Computability Endterm Test — 2008-12-17

Exercise 1. State whether $f \in \mathcal{R}$ where

$$f(n) = \begin{cases} \phi_n(4) + 5 & \text{if } \phi_n(4) \text{ is defined} \\ 3 & \text{otherwise} \end{cases}$$

Justify your answer.

Answer. $f \notin \mathcal{R}$. By contradiction, assume $f \in \mathcal{R}$, so f is λ -defined by some F. Then $V_A = \lambda n$. Eq^T3^T(Fn) is a verifier for the set

 $A = \{n \mid \phi_n(4) \text{ is not defined}\}\$

Indeed, when $n \in A$, then f(n) = 3 and $V_A \ \ n \ \ = \mathbf{T}$. Otherwise, when $n \notin A$, then $f(n) \ge 5$, so $f(n) \ne 3$ and $V_A \ \ n \ \ = \mathbf{F}$.

However this is a contradiction, since $A \notin \mathcal{R}$, which we can prove by Rice. Clearly, $\#\Omega \in A$, and $\#\mathbf{I} \notin A$. Also A is semantically closed: if $n \in A$ and $\phi_n = \phi_m$, then $\phi_n(4)$ is not defined, therefore $\phi_m(4)$ is not defined, so $m \in A$.

Exercise 2. State whether these sets are in \mathcal{R} , in $\mathcal{RE} \setminus \mathcal{R}$, or not in \mathcal{RE} . Justify your answers.

- $A = \{n \mid \phi_n(5) \text{ is defined and } \phi_n(6) \text{ is not defined}\}$
- $B = \{n \mid \exists y. \phi_n(3 \cdot y) \text{ is defined}\}$

Answer (A). By Rice-Shapiro we show that $A \notin \mathcal{RE}$. First, note that $A = \{n \mid \phi_n \in \mathcal{F}\}$ where $\mathcal{F} = \{f \in \mathcal{R} \mid f(5) \text{ is defined but } f(6) \text{ is not}\}$. By contradiction, assume $A \in \mathcal{RE}$. Let g be the function such that g(5) = 5 and g(x) is undefined for all $x \neq 5$. Clearly $\mathsf{dom}(g) = \{5\}$ is finite, and $g \subseteq id$, where id is the identity. By Rice-Shapiro, id belongs to \mathcal{F} , which is a contradiction because id(6) is defined. \square **Answer (B).** $B \in \mathcal{RE}$, because

 $B = \{n \mid \exists k. \operatorname{pair}(n, k) \in B'\} \text{ where} \\ B' = \{\operatorname{pair}(n, k) \mid \operatorname{running} \phi_n(3 \cdot \operatorname{proj} 1(k)) \text{ halts in } \operatorname{proj} 2(k) \text{ steps} \}$

and B' is clearly recursive. Also, $B \notin \mathcal{R}$, which we prove by Rice. First, # $\mathbf{I} \in B$ and # $\Omega \notin B$. Then, B is semantically closed: when $n \in B$ and $\phi_n = \phi_m, \phi_n(3 \cdot y)$ is defined for some y, so $\phi_m(3 \cdot y)$ is defined for the same y, implying $m \in B$. **Exercise 3.** Define $C = \{2 \cdot n \mid n \in \mathbb{N}\}$. Prove of refute the following statements.

• $C \in \mathcal{RE}$

•
$$\forall D. \left(D \subseteq C \implies \bar{\mathsf{K}} \leq_m D \cup \{ 2 \cdot n + 1 \mid n \notin \mathsf{K} \} \right)$$

- If $E = \{2 \cdot n \mid n \in \mathsf{K}\} \cup \{2 \cdot n + 1 \mid n \notin \mathsf{K}\}$, then $E \in \mathcal{RE}$.
- If E is defined as above, then $(\mathbb{N} \setminus E) \in \mathcal{RE}$

Answer (C). Clearly, $V_C = \text{Even}$ is a verifier, so $C \in \mathcal{R}$, therefore $C \in \mathcal{RE}$.

Answer (D). The statement is true. Take $h(n) = 2 \cdot n + 1$, which is total recursive. Note that $D \cup \{2 \cdot n + 1 \mid n \notin \mathsf{K}\} = D \cup \{h(n) \mid n \in \bar{\mathsf{K}}\}.$

- if $n \in \overline{\mathsf{K}}$, then $h(n) \in \{h(n) \mid n \in \overline{\mathsf{K}}\}$ and so $h(n) \in D \cup \{h(n) \mid n \in \overline{\mathsf{K}}\}$.
- if $n \notin \overline{\mathsf{K}}$, then $h(n) \notin \{h(n) \mid n \in \overline{\mathsf{K}}\}$ since h is injective. Also, h(n) is odd, so $h(n) \notin D$ because $D \subseteq C$. So, $h(n) \notin D \cup \{h(n) \mid n \in \overline{\mathsf{K}}\}$.

