
Short Lecture Notes — Computability (2008)

Roberto Zunino

Dipartimento di Ingegneria e Scienza dell’Informazione

Università degli Studi di Trento

zunino@disi.unitn.it

Preliminary Version — 27 May 2009

ii

General Information

These notes are meant to be a short summary of the topics covered in my
Computability course kept in 2008 at Trento. Students are welcome to use
these notes, provided they understand the following.

• These notes are work in progress. I will update and expand them, so
at any time (but the very end of the course) they do not comprise all
the topics which are needed for the exam. As a consequence, please
do not rely on an old version of these notes.

• Even when these notes will be completed, you might need to refer to
the books for some parts. I will try to point to these parts in the notes.

• Reporting errors in these notes will be awarded.

Roberto Zunino

Contents

1 Basics 1

1.1 Introduction . 1

1.2 Logic Notation . 1

1.3 Set Theory . 1

1.3.1 Further Notation . 4

1.4 Induction . 4

1.5 Cardinality . 5

1.5.1 Bijections of N ⊎ N, N× N, N∗, . . . in N 5

1.6 Paradoxes and Related Techniques 7

1.6.1 Russell’s Paradox . 7

1.6.2 Diagonalisation . 8

1.7 Cardinality Argument for Uncomputability 9

2 The λ Calculus 11

2.1 Syntax . 11

2.2 Curry’s Isomorphism . 12

2.3 α-conversion . 12

2.4 β and η Rules . 13

2.5 Useful Combinators . 16

2.5.1 Pairs . 18

2.6 Recursive Functions and Fixed Points 18

2.7 Church’s Numerals . 20

2.8 λ-definable Functions . 21

2.9 Computability Results in the λ calculus 24

2.9.1 Parameter Lemma . 26

2.9.2 Padding Lemma . 27

2.9.3 Universal Program . 28

2.9.4 Kleene’s Fixed Point Theorem 29

2.9.5 Rice’s Theorem . 31

iii

iv CONTENTS

2.10 Other Facts . 32
2.10.1 Step-by-step Interpreter 32

3 Logical Characterization 35

3.1 Primitive Recursive Functions 35
3.1.1 Ackermann’s Function 38

3.2 General Recursive Functions 39
3.3 T,U-standard Form . 44
3.4 The FOR and WHILE Languages 44
3.5 Church’s Thesis . 46

4 Classical Results 49

4.1 Padding Lemma . 50
4.2 Parameter Theorem (a.k.a. s-m-n Theorem) 50
4.3 Universal Program . 51
4.4 Fixed Point Theorem, a.k.a. Kleene’s Second Recursion The-

orem . 51
4.5 Recursively enumerable Sets 51
4.6 Reductions . 55

4.6.1 Turing Reduction . 55
4.6.2 Many-one Reduction 56

4.7 Rice-Shapiro Theorem . 58
4.8 Rice’s Theorem . 59

A Solutions 63

Chapter 1

Basics

1.1 Introduction

1.2 Logic Notation

The following exercises are meant to check your formula-related skills.

Exercise 1. Describe the meaning of the formulas below.

p ∨ ¬p

¬(p ∨ q) ⇐⇒ (¬p ∧ ¬q)

(p =⇒ q) ⇐⇒ (¬p ∨ q)

(p ∧ q =⇒ r) ⇐⇒ (p =⇒ (q =⇒ r))

(p =⇒ q) ⇐⇒ (¬q =⇒ ¬p)

(p =⇒ (∀x. q(x))) ⇐⇒ (∀x. p =⇒ q(x))

((∀x. p(x)) =⇒ q) ⇐⇒ (∃x. p(x) =⇒ q)

∃y.∀x. p(x, y) =⇒ ∀x.∃y. p(x, y)

∀x.∃y. p(x, y) 6=⇒ ∃y.∀x. p(x, y)

∃!x. p(x) ⇐⇒ ∃c. (∀x. p(x) ⇐⇒ x = c)

∃!x. p(x) ⇐⇒ (∃x. p(x)) ∧ (∀x, y. p(x) ∧ p(y) =⇒ x = y)

Exercise 2. Prove (or refute) the formulas above.

1.3 Set Theory

Let A,B, . . . ,X, Y, Z be sets.

1

2 CHAPTER 1. BASICS

∀x ∈ X. p(x) ⇐⇒ ∀x. x ∈ X =⇒ p(x)

∃x ∈ X. p(x) ⇐⇒ ∃x. x ∈ X ∧ p(x)
⋃

X =
⋃

Y ∈X

Y = {y|∃Y ∈ X. y ∈ Y }

⋃

{{1, 2, 3}, {4, 5}, ∅} = {1, 2, 3, 4, 5}

A ∪B =
⋃

{A,B} = {x|x ∈ A ∨ x ∈ B}
⋂

X =
⋂

Y ∈X

Y = {y|∀Y ∈ X. y ∈ Y }

⋂

{{1, 2, 3}, {3, 4, 5}} = {3}

A ∩B =
⋂

{A,B} = {x|x ∈ A ∧ x ∈ B}

A \B = {x|x ∈ A ∧ x 6∈ B}

X ⊆ Y ⇐⇒ ∀x ∈ X.x ∈ Y

P(A) = {B|B ⊆ A}

We shall use ordered pairs 〈x, y〉, as well as ordered tuples.

〈x, y〉 = 〈x′, y′〉 ⇐⇒ (x = x′ ∧ y = y′)

X × Y = {〈x, y〉|x ∈ X ∧ y ∈ Y }

Exercise 3. Define ∀〈x, y〉 ∈ Z. p(x, y) using the notation seen above.

The disjoint union of two sets: we use 0 and 1 as tags to keep the two
sets disjoint.

A ⊎B = {〈0, a〉|a ∈ A} ∪ {〈1, b〉|b ∈ B}

Definition 4. To our purposes, the set of functions from a set A to a set
B, written (A→ B) is defined as

(A→ B) = {f |f ⊆ A×B ∧ ∀a ∈ A.∃!b ∈ B. 〈a, b〉 ∈ f}

The domain of f ∈ (A→ B) is dom(f) = {a|〈a, b〉 ∈ f} = A. The range of
f ∈ (A→ B) is ran(f) = {b|〈a, b〉 ∈ f} ⊆ B.

So, a function is a set of pairs, mapping each element a of its domain A
to exactly one element f(a) of its range (some subset of B).

1.3. SET THEORY 3

Definition 5. A function f is injective when

∀x, y ∈ dom(f). f(x) = f(y) =⇒ x = y

Exercise 6. Prove the following to be equivalent to f being injective.

f−1 ∈ (ran(f)→ dom(f)) where f−1 = {〈b, a〉|〈a, b〉 ∈ f}

We shall often deal with partial functions.

Definition 7. The set of partial functions (A B) is defined as

(A B) = {f |∃A′ ⊆ A. f ∈ (A′ → B)}

The domain of partial function f ∈ (A B) is therefore a subset of
A. This means that the expression f(a) when a ∈ A is actually undefined
whenever a is not in dom(f). In informal terms, a partial function is a
function that might fail to deliver any result. Formally, while a “true”
function returns exactly one result, a partial function returns at most one
result.

Sometimes we shall use the term total function for a function f ∈ (A→
B) to stress the fact that f is completely defined on A, i.e. dom(f) = A.

Exercise 8. Try to classify the following operations as “partial” or “total”.
Be precise on what A and B are in your model.

• addition,subtraction,multiplication,division on natural numbers

• compiling a Java program

• compiling a Java program, then running it and taking its output

• downloading a file from a server

• executing a COMMIT SQL statement

Definition 9. A function f ∈ (A → B) is said to be surjective when
ran(f) = B. An injective and surjective function is said to be a bijec-
tion.

4 CHAPTER 1. BASICS

Note. If f is a partial function, arguing whether f is a total function is
meaningless unless the set A is clear from the context: every partial f is a
total function in (dom(f)→ ran(f)), for instance.

Note 2. Similarly, if f is a function, arguing whether f is surjective is
meaningless unless the set B is clear from the context: every f is surjective
in (dom(f)→ ran(f)).

Note 3. The same holds for bijections.

1.3.1 Further Notation

For this course, we shall use

N = {0, 1, 2, . . .}

Ā = N \ A

χA(x) =

{

1 if x ∈ A
0 otherwise

The function χA is called the characteristic function of the set A.

1.4 Induction

We briefly recall some facts about induction. Consider the usual induction
principle on N:

Theorem 10 (Induction Principle). Given a predicate p on N, we have
∀n ∈ N. p(n) iff both of these hold

p(0)

∀m ∈ N. p(m) =⇒ p(m + 1)

Exercise 11. Prove ∀n ∈ N.0 + 1 + 2 + · · · + n = n·(n+1)
2 .

Note that naturals can be inductively defined as the smallest set con-
taining a constant 0, and closed under a successor function s(−). This is
basically a syntactic definition, defining e.g. 3 as the syntactic expression
s(s(s(0))). Usually, inductive definitions such as this one are written using
inference rules:

0 ∈ N

n ∈ N

s(n) ∈ N

In other terms,

N =
⋂

{X|0 ∈ X ∧ ∀n. n ∈ X =⇒ s(n) ∈ X}

1.5. CARDINALITY 5

Note that the induction principle (Th.10) closely matches this definition.
We can also express the same inductive definition in a more set-theoretic

fashion, using a recursive equation

N ≃ 1 ⊎ N

where 1 here denotes a set with one element (the constant 0 in this case).
The equation above unfolds as N = 1 ⊎ (1 ⊎ (1 ⊎ · · ·)) where each 1 here
denotes a unique constant: indeed, they are forced to be unique by the
disjoint union (⊎). The smallest set that satisfies the recursive equation is
indeed the set of naturals.

If you recall context free grammars, you will find the above recursive
equation similar to

N ← 0 | s(N)

Indeed, grammars are a kind of inductive definitions.

Exercise 12. Starting from the grammar of binary trees (of naturals)

T ← N | b(T, T)

write a recursive set definition for the set of binary trees. You can use
N,×,⊎ for this.

Exercise 13. Express the set T of Ex. 12 using
⋂

:

T =
⋂

{X| · · · }

Exercise 14. Define A∗, the set of finite sequences (i.e. strings) of elements
of the set A.

Exercise 15. (For the logically minded people)
Write an induction principle for T.

1.5 Cardinality

1.5.1 Bijections of N ⊎N, N× N, N∗, . . . in N

For N ⊎ N:

encode⊎(x) =

{

2n if x = 〈0, n〉
2n + 1 if x = 〈1, n〉

Exercise 16. Write the inverse function N→ N ⊎ N.

6 CHAPTER 1. BASICS

Sometimes, we use

inL(n) = encode⊎〈0, n〉 inR(n) = encode⊎〈1, n〉

For N× N:

encode×(〈n,m〉) =
(n + m)(n + m + 1)

2
+ n

Exercise 17. Describe the inverse function N → N × N. This is usually
seen as two projection functions proj1 and proj2.

Theorem 18. There a bijection between N and N∗

Proof. Left as an exercise.

