n Parse x_n V A L = V n" Parse M N V A L = A M'N Parse λx_n . M V A L = L n"

for all λ -terms M, N, V, A, L and natural n.

Answer.

 $\begin{aligned} \mathbf{Lambda} &= \lambda nm. \, \mathbf{InR}(\mathbf{InR}(\mathbf{Pair}nm)) \\ \mathbf{Apply} &= \mathbf{App} \\ \mathbf{Var} &= \mathbf{InL} \\ \mathbf{Parse} &= \lambda xval. \, \mathbf{Case} \, x \, v \, (\lambda y. \, A) \\ A &= \mathbf{Case} \, y (\lambda z. \, a (\mathbf{Proj1} z) (\mathbf{Proj2} z)) (\lambda z. \, l (\mathbf{Proj1} z) (\mathbf{Proj2} z)) \end{aligned}$

(2010 update: these are now included in the notes as Var, App, Lam, Sd.) \Box

Exercise 4. State whether these sets are λ -definable. Justify your answers.

$$A = \{ \#M \mid M =_{\beta\eta} \operatorname{Cons} \mathbf{T} \mathbf{F} \land \mathbf{K} M \mathbf{I} \mathbf{F} =_{\beta\eta} \mathbf{T} \}$$

$$B = \{ \#M \mid \exists n. \ulcorner M \urcorner =_{\beta\eta} \ulcorner 3^n \urcorner \}$$

$$C = \{ \#M \mid \exists n. M \urcorner 3^n \urcorner =_{\beta\eta} \mathbf{I} \}$$

$$D = \{ \#(MN) \mid MM =_{\beta\eta} N \}$$

Answer. (sketch) Set A is empty, since $\mathbf{K}M\mathbf{IF} = M\mathbf{F} = \mathbf{Cons} \mathbf{TFF} = \mathbf{F}$, and that is a distinct normal form from **T**. So, A is λ -definable.

For set B, $\lceil M \rceil =_{\beta\eta} \lceil 3^n \rceil$ holds iff $\#M = 3^n$, so the set B is actually equal to $\{3^n | n \in \mathbb{N}\}$. That is clearly λ -definable.

For set C, Rice's theorem applies, so it is not λ -definable.

For set D, assume by contradiction that is λ -definable. If so, $V_{D'} = \lambda n. V_D(\mathbf{App} \sqcap \mathbf{I} \urcorner n)$ is a verifier for $D' = \{\#N | \mathbf{I} =_{\beta\eta} N\}$. Indeed, if $\#N \in D'$, then $N = \mathbf{I}$, and $V_{D'} \ulcorner N \urcorner = V_D \ulcorner \mathbf{I} N \urcorner = \mathbf{T}$ since $\mathbf{II} = N$. Otherwise, if $\#N \notin D'$, then $N \neq \mathbf{I}$ and $V_{D'} \ulcorner N \urcorner = V_D \ulcorner \mathbf{I} N \urcorner = \mathbf{F}$ since $\mathbf{II} \neq N$. We reach a contradiction since D' is not λ -definable, as can be shown by Rice. \Box

Exercise 5. Show that, for all $F, G \in \Lambda$, there exist $X, Y \in \Lambda$ such that:

$$X = F \ulcorner Y \urcorner \quad Y = G \ulcorner X \urcorner$$

You might want to consider $Z = \mathbf{Cons} X Y$.

Answer. Consider the following equation:

That can be written as:

$$Z = (\lambda z. \operatorname{\mathbf{Cons}}(F(\operatorname{\mathbf{App}}^{\neg} \operatorname{\mathbf{Snd}}^{\neg} z))(G(\operatorname{\mathbf{App}}^{\neg} \operatorname{\mathbf{Fst}}^{\neg} z)))^{\neg} Z^{\neg}$$

By the second recursion theorem, such a Z exists. Using that, define X to be **Fst** Z and Y to be **Snd** Z. Then, a simple check shows that $X = F \ulcorner Y \urcorner$ and $Y = G \ulcorner X \urcorner$.

Part 2

Exercise 6. State whether the following functions belong to \mathcal{R} . Justify your answer.

$$f(n) = \begin{cases} 2 \cdot \phi_n(n) + 1 & \text{if } \phi_n(n) \text{ is defined} \\ 6 & \text{otherwise} \end{cases}$$

$$g(n) = \begin{cases} n^2 + 5 \cdot (5 + 2 \cdot n) & \text{if } \phi_n(n) \text{ is defined} \\ n \cdot (n + 10) + 25 & \text{otherwise} \end{cases}$$

$$h(n) = \begin{cases} \phi_n(5) + 51 & \text{if } \phi_n(5) \text{ is defined} \\ 700 & \text{otherwise} \end{cases}$$

Answer.

For f, we have f(n) = 6 iff $n \in \overline{\mathsf{K}}$, because f(n) is odd otherwise. So, if we assume $f \in \mathcal{R}$ we reach a contradiction, since we can use that to build a verifier for K .

For g, we have that $g(n) = (n + 5)^2$ is all cases, and that is surely computable.