Therefore, $\bar{\mathsf{K}} \leq_m D \cup \{2 \cdot n + 1 \mid n \notin \mathsf{K}\}.$ **Answer (E).** Since $\{2 \cdot n \mid n \in \mathsf{K}\} \subseteq C$, by (D), we get $\bar{\mathsf{K}} \leq_m E$, so $E \notin \mathcal{RE}.$

Answer (\overline{E}) . First, let *Even* be the set of even naturals, and *Odd* the set of the odd naturals. Since $f(i) = 2 \cdot i$ and $g(i) = 2 \cdot i + 1$ are injective, we have

$$\mathbb{N} \setminus \{2 \cdot n \mid n \in \mathsf{K}\} = \{2 \cdot n \mid n \notin \mathsf{K}\} \cup Odd$$
$$\mathbb{N} \setminus \{2 \cdot n + 1 \mid n \notin \mathsf{K}\} = \{2 \cdot n + 1 \mid n \in \mathsf{K}\} \cup Even$$

So,

$$\begin{split} \mathbb{N} \setminus E &= \mathbb{N} \setminus \left(\{ 2 \cdot n \mid n \in \mathsf{K} \} \cup \{ 2 \cdot n + 1 \mid n \notin \mathsf{K} \} \right) \\ &= (\mathbb{N} \setminus \{ 2 \cdot n \mid n \in \mathsf{K} \}) \cap (\mathbb{N} \setminus \{ 2 \cdot n + 1 \mid n \notin \mathsf{K} \}) \\ &= (\{ 2 \cdot n \mid n \notin \mathsf{K} \} \cup Odd) \cap (\{ 2 \cdot n + 1 \mid n \in \mathsf{K} \} \cup Even) \\ &= \{ 2 \cdot n \mid n \notin \mathsf{K} \} \cup \{ 2 \cdot n + 1 \mid n \in \mathsf{K} \} \end{split}$$

It is now easy to show that $\bar{K} \leq_m \bar{E}$ using the m-reduction $h(n) = 2 \cdot n$. Indeed, the proof is analogous to that of (D). This implies $\bar{E} \notin \mathcal{RE}$.

Exercise 4. Prove or refute the following statements.

- $\forall A. \left(A \in \mathcal{RE} \lor \bar{A} \in \mathcal{RE} \right)$
- $\forall A. \left(A \in \mathcal{RE} \implies \bar{A} \notin \mathcal{RE} \right)$

Answer (1). The statement is false: taking A = E from Ex. 3 suffices.

Alternatively, $A = \{n \mid \phi_n \text{ is total}\}$ also provides a counterexample, as can be shown by Rice-Shapiro. \Box **Answer (2).** The statement is false. Take $A = \emptyset$: clearly $\emptyset \in \mathcal{RE}$ and $\mathbb{N} \in \mathcal{RE}$.

Exercise 5. Let f be a total recursive function such that

$$\forall i, j \in \mathbb{N}. \ \left(i < j \implies f(i) < f(j) \right)$$

Is dom $(f) \in \mathcal{R}$? Is ran $(f) \in \mathcal{R}$? Justify your answers.

Answer. Trivially, $dom(f) = \mathbb{N} \in \mathcal{R}$.

The function f is strictly increasing, and this implies that $f(i) \ge i$ for all i. Therefore, $n \in \operatorname{ran}(f)$ if and only if $n \in A = \{f(0), \ldots, f(n)\}$. Indeed,

- if $n \in A$, clearly $n \in ran(f)$
- if $n \in ran(f)$, then n = f(i) for some *i*. By the fact above, $n = f(i) \ge i$, so $n \in A$.

Checking whether $n \in A$ can be effectively performed by computing the sequence $f(0), \ldots, f(n)$, which is possible because f is total, and comparing n with the elements of this sequence. So, $\operatorname{ran}(f) \in \mathcal{R}$.

Note. Exercise 6 is optional. Solve it only if time allows.

Exercise 6. Formally prove that if g(-,-) is a function in \mathcal{PR} , then the function f(x) = g(x, x) is in \mathcal{PR} . Starting from g and the initial functions, only, build f using the constructs in the definition of \mathcal{PR} . Make every use of composition or primitive recursion explicit.

Answer. Consider the projection function $f_i(x_0, \ldots, x_n) = x_i$ when i = n = 1. That is just the identity function id(x) = x. By general composition applied to g(-, -), id(-), and id(-) again, we have that

$$f(x) = g(id(x), id(x)) = g(x, x)$$

belongs to \mathcal{PR} .