Exercise 19. Describe how to use these encodings to construct the following
bijections:

• the language of arithmetic expressions ↔ N

• the set of all files ↔ N

• the language of logic formulas ↔ N

Exercise 20. Define a bijection between N and Q.

Exercise 21. Prove that

A ∩B = ∅ =⇒ ∃f ∈ (A ∪B ↔ A ⊎B)

Lemma 22.
encode×(〈n,m〉) ≥ n
encode×(〈n,m〉) ≥ m

Proof. The first part is trivial:

encode×(〈n,m〉) =
(n + m)(n + m + 1)

2
+ n ≥ n

For the second part

encode×(〈n,m〉) =
(n + m)(n + m + 1)

2
+ n ≥

(n + m)(n + m + 1)

2
=

=
n2 + m2 + 2nm + n + m

2
≥

m2 + m

2
≥

m + m

2
= m

where the last steps follow from m2 ≥ m, which holds for all m ∈ N.

1.6. PARADOXES AND RELATED TECHNIQUES 7

1.6 Paradoxes and Related Techniques

1.6.1 Russell’s Paradox

Here’s a famous version of this paradox:

There is a (male) barber b in a City who is shaving each (and
only) man in the City who is not shaving himself.

Apparently, one might think that this is a possible scenario. In formulas,
we could write:

∀m ∈ City. b shaves m ⇐⇒ ¬(m shaves m)

But if this is true for all men m, we can take m = b and have

b shaves b ⇐⇒ ¬(b shaves b)

which is clearly false. That is, we are unable to answer “does the barber
shave himself?”.

Russell used a similar argument to find a contradiction to näıve set
theory. Assume there is a set X = {x|p(x)} for each predicate p we can
think of. We clearly must have

∀y.
(

y ∈ X ⇐⇒ p(y)
)

How can we make this resemble the paradox seen before? We want X to
play the rôle of the barber. So, y must play the man m, and shaves relation
must be ∈ (the membership relation). Then p(y) becomes y 6∈ y. So, the
above becomes

∀y.
(

y ∈ {x|x 6∈ x} ⇐⇒ (y 6∈ y)
)

which is indeed a contradiction, since if X = {x|x 6∈ x}, we now have
(choosing y = X, as we did before for m = b)

X ∈ X ⇐⇒ X 6∈ X

Russell used this argument to show that the set X above actually must
regarded as non well-defined, so to avoid the logical fallacy. The same
argument however can be used to prove a number of interesting facts.

8 CHAPTER 1. BASICS

1.6.2 Diagonalisation

Theorem 23 (Cantor). There is no bijection between a set A and its parts
P(A).

Proof. By contradiction, assume f ∈ (A ↔ P(A)). We now proceed as for
Russell’s paradox. Let

X = {x ∈ A|x 6∈ f(x)}

Clearly, X ∈ P(A), so f−1(X) ∈ A. We now have,

f−1(X) ∈ X ⇐⇒ f−1(X) 6∈ f(f−1(X)) ⇐⇒ f−1(X) 6∈ X

which is a contradiction.

This kind of argument is also known as a diagonalisation argument. This
is because the set X is constructed by looking at the diagonal of this matrix:

x y z . . . (all the elements of A)

f(x) yes no no . . .

f(y) no no no . . .
f(z) no yes yes . . .

...
...

...
...

. . .

Given a ∈ A, the matrix above has a “yes” at coordinates f(a), a iff xj

belongs to Xi (and a “no” otherwise). How do we build a set X different
from all the f(a)’s ? We take the diagonal (yes, no, yes, . . .) and complement
it: (no, yes, no, . . .)

x y z . . . (all the elements of A)

X no yes no . . .

So, X is clearly distinct from all the f(a).

Exercise 24. Construct a bijection from R to the interval [0, 1).
(Hint: start from arctan(x))

Theorem 25. There is no bijection between N and R.

Proof. By contradiction, there is a bijection f between N and [0, 1). Every
real x ∈ [0, 1) can be written in a unique way as an infinite sequence of
decimal digits

x = 0. d0d1d2 . . .

1.7. CARDINALITY ARGUMENT FOR UNCOMPUTABILITY 9

with 0 ≤ di ≤ 9, and such that digits 0, . . . , 8 occur infinitely often (no
periodic 9’s). In other words, there is a bijection between [0, 1) and such
infinite sequences.

So, for all n ∈ N , we can write f(n) = 0.dn,0dn,1 . . ., hence we have a
bijection between N and these infinite sequences.

We proceed by Russell’s argument (diagonalisation). We construct a
sequence different from all the ones generated by f(n) for all n ∈ N. We let

di =

{

1 if di,i = 0
0 otherwise

Note that this is indeed a legal sequence (each digit in the 0 . . . 9 range, no
periodic 9’s). Hence, there is no n such that f(n) = 0. d0d1d2 . . ., contra-
dicting f being a bijection.

Another example of the same technique:

Theorem 26. There is no bijection f between N and (N→ N).

Proof. By contradiction, take f . Define g(n) = f(n)(n) + 1. Since f is
a bijection, and g a function in its range, for some i ∈ N we must have
g = f(i). But then f(i)(i) = g(i) = f(i)(i) + 1.

Actually, the above proof proved a slightly more general fact: we can
extend the theorem to a surjective f . Also, we can use partial functions as
ran(f), exploiting (N→ N) ⊆ (N N).

Theorem 27. There is no surjective function between N and (N N).

Proof. Left as an exercise.

1.7 Cardinality Argument for Uncomputability

We can now state a first, strong, computability result.
Namely, we compare the set of functions (N → N) with the set of pro-

grams in an unspecified language. We merely assume the following very
reasonable assumptions:

• each program can be written in a file — i.e. it can be represented by
a (possibly very long, but finite) string

• each program has an associated semantic partial function, mapping
the input (a file) to the output (another file)

10 CHAPTER 1. BASICS

Theorem 28. There is a function (from input to output) that can not be
computed by a program.

Proof. There is a bijection between files and N (Ex. 19). So a program just
corresponds to a natural in N, while the function mapping input to output
can be seen as some partial function in (N N). Since the mapping from
programs to their semantics is in (N → (N N)), by Th .27 it can not be
surjective.

Note that the proof above actually hints to one of these uncomputable
functions. Let us forget files, and just assume that programs get some
natural as input and can output a natural as output. Similarly, we can
identify programs with naturals as well, i.e. we fix some enumeration and
use n to denote the n-th program. So, we can write ϕx(y) for the output of
the x-th program when run using y as input. Then, the proof suggests this
function:

f(i) = ϕi(i) + 1

However, we should be careful here: the function ϕi is a partial function,
and therefore ϕi(i) might be undefined. So, we change the above definition
of f to:

f(i) =

{

ϕi(i) + 1 if ϕi(i) is defined
0 otherwise

And this indeed is not a computable function.

Exercise 29. Prove that f is not computable.

Exercise 30. What happens if we change the 0 in the definition of f to
some other natural? Does the uncomputability argument still hold? What if
we change it to “undefined”, thus defining f to be a partial function?

Chapter 2

The λ Calculus

For the full gory details, see the introduction of [Barendregt].

2.1 Syntax

Definition 31 (λ-terms). Let Var = {x0, x1, . . .} be a denumerable set of
variables. The syntax of the λ-terms is

M := x variable (with x ∈ Var)
| (M M) application
| λx.M abstraction (with x ∈ Var)

The set of all λ-terms is written as Λ.

Intuitively, a λ-term represents a function, e.g. we can write

f = λx. x2 + 5

instead of

∀x. f(x) = x2 + 5

Note. While we shall often use an extended syntax in our examples,
involving arithmetic operators, naturals, and so on, we do this to guide
intuition, only. In the λ calculus there is no other syntax other than that
shown in Def. 31. Later, we shall see how we can express things like 5 and
x2 in the calculus.

Exercise 32. Rewrite the definition of Λ, providing a recursive equation of
the form Λ ≃ · · · . Use only the following constructs: Var,×,⊎.

11

12 CHAPTER 2. THE λ CALCULUS

As a convention, we write chains of applications such as

(((xy)z)w)

in the more natural form
xyzw

Warning. Note that applications such as (x(y(zw))) still need all the paren-
theses, otherwise we have (x(y(zw))) = xyzw = (((xy)z)w). These, in
general, are not equal, as we shall prove later.

2.2 Curry’s Isomorphism

How to express functions with more than one parameter? Instead of taking
two arguments x, y and return the result, we instead take only x, and return
a function. This function will take y, and return the actual result.

λx. (λy. x2 + y)

Note that this way of expressing binary functions also allows partial appli-
cation: we can just pass the first argument x, only, and use the resulting
function as we want. For instance, we could use the resulting function on
several different y’s.

We write λxy. · · · as a shorthand for λx. λy. · · · .

2.3 α-conversion

As in computer programs, the name of variables is immaterial, so

λx. x2 + 5 = λy. y2 + 5

This renaming of variables is known as α-conversion. Sometimes, we use
=α to denote this renaming, e.g.

λx. x2 + 5 =α λy. y2 + 5

Note that, while we can rename variables, we must avoid clashes. For in-
stance,

λx. λy. x + y 6= λx. λx. x + x

In the latter expression, both occurrences of x in x+x are bound by the inner
λx. This follows the same static scoping conventions found in programming
languages: each occurrence of a variable is bound by the nearest definition.

You should probably do the following exercises together. See also [Baren-
dregt 2.1.11].

2.4. β AND η RULES 13

Exercise 33. Define formal rules for variable α-conversion.

The free variables free(M) of a λ-term are those not under a λ binder.

Definition 34. The free variables of a λ-term M are inductively defined as
follows:

free(xi) = {xi}
free(NO) = free(N) ∪ free(O)
free(λxi.N) = free(N) \ {xi}

Exercise 35. Define the result of the substitution M{N/x}, substituting all
the free occurrences of x in M with the term N . (Watch out for variable
clashes!)

Definition 36. The result of applying a substitution M{N/x} is defined as
follows.

xi{N/xi} = N
xi{N/xj} = xi when i 6= j
(MM ′){N/xi} = (M{N/xi})(M

′{N/xi})
(λxi.M){N/xi} = (λxi.M)
(λxj .M){N/xi} = λxk. (M{xk/xj}{N/xi}) when i 6= j and xk 6∈ free(N)

and xk 6∈ free(λxj .M)

In the last line we avoid variable clashes. First, we rename xj to xk, a
“fresh” variable, picked so that it does not occur (free) in N and λxj .M .
Then, we can apply the substitution in the body of the function.

2.4 β and η Rules

Definition 37 (β rule). Here’s the β rule, used to compute the result of
function application.

(λx.M)N = M{N/x}

Example:
(λx.x2 + x + 1)5 = 52 + 5 + 1

The meaning is straightforward: we can apply a function (λx.M) by taking
its body (M) and replacing x with the actual argument (N).

Definition 38 (η rule). Here’s the η rule, used to remove redundant λ’s.

(λx.Mx) = M if x 6∈ free(M)

14 CHAPTER 2. THE λ CALCULUS

When x is not free in M , it is obvious that (λx.Mx) denotes the same
function as M : it just forwards its argument x to M .