For h, we have that h(n) = 700 iff $\phi_n(5)$ is not defined OR $\phi_n(5)$ is defined to be 649. Therefore, h enables us to decide the set $A = \{n | \phi_n(5) =$ undefined or $\phi_n(5) = 649\}$. This is a contradiction, since A is not recursive, as can be shown by Rice (simple check).

Exercise 7. State whether the following sets belong to either \mathcal{R} , $\mathcal{RE} \setminus \mathcal{R}$, or they do not belong to \mathcal{RE} . Justify your answers.

$$\begin{split} A &= \{n \mid \mathsf{dom}(\phi_n) \cap \mathsf{ran}(\phi_n) \neq \emptyset\}\\ B &= \{n \mid \mathsf{dom}(\phi_n) \setminus \mathsf{ran}(\phi_n) \neq \emptyset\}\\ C &= \{n \mid \phi_n \ total \ \land \ \forall x. \ \phi_n(x) = \phi_n(\phi_n(x) + 1)\}\\ D &= \{\mathsf{pair}(n, m) \mid n \in \mathsf{K} \land m \in \bar{\mathsf{K}}\} \end{split}$$

Answer.

For A, we have

 $A = \{n | \exists xyij. \phi_n(x) \text{ halts in } i \text{ steps} \land \phi_n(y) \text{ halts in } j \text{ steps, with result } x\}$

The part under the $\exists xyij$ is a decidable predicate, and thus $A \in \mathcal{RE}$. Finally, Rice shows $A \notin \mathcal{R}$: the always undefined function does not belong to A, the identity does, and A is clearly semantically closed.

For *B*, Rice-Shapiro shows that $B \notin \mathcal{RE}$. If it were, consider *g* such that g(0) = 1 and is undefined otherwise. Then the indexes of *g* belong to *B*. By Rice-Shapiro (\Leftarrow), all the indexes of every computable extension of *g* are in *B*. We reach a contradiction taking the extension f(0) = 1, f(1) = 0 (undefined otherwise).

For C, Rice-Shapiro shows that $C \notin \mathcal{RE}$. If it were, consider f such that f(x) = 5 for all x's. Then the indexes of f belong to C. By Rice-Shapiro (\Rightarrow) , there is some finite restriction g having its indexes in the set. Since g can not be total, we have a contradiction.

For D, we note that $\#\mathbf{I} \in \mathsf{K}$. By contradiction, assume $D \in \mathcal{RE}$. We can then build a semi-verifier for $\bar{\mathsf{K}}$ using $S = \lambda n. S_D(\mathbf{Pair} \lceil I \rceil n)$. Indeed, S_D is halting iff #I belongs to K (which is true) and n belongs to $\bar{\mathsf{K}}$, so S indeed works. This is a contradiction since $\bar{\mathsf{K}} \notin \mathcal{RE}$.

Exercise 8. Prove or refute the following statements:

- $A, B \in \mathcal{RE} \implies \{ \mathsf{pair}(n, m) \mid n \in A \land m \in B \} \in \mathcal{RE}$
- $A, B \notin \mathcal{RE} \implies \{ \mathsf{pair}(n, m) \mid n \in A \land m \in B \} \notin \mathcal{RE}$

Answer. (sketch) The first implication is true: to check whether x belongs to the set, take $\operatorname{proj1}(x)$ and $\operatorname{proj2}(x)$ and apply them to S_A and S_B , respectively. This algorithm halts iff both semi-verifiers halt. A simple check shows that this is indeed the case.

The second implication is true: first note that A is not empty (otherwise would be in \mathcal{RE}) and pick some $i \in A$. Then we can repeat the argument for set D above, to conclude that $\{\operatorname{pair}(n,m) \mid n \in A \land m \in B\} \notin \mathcal{RE}$.

Exercise 9. State whether there exists a total $f \in \mathcal{R}$ such that, for all n,

$$\phi_{f(n)} = \phi_n \qquad and \qquad f(n) > 2^n$$

Justify your answer.

Answer. Define f as follows, using the padding function:

$$\begin{split} f(n) &= g(n, 2^n + 1) \\ g(n, 0) &= n \\ g(n, x + 1) &= \mathsf{pad}(g(n, x)) \end{split}$$

Then, clearly

$$\phi_n = \phi_{g(n,0)} = \phi_{\mathsf{pad}(g(n,0))} = \phi_{g(n,1)} = \dots = \phi_{g(n,2^n+1)} = \phi_{f(n)}$$

and

$$n = g(n, 0) < \mathsf{pad}(g(n, 0)) = g(n, 1) < \ldots < g(n, 2^n + 1)$$

The last line implies $f(n) \ge 2^n + 1 + n$.

Exercise 10. Prove or refute the following statement:

$$A \in \mathcal{RE} \implies \exists f \in \mathcal{R}. (A = \operatorname{ran}(f) \land f \text{ injective})$$

Answer. Let S_A be such that $S_A \sqcap n \urcorner = \mathbf{I}$ when $n \in A$, and unsolvable otherwise. Then, f can be λ -defined as $F = \lambda n. S_A nn$. Indeed, it is easy to check that $f = id|_A$, therefore f is injective and $\operatorname{ran}(f) = A$.