Exercise 39. Can you state the η rule in Java (or another procedural lan-
guage), at least in some loose form?

Note that one can apply the β and η rules even to subterms of the λ-term
at hand, e.g.

λx. (λy. y)a = λx. a

Exercise 40. Use the η rule to prove the ext rule.

Mx = Nx ∧ x 6∈ free(MN) =⇒ M = N (ext)

Exercise 41. Show that the η rule is actually equivalent to the ext rule
above.

Usually, one applies these rules by reading them left to right:

(λx.M)N →β M{N/x}
(λx.Mx)→η M if x 6∈ free(M)

In this case, we speak of β and η reduction relations.

Definition 42 (Normal form). Given a reduction relation →R (e.g. with
R = β or R = η), we say that a term M is in R-normal form iff M 6→R.

Intuitively, when we start β-reducing a term M , we form a sequence like

M →β M1 →β M2 →β M3 · · ·

This sequence is called a reduction1. One of the following might happen:

• The reduction stops: that is, we reach some Mk which is a β-normal
form. Intuitively, this is the result of running M . We say that the
reduction above halts.

• The reduction never stops: that is, it is infinite. So, the reduction is
non-halting.

Note that a term might have many reductions, since we allow →β to be
applied in any subterm as well.

1We follow the terminology of [Barendregt] here. Reductions as the above are also
called runs for M .

2.4. β AND η RULES 15

Exercise 43. Construct different reductions for

(λx. x)((λy.y)5)

Exercise 44. Show that Ω = (λx. xx)(λx. xx) has no halting reduction.

Exercise 45. After having done the exercise above, define a λ-term M
having a single non-halting reduction, where the terms Mi are completely
distinct.

Note that a term might have both a halting and a non-halting reduction.

Exercise 46. Prove the above using (λx.5)Ω.

Fortunately, there is a simple strategy that always finds a normal form
when there is a halting reduction.

Definition 47 (Leftmost reduction). A leftmost β-reduction is a reduction
where, at every step, →β is applied as to the left as possible, i.e. to the first
occurrence of an applied λ binder, reading the λ-term left-to-right.

Exercise 48. Devise a procedure to construct a leftmost β-reduction.

We shall use the following facts. Alas, we omit these proofs.

Theorem 49 (Normalization). The leftmost strategy is normalizing, i.e. it
finds a β-normal form whenever there is one.

[Barendregt 13.2.2 — no proof]
Another very important result, stating that even if there can be many

β-reductions, the result is unique (if it exists).

Definition 50. A relation → is a Church-Rosser relation iff ∀M,N1, N2

M →∗ N1 ∧M →∗ N2 =⇒ ∃N.N1 →
∗ N ∧N2 →

∗ N

Theorem 51 (Church-Rosser). The relation →β is a Church-Rosser rela-
tion [Barendregt 3.2.8 — no proof].
As a consequence, each λ-term has at most one β-normal form (up-to α-
conversion).

This also provides a nice link between the equational theory and the
βη-reduction relation:

Theorem 52. If M =βη N and N is a βη-normal form, then M →∗
βη N .

[Barendregt 3.2.9 — no proof]

16 CHAPTER 2. THE λ CALCULUS

2.5 Useful Combinators

I = λx. x

K = λxy. x

S = λxyz. xz(yz)

T = λxy. x = K

F = λxy. y

The λ-terms T and F are read “true” and “false”.

Example 53. We have the following:

KISS = ((KI)S)S = IS = S

SKKx = Kx(Kx) = x = Ix

so, by the ext rule

SKK = I

KIxy = Iy = y = Fxy

so, by the ext rule

KIx = Fx

again, by the ext rule

KI = F

Exercise 54. Prove that we do not have T =βη F. See Sol. 195.

Exercise 55. Define

if M then N else O = MNO

and check the usual “if-laws” for M = T and M = F. This justifies the
names for T and F.

Exercise 56. Define the usual logical operators: And, Or, Not. (See
Sol. 196)

2.5. USEFUL COMBINATORS 17

Lemma 57. Application is not associative, that is

¬∀MNO. (MN)O = M(NO)

Proof. By contradiction,

(K(IT))F = IT = T

((KI)T)F = IF = F

General Hint. To prove that some equation do not hold in general
under βη, you can show it implies T = F. To this aim, it is useful to consider
simple combinators such as K, I first. Also, applying everything to a generic
term (to be chosen later) usually helps: for instance, you can proceed like
this in the lemma above. First, guess M = K. So, KNO = K(NO). Now,
the K on the right hand side expects two arguments, and has only one, so
we provide it as a generic term P , which we can choose later. We obtain
KNOP = K(NO)P , implying NP = NO. Now it is easy to guess N = I,
so to obtain P = O. Guessing P,O is then made trivial.

Exercise 58. Show that, in general, these laws do not hold

MN = NM

M(NO) = O(MN)

M(MO) = MO

MO = MOO

MM = M

MN = λx.M(Nx)

Exercise 59. Check whether these terms have a β-normal form

KIK

KKI

K(K(KI))

SII

SII(SII)

KIΩ

(λz. (λx. xxz)(λx. xxz))

18 CHAPTER 2. THE λ CALCULUS

2.5.1 Pairs

Pairs can be encoded as follows:

Cons = λxyc. cxy

Fst = λx. xT

Snd = λx. xF

Exercise 60. Prove the usual pair laws:

Fst(ConsM N) = M Snd(ConsM N) = N

Exercise 61. Define F so that (standalone exercises):

• F (Cons x y) = Consx (Cons y x)

• F (Cons x (Cons y z)) = Cons z (Consx y)

2.6 Recursive Functions and Fixed Points

Can we build recursive functions? For instance, the factorial function:

f = λn.if n = 0 then 1 else n · (f(n− 1)) (2.1)

Is there some λ-term f that satisfies the equation above? Of course, the
equation itself has f on both sides so it does not define a λ-term f (unlike
e.g. f = λx. x2 + 5).

What if we abstract the recursive call?

F = λg. λn. if n = 0 then 1 else n · (g(n − 1)) (2.2)

This is now a valid λ-term, since it is a non-recursive definition. However,
we must now force g to act, very roughly, as f . A first attempt would be to
simply pass a copy of f to f itself, as this:

f = MM where M = λg. λn. if n = 0 then 1 else n · (g(n − 1))

This however has a problem: g will be bound to M , which is only “half”
of f . So, the recursive call g(n − 1) is actually M(n − 1), and that is not
f(n − 1). However, the latter would be MM(n − 1), and we can express

2.6. RECURSIVE FUNCTIONS AND FIXED POINTS 19

this by just writing the recursive call as gg(n− 1). So we can fix2 the above
definition as follows:

f = MM where M = λg. λn. if n = 0 then 1 else n · (gg(n − 1))

Note that this is a proper definition for a λ-term f .

Exercise 62. Use the above definition of f to compute the factorial of 3.

Exercise 63. Write a λ-term for computing
∑n

i=0 n2.

It is important to note that the body of any recursive function f can be
written as in (2.2), that is abstracting all the recursive calls. Writing F for
the (abstracted) body, we can see that the key property we are interested
in is

f = Ff

Indeed, by the β rule, the above is equivalent to the recursive definition, see
e.g. (2.1). So finding such a term f means to find a fixed point for F .

What if we had a λ-term Θ such that ΘF = F (ΘF) for any F? That
would be great, because we can use that to express any recursive function,
just by writing the abstracted body and applying Θ to that. Such a Θ is
called a fixed point combinator.

Exercise 64. Write such a Θ.
(Hint. This seems hard, but we know all the tricks now. Start from the
equation Θ = λF.F (ΘF).)
After you solve this, compare your solution to that in the Appendix, Sol. 194.

Exercise 65. Check whether these terms have a β-normal form

Θ

KIΘ

KΘI

ΘI

ΘK

Θ(KI)

2Oh, the irony. . .

20 CHAPTER 2. THE λ CALCULUS

2.7 Church’s Numerals

The λ calculus does not have any numbers in its syntax. In spite of this, it is
possible to encode naturals into λ-terms, and compute with them. That is,
we shall pick an infinite sequence of (closed) λ-terms, and use them to denote
naturals in the λ calculus. We shall name these λ-terms the numerals.

There are several ways to encode naturals; we shall use a simple way
found by Church. Recall the structure of naturals, seen as terms in first-
order logic:

z, s(z), s(s(z)), s(s(s(z))), . . .

where z is a constant representing zero, and s is the successor function. We
just convert that notation to the λ calculus by abstracting over s and z:

λsz. z, λsz. sz, λsz. s(sz), λsz. s(s(sz)), . . .

We shall write the above sequence as pp0qq,pp1qq,pp2qq, and so on.

Definition 66. The sequence of Church numerals is inductively defined as
follows. Let s and z be variables3.

M0 = z

Mn+1 = s Mn

ppnqq = λsz.Mn

Another way to define the same numerals is through the function com-
position operator:

◦ = λfgx. f(gx)

Then, we can define a “zero” and “successor” λ-terms as follows

0 = λf. I

Succ = λnf. ◦ f(nf)

The sequence of Church’s numerals indeed satisfies the following.

pp0qq = 0

ppn + 1qq = Succppnqq

We can check a numeral against zero using the following combinator:

IsZero = λn. n(KF)T

3Let us pick s = x0 and z = x1.

2.8. λ-DEFINABLE FUNCTIONS 21

Exercise 67. Check that IsZeropp0qq = T and IsZeroppn + 1qq = F.

The predecessor function. Note that we let Pred0 = 0.

Pred = λn.Snd(nM(ConsF0))

M = λp.ConsT(Fst p (Succ(Snd p))0)

Exercise 68. Check that Pred is correct.

Exercise 69. Define the usual arithmetic operators and comparisons. Also
see the solution in the appendix (Sol. 196).

Exercise 70. Assume lists of positive naturals such as [1, 2, 3] are encoded
as Cons pp1qq (Cons pp2qq (Cons pp3qq (Cons 0,Ω))), using 0 to mark the end
of the list. Write the following functions:

• Length returning the length of a list

• Even removing from the input list all odd numbers

• Append appending two lists

• Reverse reversing a list

• Sort sorting the list (use e.g. merge-sort)

See Sol. 197.

Exercise 71. Find an encoding for lists of arbitrary (opaque) data, and
adapt the functions seen above. What about binary trees?

2.8 λ-definable Functions

We now aim to define partial functions f ∈ (N N) through λ-terms. A
first attempt would be:

Definition 72 (näıve λ-definability). Given a partial function f ∈ (N N),
we say that a closed λ-term M defines f iff for all n ∈ N

Mppnqq = ppf(n)qq if n ∈ dom(f)
Mppnqq has no β-normal form otherwise

While we could work with this definition, the following exercise shows a
technical problem.

22 CHAPTER 2. THE λ CALCULUS

Exercise 73. Show that it is possible that a λ-term M has no β-normal
form, while MN has a β-normal form.
(Hint: take M to be one of the combinators we saw before.)

So, if we for instance want to compose two partial functions f and g,
we cannot simple use M = λx. F (Gx) for the composition. This is because,
when e.g. F = Kpp3qq, and G does not terminate (g = ∅), the λ-term M
reduces to λx. pp3qq while f ◦ g = ∅. In other words, M fails to force the
evaluation of Gx. 4

We need some way to force the evaluation of a λ-term G, and still be
able to discard its result if we want to. A reasonably simple way to do this
is through a jamming factor, i.e. a term J such that, whenever G terminates
J behaves as the identity I, and otherwise when G does not terminate J
“jams” the whole computation. By jamming we mean that, even if J is
applied to further λ-terms, it still does not produce a normal form. In fact,
this works around the problem spotted in Ex. 73. Following [Barendregt],
we want a solvable J .

Definition 74 (solvability). A closed λ-term M is solvable if there are some
N1, . . . , Nk, with k ≥ 0, such that MN1 · · ·Nk = I.

[Barendregt 8.3.1]

Exercise 75. Show that if M is unsolvable, then MN is also unsolvable,
for any N .

Exercise 76. Show that Church’s numerals can be uniformly solved by find-
ing M,N such that ∀n ∈ N. ppnqqMN = I.

Theorem 77. Any closed β-normal form is solvable.

Proof. We leave this as an exercise.
Hint: first, show that the normal form has the form

λx1 . . . xn. xiM1 . . . Mk

for some i ∈ {1..n}. (This is called a head normal form)

We can then define λ-definability in a more convenient way:

4Indeed, it is inconvenient to lack a simple way to force the complete evaluation of a
term in the λ calculus. This is the price to pay to obtain a very minimalistic semantics
(the βη rules). There are however many ways to address this issue, as we shall see.

2.8. λ-DEFINABLE FUNCTIONS 23

Definition 78 (λ-definability). Given a partial function f ∈ (N N), we
say that a closed λ-term M defines f iff for all n ∈ N

Mppnqq = ppf(n)qq if n ∈ dom(f)
Mppnqq unsolvable otherwise

A partial function f is λ-definable iff it is defined by some M . This definition
is naturally extended to partial functions Nk

 N. Given A ⊂ N, A is λ-
defined iff χA is such.

In more casual terms, such an M either terminates, returning a numeral,
or “jams” the computation.

Exercise 79. Show that if f, g are partial λ-definable functions, then their
composition f ◦ g is such.
Hint: exploit Ex. 76, 75.

Definition 80. A set A ⊆ N is λ-defined by F iff

n ∈ A =⇒ Fppnqq = T

n 6∈ A =⇒ Fppnqq = F

A set L ⊆ Λ is λ-defined by F iff {#M |M ∈ L} is such.

Exercise 81. Change T with 1 and F with 0 in the definition above, and
prove this alternative notion of λ-definability to be equivalent.

Exercise 82. Show that finite subsets of N are λ-definable.

Lemma 83. λ-definable sets are closed under

• union (∪)

• complement (\)

• intersection (∩)

Proof. Left as an exercise.

Lemma 84. Let f be a total injective λ-definable function. Let A ⊆ N, and
let B = {f(n)|n ∈ A}. If B is λ-definable, then A is such.

Proof. Let f,B be λ-defined by F,MB . Then let MA = λn.MB(Fn). Note
that MAppnqq = MBppf(n)qq. If n ∈ A, then the above evaluates to T. If
n 6∈ A, then f(n) 6∈ B since f is injective, and MBppf(n)qq evaluates to F.

24 CHAPTER 2. THE λ CALCULUS

2.9 Classical Computability Results in the λ cal-

culus

Recall the cardinality argument: Λ is a denumerable set, while N → N is
larger. So, we expect to find some function which is not λ-definable. We
can indeed define it through a diagonalisation process.

First, we need to enumerate the λ-terms. To this aim, recall the recursive
definition Λ ≃ Var⊎ (Λ×Λ⊎Var×Λ). We define a bijection between Λ and
N; we write the natural corresponding to M as #M .

Definition 85. We define the bijection # as follows.

(#−) ∈ (Λ↔ N)

#M =







inL(i) if M = xi

inR(inL(encode×(#N,#O))) if M = NO
inR(inR(encode×(i,#N))) if M = λxi. N

We can then represent the natural #M in the calculus in the usual way.

Definition 86. The function pMq is defined as follows.

p−q ∈ (Λ→ Λ0)

pMq = pp#Mqq

We can now define a non-computable function, following the diagonali-
sation argument. We define f ∈ (N→ N) as follows

f(n) =

{

1 if MpMq has a β-normal form, where n = #M
0 otherwise

Note that this is a total function, by construction. Also note we are applying
a term M to its own numeral index pMq. Suppose that the function above
is λ-defined by F . Then, define

M = λx.Eqpp0qq(Fx)IΩ

We now consider f(#M): by definition of f , this is either 1 or 0. If f(#M)
were equal to 1, then MpMq would have a normal form, but then

MpMq = Eqpp0qq(FpMq)IΩ = Eqpp0qqpp1qqIΩ = FIΩ = Ω

2.9. COMPUTABILITY RESULTS IN THE λ CALCULUS 25

which has not a normal form — a contradiction. We must conclude that
f(#M) is equal to 0, and that MpMq has no normal form, but then

MpMq = Eqpp0qq(FpMq)IΩ = Eqpp0qqpp0qqIΩ = TIΩ = I

has a normal form — another contradiction.
Hence, such a λ-term F can not exist, i.e. the function f can not be

λ-defined.

Lemma 87. The function f defined above is not λ-definable.

Exercise 88. Compare this result with Exercise 29. You should find the
proof to be similar.

Nota Bene. Having M =βη N does not imply that #M = #N . That
is, even if two programs are semantically equivalent, their source code may
be different!

Exercise 89. Find some closed M,N such that M =βη N but #M 6= #N .

Nota Bene. Having M =α N does not imply that #M = #N . That
is, even if two programs only differ because of α-conversion (i.e. choice of
variable names), their index is different!

Exercise 90. Show that #(λx0. x0) 6= #(λx1. x1).

We can now define one of the most famous sets in computability.

Definition 91. K = {#M |MpMq has a β-normal form}

Note that K ⊆ N.

Lemma 92. K is not λ-definable

Proof. By contradiction, if K were λ-definable by e.g. G, then we could
λ-define the function f shown above using this F :

F = λx.Gx pp1qq pp0qq

Indeed, f is χK, the characteristic function of the set K.

It is often useful to define programs that manipulate the source code of
other programs. In the real world, the most common case of these programs
are the optimizers. An optimizer O could take a program code pMq and
output the code of another program pNq which is a more efficient version

26 CHAPTER 2. THE λ CALCULUS

of the first one. This usually involves searching the code of M for some
known-inefficient patterns5 and replace them with efficient equivalent code.
Other typical cases are compilers and interpreters: they obviously need to
examine the structure of the code of a program.

We want to show that these syntactic transformations can be done in the
λ-calculus. To manipulate pMq we basically need to compute the encode

functions and their inverses.

Exercise 93. Show that encode× and encode⊎ can be λ-defined, as well as
their inverses. Construct the following functions:

• Pair,Proj1,Proj2 such that

– Pairppnqqppmqq, Proj1ppnqq and Proj2ppnqq return numerals

– Proj1(Pairppnqqppmqq) = ppnqq

– Proj2(Pairppnqqppmqq) = ppmqq

– Pair(Proj1ppnqq)(Proj2ppnqq) = ppnqq

• InL, InR,Case such that

– InLppnqq and InRppnqq return numerals

– Case(InLppmqq)MN = Mppmqq

– Case(InRppnqq)MN = Nppnqq

– Case ppnqq InL InR = ppnqq

Also see Solution 196 in the appendix.

2.9.1 Parameter Lemma

Now we tackle an useful, yet quite simple, code manipulation:

Lemma 94 (Parameter lemma, s-m-n lemma — simple version). There
exists App ∈ Λ0 such that, ∀M,N

ApppMqpNq = pMNq

Exercise 95. Prove it.

5We mean syntactic patterns, e.g. replacing all the occurrences of IN with N . For
this we only need to scan the program code. Instead, rewriting semantic patterns, e.g.
replacing ON with M whenever O =βη I is much harder – in fact it is not computable,
as we shall see.

2.9. COMPUTABILITY RESULTS IN THE λ CALCULUS 27

Exercise 96. Define a G ∈ Λ0 such that:

• GpMq = pMMq

• GpMq = pMMMq

• GpMq = pM(MM)q

• GpMNq = pNMq

• Gpλx.Mq = pMq

• Gpλx. λy.Mq = pλy. λx.Mq

• GpIMq = pMq and GpKMq = pIq

• Gpλxi.Mq = pλxi+1.Mq

• GpMq = pNq where N is obtained from M replacing every variable
xi with xi+1

• GpMq = pM{I/x0}q (this does not require α-conversion)

See Solution 198 in the Appendix.

2.9.2 Padding Lemma

Intuitively, many different programs actually have the same semantics. In-
deed, recall Ex. 89. We can actually automatically generate an infinite
number of equivalent programs.

Lemma 97 (Padding lemma). Given M , there exists N such that M =βη N
and #N > #M . Such an N can be effectively computed by a λ-term Pad

such that

PadpMq = pNq

Proof. Left as an exercise. See Solution 200.

Using Pad we can generate an infinite number of programs equivalent
to M by just using ppnqqPadpMq, which generates a distinct program for
each n ∈ N.

28 CHAPTER 2. THE λ CALCULUS

2.9.3 Universal Program

Another useful construction is a “self-interpreter”, i.e. a λ-term E (“eval-
uate”) that, given the code pMq, can run it and behave as M . This E is
said to be a universal program, since it can be used to compute anything
that can be computed in λ-calculus. It is, in a sense, “the most general
program”.

Note that we only allow closed M here6.

Lemma 98 (Self-interpreter). There exists E ∈ Λ0 such that

EpMq = M

for all closed M .

Proof. We proceed by defining two auxiliary operators.

• E′
pMqρ = M ′ where M ′ is M with each free variable xi replaced by

ρppiqq. Here, the rôle of the parameter ρ is to define the meaning of the
free variables in M , defining the value of xi as ρppiqq. This ρ is called
the environment function.

• Upd ρ ppiqq a = ρ′ where ρ′ is the “updated” environment, obtained
from ρ by replacing the value of xi with the new value a. Formally,

(Upd ρ ppiqq a)ppiqq = a
(Upd ρ ppiqq a)ppjqq = ρppjqq where i 6= j

These equations are satisfied by

Upd = λρiaj.Eq j i a (ρ j)

We can now formalize the E′ function:

E′
pxiqρ = ρppiqq

E′
pMNqρ = E′

pMqρ(E′
pNqρ)

E′
pλxi.Mqρ = λa.E′

pMq(Upd ρ ppiqq a)

These equations are satisfied by:

E′ = Θ
(

λfmρ.Casem (λi. ρi)(λm′.Casem′ AB)
)

A = λm′′. f (Proj1m′′) ρ (f (Proj2m′′) ρ)
B = λm′′. λa. f (Proj2m′′) (Upd ρ (Proj1m′′) a)

6Unfortunately, extending E to all the open terms is not possible, since free(E) would
need to be the whole Var in that case.

2.9. COMPUTABILITY RESULTS IN THE λ CALCULUS 29

After defining E′, we can just let E = λm.E′ m Ω. Here we use Ω as
the initial environment. Indeed, when M ∈ Λ0, the λ-term M has no free
variables, so the initial environment will never be invoked by E′. That is, we
only invoke the environment ρ on variables that have been defined through
Upd.

Exercise 99. Check the correctness of E in some concrete (small) cases.
For instance check that EpIq = I and EpKq = K.

2.9.4 Kleene’s Fixed Point Theorem

This is also known as the second recursion theorem. We establish some
preliminary result.

Lemma 100. There exists Num ∈ Λ0 such that for all n ∈ N

Numppnqq = pppnqqq

Proof.

Num = λy. InR (InR (Pair pp0qqA))
A = InR (InR (Pair pp1qqB))
B = y (App (InLpp0qq))(InLpp1qq)

Note that B = n (App px0q)px1q = px0(x0(· · · (x0 x1)))q, where x0 is ap-
plied n times, when y = ppnqq. Then, A = pλx1. x0(x0(· · · (x0 x1)))q, and so
Numppnqq = pλx0. λx1. x0(x0(· · · (x0 x1)))q = pppnqqq.

Note that NumpMq = Numpp#Mqq = ppp#Mqqq = ppMqq.

Theorem 101 (Kleene’s fixed point). For all F ∈ Λ, there is X ∈ Λ such
that

FpXq = X

Proof. A “standard” fixed point such that FX = X could be constructed
using

X = MM M = λw.F (ww)

(compare it with the definition of Θ). We adapt this to obtain:

X = MpMq M = λw.F (App w(Numw))

30 CHAPTER 2. THE λ CALCULUS

Hence,

X = MpMq

= F (App pMq(Num pMq))

= F (App pMqppMqq)

= FpMpMqq

= FpXq

Note the difference between Th. 101 and Lemma 98. Roughly, the former
says that ∀F.∃X.FpXq = X. The latter instead says that ∃F.∀X.FpXq =
X.

Exercise 102. Show whether it is possible to construct a program P ∈ Λ0

such that. . . (each point below is a standalone exercise)

• PM = pPq for all M

• PpPq = pp1qq and Pppnqq = 0 otherwise

• P0 = pPq and Pppnqq = pEq otherwise

• Pppnqq = ppn + 2qq

• Pppnqq = Pppn + 1qq

• Pppnqq = Pppn + #Pqq

• Pppnqq = Succ(Pppnqq)

• Pppnqq = pP (Pppnqq)q

• #P = #P + 1

• #P = #(PpPq)

• #P = #K

Exercise 103. Show that there exists a G ∈ Λ0 such that for all F ∈ Λ0

FpGpFqq = GpFq

The set K0 is related to the set K. As for K, this set is not λ-definable.

Definition 104. K0 = {#M | M0 has a β-normal form}

Exercise 105. Prove that K0 is not λ-definable. (See sol. 199)

2.9. COMPUTABILITY RESULTS IN THE λ CALCULUS 31

2.9.5 Rice’s Theorem

This is one of the most important results in computability, since it shows
that a large class of interesting problems are non-λ-definable.

Definition 106. A set L ⊆ Λ is closed under βη iff ∀M,N

M ∈ L ∧M =βη N =⇒ N ∈ L

Theorem 107 (Rice’s theorem). Let L ⊆ Λ be closed under βη, and λ-
defined by F . Then, L is trivial, i.e. either empty or equal to Λ.

Proof. By contradiction, assume L non trivial, so M1 ∈ L and M0 6∈ L for
some M1 and M0. Then, by Kleene’s fixpoint theorem, for some G

G = FpGqM0M1

Then, if G ∈ L,

G = FpGqM0M1 = TM0M1 = M0 6∈ L

which is a contradiction since L is closed under βη. Otherwise, if G 6∈ L,

G = FpGqM0M1 = FM0M1 = M1 ∈ L

which is a contradiction, again.

[see also Barendregt 6.5.9 to 6.6]
Rice’s theorem has a large number of consequences, stating that no non-

trivial property about the semantics of the code can be inferred from the
code itself.

Exercise 108. Which ones of these sets are λ-definable? Justify your an-
swer.

• {#M |M λ-defines f} where f is some function in N→ N

• {#M |Mpp5qq evaluates to an even numeral}

• {#M |Mpp0qq has a normal form}

• {#M |Mpp0qq has not a normal form}

• {#M |M is solvable}

• {#M |#(MM) is even}

32 CHAPTER 2. THE λ CALCULUS

• {#M |M has at most three λ’s inside itself}

• {#M |Mppnqq has a normal form for a finite number of n}

• {#M |Mppnqq has a normal form for a infinite number of n}

• {2 ·#M + 1|Mpp0qq = I}

• {f(#M)|Mpp0qq = I} where f(n) = 3 if n is even; otherwise f(n) = 2

• {2 ·#M + 1|MpMq = I}

2.10 Other Facts

2.10.1 Step-by-step Interpreter

Here we build a more “traditional” interpreter, i.e. another version of E.
This intrepreter evaluates the λ-term step-by-step, computing the result of
repeatedly applying the β rule (in a leftmost fashion). This allows us to
specify a “timeout” parameter, if we want to. That is, we can ask the
interpreter to run a program M for n steps, and tell us whether M reached
normal form within that time constraint.

Exercise 109. Define Subst such that

SubstpxqpMqpNq = pN{M/x}q

Watch out for the needed α-conversions.

Exercise 110. Define Beta such that BetapMq = pM ′
q where M ′ is the

result of applying →β on M in a leftmost fashion (recall Def. 47). When M
is in β-normal form, we just let M ′ = M instead.

Exercise 111. Define Eta to apply →η until η-normal form is reached.

Exercise 112. Define IsNF to check, given pMq, whether M is in βη-
normal form.

Exercise 113. Define IsNumeral to check, given pMq, whether M is a nu-
meral. That is, is M is syntactically of the (normal) form λsz. s(s(· · · (sz) · · ·)),
for some variables s, z. (Return T on all possible α-conversions.)

Exercise 114. Define IsClosed to check, given pMq, whether M is in Λ0.

2.10. OTHER FACTS 33

Note. All the above functions can be conveniently defined using the
Θ operator, which implements recursive calls. While Θ allows arbitrarily
nested recursive calls, for the functions above we can predict a bound for
the depth of these calls. Roughly, the bound is strictly connected with
the size of the λ-term. Here, by “size” we mean the maximum nesting of
λ-abstractions or applications that occur in the syntax of the λ-term at
hand. So, for instance, a Subst operation computing N{M/x} will never
require more recursive calls than the size of N , if we write Subst in the
straightforward way — i.e. by induction on the structure of N .

Definition 115. The size of M , written |M | is defined as

|x| = 1 |NO| = 1 + max(|N |, |O|) |λx.N | = 1 + |N |

Exercise 116. Show that #M + 1 ≥ |M |, for all M .

So, all the function seen above can be rewritten, roughly, replacing Θ

with a “lesser” version of the fixed point operator, which unfolds recursive
calls only until depth #M + 1. This operator could be, e.g.

LimFix = λfnz.nfz

For instance LimFixF pp3qqΩ = F (F (FΩ)). By comparison, ΘF would
generate an unbounded number of F ’s.

Exercise 117. Write Subst using LimFix instead of Θ. Start from Subst =
λxmn.LimFixF (Succn) and then find F . Do the same for the other func-
tions seen above in this section.

We shall return on this “bounded recursion” approach when we shall
deal with primitive recursion.

Exercise 118. Construct another version of E using the results above (see
Lemma 98). Name this variant Eval. Define it so that, when M has no
normal form, EvalpMq is unsolvable.

Exercise 119. It can be often useful to consider only the λ-terms that pro-
duce numerals. To this aim define a Term operator such that

TermpMq = I if M =βη ppnqq for some n
TermpMq is unsolvable otherwise

You might want to start from:

TermInppkqqpMq = T if M
leftmost
−−−−→

∗

β N →∗
η ppnqq for some n and N

using at most k β-steps
TermInppkqqpMq = F otherwise

34 CHAPTER 2. THE λ CALCULUS

which is satisfied by

TermIn = λkm. IsNumeral(Eta(k Betam))

Then, show that ∀M ∈ Λ0, TermpMqM either evaluates to a numeral or
is unsolvable.

Chapter 3

Logical Characterization of
Computable Functions

3.1 Primitive Recursive Functions

Lemma 120. The function f(n) = 0 is λ-definable.

Proof. Take K0.

Lemma 121. The function f(n) = n + 1 is λ-definable.

Proof. Take Succ.

Lemma 122. The projection functions fi(n1, . . . , nk) = ni with 1 ≤ i ≤ k
are λ-definable.

Proof. Take λn1 · · · nk. ni.

Note: the above includes the identity function f(n) = n.

Lemma 123. The λ-definable (partial) functions are closed under compo-
sition.

Proof. Let f, g be λ-defined by F,G. Then, f ◦ g can be λ-defined by

M = λx.J(F (Gx))

where J is the jamming factor Gx(KI)I, as per Ex. 76. Let us check this:

• When f(g(n)) is defined, then g(n) is defined as some m ∈ N and f(m)
is defined as well. Then, when x = ppnqq, we have J = I, Gppnqq = ppmqq,
and Fppmqq = ppf(g(n))qq. It is the trivial to check that Mppnqq =
ppf(g(n))qq.

35

36 CHAPTER 3. LOGICAL CHARACTERIZATION

• When f(g(n)) is undefined, then either g(n) is undefined, or g(n) =
m ∈ N but f(m) is undefined.

– If g(n) is undefined, then Gppnqq is unsolvable, so J is also unsolv-
able by Ex. 75, so Mppnqq is also unsolvable by the same Exercise.

– If g(n) = m ∈ N but f(m) is undefined, then J = I, Gppnqq =
ppmqq, and Fppmqq is unsolvable. So, Mppnqq = J(Fppmqq) =
Fppmqq is unsolvable as well.

The above result can be generalized to n-ary functions:

Lemma 124. The λ-definable (partial) functions are closed under general
composition. That is, if f ∈ (Nk

 N) and g1, . . . , gk ∈ (Nj
 N), then the

function

h(x1, . . . , xj) = f(g1(x1, . . . , xj), . . . , gk(x1, . . . , xj))

is λ-definable.

Proof. Easy adaptation of Lemma 123.

Lemma 125. The λ-definable functions are closed under primitive recur-
sion. That is, if g, h are λ-definable, so is f(n, n1, . . . , nk), inductively de-
fined as:

f(0, n1, . . . , nk) = g(n1, . . . , nk)
f(n + 1, n1, . . . , nk) = h(n, n1, . . . , nk, f(n, n1, . . . , nk))

Proof. Let G,H be the λ-terms defining g, h. Then f is λ-defined by

F =λnn1 · · · nk.

J n
(

λc. J ′ Cons(Succ(cT))(H(cT)n1 · · ·nk(cF))
)

(Cons 0 (Gn1 · · ·nk))F

where J and J ′ are the usual jamming factors to force the evaluation of h
and g:

J = Gn1 · · ·nk(KI)I
J ′ =H(cT)n1 · · ·nk(cF)(KI)I

The F above works starting from the pair 〈0, g(n1, . . . , nk)〉. Then we apply
n times a function to this pair, incrementing the first component, and ap-
plying h to the second. Finally, we take the resulting pair and extract the
second component (the F at the end).

3.1. PRIMITIVE RECURSIVE FUNCTIONS 37

Definition 126. The set of the primitive recursive functions PR is defined
as the smallest set of (total) functions in Nk → N which:

• includes the constant zero function, the successor function, and the
projections (“the initial functions”); and

• is closed under general composition; and

• is closed under primitive recursion.

Some facts about primitive recursive functions:

• If f ∈ PR, then f is a total function.

• PR, being inductively defined, is a denumerable set.

Exercise 127. Show that the following functions are in PR.

• the “conditional” function (“if-then-else”):

cond(0, x, y) = x cond(k + 1, x, y) = y

• the addition,subtraction (return e.g. 0 when negative), multiplication,division
(return e.g. 0 when impossible)

• the factorial function

• the equality comparison: eq(x, x) = 0, and 1 otherwise

• the less-than-or-equal comparison: lt(x, x + k) = 0, and 1 otherwise

• the encode functions for pairs and disjoint union (easy), as well as
their inverses (not so easy).

Exercise 128. Show that if f is a binary function and f ∈ PR, then the
function g given by g(x, y) = f(y, x) is in PR as well.

We can compare PR to the set of λ-definable functions. By the lemmata
above, each f ∈ PR is λ-definable. Clearly, if we take a λ-definable non-
total function, this is not in PR, so the λ-definable functions form a larger
set that PR.

What if we restrict to total λ-definable functions, then? We can prove
that the set of total λ-definable functions is still larger than PR.

Basically, each f ∈ PR is either one of the basic functions or obtained
from them through composition/primitive recursion in a finite number of

38 CHAPTER 3. LOGICAL CHARACTERIZATION

steps. This is not different from having a kind of programming language
“PR” having exactly the constructs mentioned in Def. 126. As we did for the
λ-calculus we can enumerate this PR language using the encode functions.
After that, we use a diagonalization argument, and construct a function
f(n) as follows: 1) take the PR program which has n as its encoding, 2)
run it using n as input, 3) take the result r, and 4) let f(n) = r + 1. By
diagonalization, we have f 6∈ PR. Yet, f can be λ-defined! We just need
to write an interpreter for this PR language in the λ calculus in order to
define f . This can done as we did for E.

Exercise 129. Define the “PR language” as we did for Λ, and an encoding
PR ↔ N. Then, λ-define an interpreter for this PR language.

Using this interpreter, we can clearly λ-define the total f defined above,
proving that λ-definable functions form a larger set than PR functions.

Theorem 130. The set of λ-definable functions is strictly larger than PR
functions.

3.1.1 Ackermann’s Function

This is another interesting total function that is λ-definable but not in PR.

ack(0, y) = y + 1
ack(x + 1, 0) = ack(x, 1)
ack(x + 1, y + 1) = ack(x, ack(x + 1, y))

[also see Cutland page 46]

Exercise 131. Show that ack is λ-definable.

Note the “double recursion” in the last line. This is not a problem in
the λ calculus, but in PR we can only express “single” recursion. It is not
obvious whether this form of double recursion can be somehow expressed
using the single recursion of PR.

It turns out that ack is not a primitive recursive function. So, this form
of “double recursion” is (generally) not allowed in PR. The actual proof for
ack 6∈ PR is rather long, so we omit it. We however provide some intuition
below.

Roughly, the proof relies on ack to grow at a very, very high speed.
Observe the following. We have ack(1, y) = y + 2, as well as ack(2, y) =
3 + 2 · y > 2 · y. Note the rôle of y and 2 here: from y + 2 (addition) we
went to 2 ·y (multiplication) by just incrementing the first parameter to ack.

3.2. GENERAL RECURSIVE FUNCTIONS 39

Moreover, ack(3, y) > 2y (exponential), and ack(4, y) > 222...

where there
are y exponents. And this goes on, generating very fast-growing functions.

Indeed, the ack beats each function in PR:

∀f ∈ PR.∃k ∈ N.∀y ∈ N. ack(k, y) > f(y)

The above can be proved by induction on the derivation of f (we omit
the actual proof). From here, one can prove that ack 6∈ PR by contradic-
tion: if ack ∈ PR, we also would have that f(y) = ack(y, y) is a primi-
tive recursive function. By the statement above, we get some k such that
∀y ∈ N. ack(k, y) > ack(y, y). If we now choose y = k, we get a contradiction.

Exercise 132. Let us recap the main proof techniques:

• If we take A = PR ∪ {ack}, do we get the whole set of total functions
N→ N ?

• Let B be the closure of A under general composition and primitive
recursion. Is B the whole set N→ N ?

• Is B the set of total λ-definable functions?

3.2 General Recursive Functions

Exercise 133. Let f(x, y) be a total λ-definable function. Show that

g(x, z) = µy < z. f(x, y) = 0

is a total λ-definable function. By µy < z. f(x, y) = 0 we mean the least y
such that y < z and f(x, y) = 0. If such a y does not exist, we let the result
to be z. This operation is called bounded minimalisation.

Exercise 134. Let f(x, y) be in PR. Show that

g(x, z) = µy < z. f(x, y) = 0

is in PR. So primitive recursive functions are closed under bounded mini-
malisation.

We now investigate what is missing from the definition of PR that makes
it different from the whole λ-definable functions. Basically, the problem
boils down to constructing an interpreter of the λ calculus using the PR
operators, that is:

40 CHAPTER 3. LOGICAL CHARACTERIZATION

“What is missing for (a variant of) E to be a function in PR ?”

Consider the construction of the step-by-step interpreter Eval, given in
Ex. 118. All the basic constituents (Beta, Eta, IsNumeral, IsNF, Subst)
can be defined using LimFix, which is basically the same thing of the prim-
itive recursion operator: it iterates a function for a fixed number of times.
So, these constituents can be indeed constructed inside PR. For instance,
∃ subst ∈ PR such that

subst(#x,#M,#N) = #(N{M/x})

and so on for the other basic functions. This means that the “single-step”
function, implementing a single leftmost →β step, is actually in PR.

Lemma 135. The functions

subst ∈ N3 → N

beta ∈ N→ N

eta ∈ N→ N

isNumeral ∈ N→ N

isNF ∈ N→ N

app ∈ N2 → N

num ∈ N→ N

which are the arithmetic equivalents of the λ-terms Subst,Beta,Eta,IsNumeral,
IsNF,App,Num, are in PR.

Proof. Left as a (long, and not so trivial) exercise. You might want to start
from subst(x, n,m) = aux(x, n,m, 2m).

Exercise 136. Show that the function extract(#ppnqq) = n is in PR. (Make
it work on all possible α-conversions of ppnqq. Also, define extract(x) = 0 for
other inputs x.)

So what is missing for a full interpreter? We do not know how many
→β steps are needed to reach normal form. For a full interpreter, we need
unbounded iteration of the single-step function. So, we can augment PR
with an unbounded minimalisation operator.

Definition 137. The set of (partial) general recursive functions (R) is
defined as the smallest set of partial functions in Nk

 N which:

3.2. GENERAL RECURSIVE FUNCTIONS 41

• includes the constant zero function, the successor function, and the
projections (“the initial functions”); and

• is closed under general composition; and

• is closed under primitive recursion ; and

• is closed under unbounded minimalisation.

Unbounded minimalisation is defined as follows: given f(x, y), we construct
g(x) as

g(x) = (µy. f(x, y) = 0)

(the least y ∈ N such that f(x, y) = 0.) Note that if no such y exists, g(x)
is undefined, hence making g a partial function. This definition is naturally
extended to n-ary functions in Nk

 N.

Exercise 138. Show that the following functions are in R:

• f = ∅ (the always-undefined function)

• f(2 · n) = 1 and f(2 · n + 1) undefined

• ack(x, y) (this is not so easy)
Hint: one way to do it is by implementing a stack using encode×.

Lemma 139. The λ-definable functions are closed under unbounded mini-
malisation.

Proof. Let f be λ-defined by F . Then, g(x) = (µy. f(x, y) = 0) can be
λ-defined by

G = Θ(λgyx.Eq0 (Fxy) y (g(Succ y)x))0

Lemma 140. The set of recursive functions R is included in the set of
λ-definable functions.

Proof. Immediate by all the lemmata above.

Theorem 141. The set of λ-definable functions is exactly the same as the
set of recursive functions R.

42 CHAPTER 3. LOGICAL CHARACTERIZATION

Proof. We already proved that each f ∈ R is λ-definable. Now we prove that
if f is λ-definable (say by F), then f ∈ R. By Exercise 127, proj1, proj2 ∈
PR, so by Lemma 135, and Exercise 136, we can define the following func-
tions in R:

steps(x, 0) = x

steps(x, n + 1) = beta(steps(x, n))

eval(x) = extract(proj1(µn. and(A,B) = 0)

where A = isNumeral(C)

B = eq(C, proj1(n))

C = eta(steps(x, proj2(n)))

f(y) = eval(app(#F, num(y)))

We now claim that we indeed have ∀y. f(y) = f(y). First, we note that
app(#F, num(y)) = app(#F,#ppyqq) = #(Fppyqq).

• If f(y) is undefined, then Fppyqq has no normal form. So, no matter
what proj2(n) evaluates to, the function steps will perform that many
β-steps on x, but will not reach the index of a β-normal form. So, A
will always evaluate to “false” (i.e. nonzero), since isNumeral syntacti-
cally checks against numerals, which are in normal form. Hence, the
and(A,B) will always return “false”, and the minimalisation operator
µn will keep on trying every n ∈ N, in an infinite loop, and so making
f(y) undefined.

• If f(y) is defined, say f(y) = z ∈ N, then Fppyqq has as its normal
form the numeral ppzqq. Define k as the number of leftmost →β steps
needed to reach normal form. Therefore, eta(steps(#(Fppyqq), k)) will
completely evaluate Fppyqq until βη normal form, producing the index
of a λ-term M , which is an α-conversion1of ppzqq. The minimalisation
operator µn will try each n ∈ N, from 0 upwards.

– When 0 ≤ n < encode×(#M,k), we show that and(A,B) re-
turns “false” (nonzero), so that the minimalisation will try the
next n. By contradiction, assume that and(A,B) returns “true”.
This means that A and B are both “true”. Since A is “true”,

1Recall Exercise 90. While we know that M is of the form λab. a(a(a(· · · (a(ab))))), it
still might be syntactically different from ppzqq by picking different variable names for a

and b. This mainly depends on the fact that we do not require our beta function to choose
exactly the variables we use in the definition of ppzqq.

3.2. GENERAL RECURSIVE FUNCTIONS 43

eta(steps(#(Fppyqq), proj2(n))) is the index i of a numeral, hence
the index of a normal form of Fppyqq. Since we need to do k
steps to reach normal form, we have2 proj2(n) ≥ k. This implies
that i = #M . Since B is “true”, proj1(n) = i = #M . Hence n =
encode×(proj1(n), proj2(n)) = encode×(#M, proj2(n)) ≥ encode×(#M,k),
contradicting n = encode×(proj1(n), proj2(n)) < encode×(#M,k).

– So, eventually the µn operator will try n = encode×(#M,k).
Here, it is trivial to check that A and B are both “true”, so the
loops halts. Indeed, we have that eta(steps(#(Fppyqq), k)) is a
numeral (so A is “true”3), and indeed eta(steps(#(Fppyqq), k)) =
#M = proj1(n) (so B is “true”).

So, the result of the whole µn. · · · expression is encode×(#M,k). Af-
ter we compute this, the definition of eval performs a proj1, hence
obtaining #M . Finally, the extract function is applied, extracting z
from the index of M =α ppzqq. We conclude that, when f(y) = z, we
have f(y) = z.

Since we proved both inclusions, we conclude that the set of λ-definable
functions coincides with R.

Exercise 142. Provide an alternative proof for Th. 141, following these
hints.

First, define a function g that given i, x, k will run program number i
on input x for k steps, assume the result is a numeral (hence a normal
form), and extract the result as a natural number. When the result is not
a numeral, return anything you want (e.g. 0). Show that g is recursive
(actually, in g ∈ PR).

Then, define a partial function h that given i, x returns the number of
steps k required for program number i to halt on input x, reaching normal
form. Function h is undefined when no such k exists. Use minimalisation
for this.

Finally, build eval using g and h.

2The function beta has to be applied at least k times to reach normal form. After
normal form is reached, we required beta to act as the identity.

3Recall we require isNumeral to return “true” on all α-conversions of numerals.

44 CHAPTER 3. LOGICAL CHARACTERIZATION

3.3 T,U-standard Form

This classical result states that every partial recursive function can be ex-
pressed by using the primitive recursion constructs and a single use of the
unbounded minimalisation operator.

Theorem 143. There exist T,U ∈ PR such that, each (partial) recursive
function f ∈ R can be written as

f(x) = U(µn.T(i, x, n))

for some suitable natural i.

Proof. We have already proved this when we proved 141. Indeed, the defi-
nition of f in that proof mentions a single µn operator, using only primitive
recursive functions inside of the µn, as well as outside of it. So T and U

simply are defined in that way. The integer i is instead the index #F for
some λ-term F that defines the function f ∈ R. This F indeed exists by
Lemma 140.

3.4 The FOR and WHILE Languages

Consider an imperative language having the following commands. Below we
use x for variables (over N), e for arithmetic expressions over variables, and
c for commands.

• Assignment: x:= e

• Conditional: if x = 0 then c1 else c2

• Sequence: c1 ; c2

• For-loop: for x := e1 to e2 do c

Name this language “FOR”.

The semantics of this language should be mostly obvious. We assume
that e1 and e2 are evaluated only once, at the beginning of the for-loop.
For instance, the command

y := 6 ;

for x := 1 to y do

y := y + 1

3.4. THE FOR AND WHILE LANGUAGES 45

will terminate, performing exactly six loop iterations. Further, we assume
that the loop variable x is updated to the next value in the sequence from
e1 to e2, even if the loop body modifies the variable x. For instance,

sum := 0 ;

for x := 1 to 6 do

sum := sum + x ;

x := x - 1

will terminate, performing exactly six loop iterations. When the loop is
exited, the variable sum has value 0 + 1 + 2 + 3 + 4 + 5 + 6 = 21. Note that,
under these assumptions, our for-loops will always terminate.

Exercise 144. Define the formal semantics of the FOR language, as a
function N→ N. Assume the input of FOR programs is just provided through
a special input variable. Similarly, read the output of the program through
a special output variable, to be read at the end of execution.

Definition 145. A function f is FOR-definable if there is some FOR-
program that has semantics f .

Theorem 146. The set of FOR-definable functions is exactly PR.

Proof. Left as a (rather long) exercise. You basically have to 1) simulate all
the constructs of PR using the FOR-commands, and 2) simulate all FOR-
commands using the PR-constructs. This can be done by exploiting the
encode× function to build arrays, so to store the whole execution state in a
few variables.

Now, we can extend the FOR language with the following construct:

• While-loop: while x > 0 do c

Name this language “WHILE”. Note that, unlike FOR programs, WHILE
programs might not terminate.

Exercise 147. Define the semantics of WHILE programs.

Definition 148. A function f is WHILE-definable if there is some WHILE-
program that has semantics f .

Theorem 149. The set of WHILE-definable functions is exactly R.

46 CHAPTER 3. LOGICAL CHARACTERIZATION

Proof. (sketch)
(⊆): a WHILE interpreter can be written in the λ-calculus (long exercise).
So, each WHILE-definable function is in R by Th. 141.
(⊇): Let f ∈ R. We must find a WHILE program defining f . Take T,U as in
Th. 143. By Th. 146, T and U are FOR-definable, hence WHILE-definable.
Following again Th. 143, all we have to do is to “add the missing µn” and
compose T and U so to actually compute f . A single while construct is
sufficient to try each n ∈ N, thus emulating the µn operator.

Theorem 150. Every WHILE-definable function can be WHILE-defined by
a program having a single while loop.

Proof. Direct consequence of Th. 143.

3.5 Church’s Thesis

Roughly, all programming languages can be proved equivalent w.r.t. the
λ-calculus as we did for the WHILE language; that is, the set of the {λ,
WHILE, Java, . . . }-definable functions does not depend on the choice of the
programming language L. All you need to check is that

• all λ-definable functions are definable in the language L; e.g. you can
write an interpreter for the λ-calculus in L

• all L-definable functions are definable in the λ-calculus; e.g. you can
write an interpreter for L in the λ-calculus

The Church’s Thesis is an informal statement, stating that

The set of intuitively computable functions is exactly the set
of functions definable in the λ-calculus (or Java, or Turing ma-
chines, or 〈insert your favourite programming language here〉).

Notable languages not equivalent to the λ-calculus:

• Plain HTML (with no Javascript). HTML just produces a hyper-
text, possibly formatted (e.g. by using CSS). However, you can not
use HTML to “compute” anything. Indeed, it is not a programming
language, but a hypertext description language.

• Plain SQL query language. It just searches the database for data, and
return the results. It can not be used for general computing. Again,
it is not a programming language, but only a query language. This

3.5. CHURCH’S THESIS 47

is actually good, because SQL queries can therefore be guaranteed to
terminate.

Notable languages equivalent to the λ-calculus:

• PostScript and PDF. They should only describe a document. They al-
low for general recursion, so they could take a long time just to output
one page. They can also loop, and fail to terminate, while requir-
ing more and more memory. PostScript can even produce an infinite
number of pages. By Rice, there is no effective way of predicting how
many pages a PostScript file will print, since the number of pages is a
semantic property.

• XSLT and XQuery. They should only perform some simple manipu-
lation over XML. Due to some recursive constructs, they are actually
able to achieve the power of the λ-calculus. So, it might happen that
their execution does not terminate, allocating more memory, etc.

• Javascript. This is indeed a full-featured programming language. Run-
ning it inside a browser allows for arbitrary interaction with HTML,
but exposes the browser to denial of service attacks, since the Javascript
program can allocate more and more memory and fail to terminate.
Näıve execution of Javascript can easily cause the browser to freeze.
Firefox currently tries to mitigate the issue in this way. It runs the
Javascript for a given amount of time (say 20 seconds). If it fails to
halt, Firefox asks the user if he/she wants to abort the Javascript com-
putation, or wait for other 20 seconds, after which the same question
is asked to the user again.

• Turing Machines

• “conventional” programming languages

48 CHAPTER 3. LOGICAL CHARACTERIZATION

Chapter 4

Classical Results

In the previous sections, we studied λ-definability. While λ-definability is a
powerful notion, it does not provide a semantics (a function Nk

 N) for all
λ-terms.

• For instance, M = λn. nKΘ does not λ-define any partial function
f ∈ Nk

 N, for any k > 0. Indeed, if we let the first argument to be
k−1, we get Mppk − 1qqppx2qq · · · ppxkqq = (λy2 . . . yk.Θ)ppx2qq · · · ppxkqq =
Θ which is solvable (by KI) but not a numeral.

• Another example is N = λn. nK (λy. yy). Assume this λ-defines f ∈
Nk
 N. We get a contradiction from Nppk − 1qqppx2qq · · · ppxkqq =

λy. yy which is solvable, but not a numeral.

However, we define an alternative semantics, relating each λ-term to a
partial function. So, φi shall be the function related to the program M
having index i.

Definition 151. φi(x) = y iff Mppxqq =βη ppyqq where #M = i

The above is trivially generalized to k-ary functions.
First, note that φi(x) is well-defined, since there can be at most one

y ∈ N satisfying Mppxqq =βη ppyqq. Second, note that φi is a partial function,
which can be undefined when either Mppxqq has no normal form, or when
Mppxqq has a normal form, but that normal form is not a numeral.

Lemma 152. f is λ-definable iff f = φi for some i

Proof. (⇒) Let f be λ-defined by F . Then, we take i = #F , and check that
φi = f .

49

50 CHAPTER 4. CLASSICAL RESULTS

• If f(x) is undefined, then we have that Fppxqq is unsolvable, so it has
no normal form, so it is 6=βη ppyqq for all y, and φi(x) is then undefined.

• If f(x) = y ∈ N, then Fppxqq = ppf(x)qq, and φi(x) = f(x).

Since the above holds for any x, we get φi = f .

(⇐) Let f = φi, and let M such that i = #M . Then, f can be λ-defined
by F = λn. J M n, where n 6∈ free(M) and J is the jamming factor

J = Term(App pMq (Num n))

and Term is from Ex. 119: TermpOq evaluates to I when O has a numeral
as its normal form; otherwise it is unsolvable.

It is easy to check that F indeed λ-defines f . When f(x) is undefined,
then Mppxqq has no numeral as normal form, and thus J is unsolvable. Oth-
erwise, when f(x) is defined, Mppxqq has ppf(x)qq as its normal form, and
thus J = I. In this case, Fppxqq = Mppxqq = ppf(x)qq.

4.1 Padding Lemma

Theorem 153 (Padding Lemma).
There is a function pad ∈ R such that

φn = φpad(n) ∧ pad(n) > n

Proof. Immediate from the Padding Lemma for the λ-calculus.

Also see [Cutland]

4.2 Parameter Theorem (a.k.a. s-m-n Theorem)

Theorem 154 (Parameter Theorem, s-m-n Theorem).
For all m > 0 and 0 < n ≤ m, there exists a total recursive function snm(i, x)
such that for all y1, . . . , ym

φsn
m(i,x)(y1, . . . , yn−1, yn+1, . . . , ym) = φi(y1, . . . , yn−1, x, yn+1, . . . , ym)

Proof. Easy adaptation of the Parameter Lemma for the λ-calculus.

Also see [Cutland]

Exercise 155. Show that pad and sn
m are primitive recursive functions.

4.3. UNIVERSAL PROGRAM 51

4.3 Universal Program

Theorem 156 (Universal Program).
The partial function f(x, y) = φx(y) is recursive.
This can be generalized to n-ary partial functions.

Proof. Easy adaptation of the Universal Program for the λ-calculus. We
actually described such an f in the proof of Th. 141.

Also see [Cutland]

4.4 Fixed Point Theorem, a.k.a. Kleene’s Second
Recursion Theorem

Theorem 157 (Kleene’s Second Fixed Point Theorem (a.k.a. Second Re-
cursion Theorem)).
For each total computable function f , there is some n ∈ N such that

φn = φf(n)

Proof. We adapt the proof of Th. 101. By Th. 156, the following is recursive:

g(x, y) = φf(s(x,x))(y)

so φa = g for some a. Now take n = s(a, a). We then have, for all y,

φn(y) = φs(a,a)(y) = φa(a, y) = g(a, y) = φf(s(a,a))(y) = φf(n)(y)

Also see [Cutland]

4.5 Recursively enumerable Sets

Definition 158. A set A ⊆ N is recursive iff the function χA is recursive.
With some abuse of notation, we write A ∈ R.

So, a set A is recursive if and only if there is a verifier program, returning
“true” on A and “false” on its complement Ā.

One might wonder what happens if the verifier is not required to termi-
nate for all inputs. For instance the verifier could simply terminate on A,
and diverge on Ā. We might call this a “partial verifier”, or semi-verifier.

52 CHAPTER 4. CLASSICAL RESULTS

Definition 159. A set A ⊆ N is recursively enumerable (A ∈ RE) if and
only if A = dom(f) for some f ∈ R.

Terminology: a recursive set is sometimes said to be decidable, com-
putable, effective, λ-definable, WHILE-definable, . . . These adjectives are
equivalent. Recursively enumerable sets are said to be semi-decidable, semi-
computable, . . . instead.

Exercise 160. Prove that the following properties of a set A are equivalent.

• A ∈ RE

• there is some λ-term SA such that A = dom(φ#SA
)

• there is some λ-term SA such that A = {n | SAppnqq has a normal form}

• there is some λ-term SA such that A is semi-λ-defined by SA, that is
A = {n | SAppnqq has a normal form} and Ā = {n | SAppnqq is unsolvable}

Hint: use the step-by-step interpreter and check the results using IsNumeral

and related functions. Apply jamming factors as needed.

By the exercise above, we have that the many different formalizations of
“semi-verifier” are actually equivalent.

Definition 161. K′ = {n|φn(n) is defined}

Lemma 162. K′ 6∈ R

Proof. Similar the the argument for K. By contradiction, if K′ ∈ R, then

f(n) =

{

φn(n) + 1 if n ∈ K′

0 otherwise

would be a total recursive function. Hence, f = φa for some a. Since f is
total, a ∈ K′, so we reach the contradiction φa(a) = f(a) = φa(a) + 1.

Lemma 163. K′ ∈ RE

Proof. By Th. 156, f(n) = φn(n) is in R, and clearly dom(f) = K′.

Lemma 164. A ∈ R =⇒ A ∈ RE

Proof. If VA λ-defines A, then λn. VA n IΩ is a semi-verifier.

Lemma 165. A ∈ RE ∧ Ā ∈ RE =⇒ A ∈ R

4.5. RECURSIVELY ENUMERABLE SETS 53

Proof. Given two semi-verifiers SA, SĀ for A and Ā, we execute them “in
parallel” to construct a verifier for A. That is, suppose we are checking
whether n ∈ A. An effective procedure could be:

• check whether SAppnqq halts in 1 step: if so, return “true”

• check whether SĀppnqq halts in 1 step: if so, return “false”

• check whether SAppnqq halts in 2 steps: if so, return “true”

• check whether SĀppnqq halts in 2 steps: if so, return “false”

• . . .

This loop will eventually stop, since either SAppnqq or SĀppnqqmust eventually
halt. When one of them halts, we “abort” the parallel execution of the other
and return the result.

Exercise 166. Construct the λ-term of the verifier used in the proof above.

Lemma 167. A ∈ RE ∧ Ā ∈ RE ⇐⇒ A ∈ R

Proof. Immediate by the lemmata above.

Lemma 168. K̄′ 6∈ RE

Proof. Immediate by Lemma 167 and K′ ∈ RE \ R.

Lemma 169. All the following properties of a set A ⊆ N are equivalent

1. A ∈ RE

2. A = ∅ or A is the range of a total recursive function

3. A = {n|∃m. encode×(n,m) ∈ B} for some B ∈ R

4. A is the range of a partial recursive function

Proof. (1 =⇒ 2) If A is empty, it is straightforward. Otherwise, assume
x ∈ A, and let A = dom(φa). Then

f(n) =

{

proj1(n) if running φa(proj1(n)) halts in proj2(n) steps
x otherwise

Clearly f is a total recursive function. Also, ran(f) is included in A by
construction. Moreover, if y ∈ A, then running φa(y) must halt, say in k

54 CHAPTER 4. CLASSICAL RESULTS

steps, implying f(encode×(y, k)) = y, so y ∈ ran(f).

(2 =⇒ 3) If A = ∅, take B = ∅. Otherwise, let A = ran(f), for a total
recursive f . Define B = {encode×(f(x), x)|x ∈ N}. This B is in R: to
check whether n ∈ B, we check that f(proj2(n)) = proj1(n), which is doable
because f is total, so everything halts, and we can always effectively decide
that equation. It is trivial to check that A is indeed {n|∃m. encode×(n,m) ∈
B}.

(3 =⇒ 4) Given B ∈ R, consider the following partial function:

f(x) =

{

proj1(x) if x ∈ B
undefined otherwise

Clearly, f ∈ R. Also, ran(f) = A.

(4 =⇒ 1) By hypothesis, A is the range of a partial recursive function f .
Take a such that f = φa. Take n as input, and “run” the following:

For each i ∈ N, starting from 0:
Run φa(proj1(i)) for at most proj2(i) steps
If that halts, and φa(proj1(i)) = n, stop (e.g. return 0)
Otherwise, try the next i

This can be actually implemented in the λ-calculus using the step-by-step
interpreter. Let j be the index of that λ-term. It is easy to check that
dom(φj) = ran(f) = A, implying A ∈ RE . Indeed, if n ∈ ran(f), then
n = f(x), and φa(x) can be computed in y steps, for some x and y. So,
when i = encode×(x, y) the loop above stops, therefore n ∈ dom(φj). For
the other direction, if n ∈ dom(φj), then the loop stops, so f(proj1(i)) = n,
for some i, and n ∈ ran(f).

Summary. The implications form a cycle 1 =⇒ 2 =⇒ 3 =⇒ 4 =⇒ 1,
so the properties 1, 2, 3, 4 are equivalent.

Lemma 170. K ∈ RE

Proof. We have K = {n|∃m. encode×(n,m) ∈ B} where

B = {encode×(n,m)|n = #M ∧MpMq reaches normal form in m steps}

B is recursive, since it checks only for a given number of steps, so by
Lemma 169, K ∈ RE .

4.6. REDUCTIONS 55

Lemma 171. K̄ 6∈ RE

Proof. Immediate by Lemma 167 and K ∈ RE \ R.

Lemma 172. K̄′ 6∈ RE

Proof. Analogous to the previous lemma.

4.6 Reductions

4.6.1 Turing Reduction

Sometimes, it is interesting to pretend that in the λ-calculus some function
or set is λ-definable, even if we do not know if they are, or even if we know
they are not. More precisely, we consider a specific function/set and extend
the λ-calculus with a specific construct to compute/decide that function/set.
The overall result is a new language where that function/set is just forced to
be computable. Clearly, this is a purely theoretical device, since we can not
actually build a “computer” which is able to run this extended λ-calculus.
To build that “computer” we would need a “magic” hardware component
which enables us to compute the function/set. This component is usually
named an “oracle”. Even if this construction is a bit bizarre, it is useful to
understand the relationships between undecidable sets.

To keep things simple, we just considers sets.

Definition 173. When we extend the λ-calculus with an oracle for a set A,
we speak about (λ + A)-calculus.

The syntax of the (λ + A)-calculus is

M ::= x | MM | λx.M | VA

where VA is a specific constant. The semantics is given by =A
βη defined as

before, but extended with

VAppnqq→
A
β T when n ∈ A

VAppnqq→
A
β F otherwise

The notion of (λ + A)-definability is then derived from the notion of λ-
definability by using =A

βη instead of =βη.

Here’s an important definition for comparing sets, by reducing one set to
another. Informally, it states that A is no more difficult to decide than B.

56 CHAPTER 4. CLASSICAL RESULTS

Definition 174 (Turing-reduction). Given A,B ⊆ N, we write A ≤T B
when, the set A can be (λ + B)-defined. We write A ≡T B when A ≤T B
and B ≤T A.

Exercise 175. Prove the following statements:

• ≤T is a preorder (e.g. is reflexive and transitive)

• A ≤T B for any A ∈ R, and any B ⊆ N

• A ≡T Ā for all A, in particular K ≡T K̄

• K ≡T K′

• If A,B ≤T C, then A ∪B ≤T C

• If A,B ≤T C, then {encode×(x, y) | x ∈ A ∧ y ∈ B} ≤T C

• If A,B ≤T C, then {inL(x) | x ∈ A} ∪ {inR(x) | x ∈ B} ≤T C

• If A ∈ R and B ≤T A, then B ∈ R

• From A ∈ RE and B ≤T A, we can not conclude that B ∈ RE (in
general)

This notion of reduction is useful as it enables us to prove that a set A
is not λ-definable, by showing that B ≤T A for some B that is known to be
λ-undefinable.

Exercise 176. Consider the (λ + K)-calculus. Can every partial function
f ∈ N N be (λ + K)-defined?

4.6.2 Many-one Reduction

Another useful notion of reduction is the following:

Definition 177 (many-one-reduction, a.k.a. m-reduction).
Given A,B ⊆ N, we write A ≤m B when there is a total recursive function
f such that

∀n ∈ N. n ∈ A ⇐⇒ f(n) ∈ B

We write A ≡m B when A ≤m B and B ≤m A.

Lemma 178. A ≤m B =⇒ A ≤T B

4.6. REDUCTIONS 57

Proof. Trivial: let f be the total recursive m-reduction from A to B. Let
f be λ-defined by F . Then VA = λn. VB(Fn) defines A in the (λ + B)-
calculus.

Lemma 179. A ≤m B ⇐⇒ Ā ≤m B̄

Proof. Directly from the definition, using the same f .

Lemma 180. If B ∈ R and A ≤m B, then A ∈ R.
If B ∈ RE and A ≤m B, then A ∈ RE .

Proof. The first part is a direct consequence of ≤m implying≤T , and Ex.175.
For the second part, let B = dom(φb), and f be the m-reduction from A to
B. Then g(x) = φb(f(x)) is a partial recursive function defined only when
f(x) ∈ B, i.e. x ∈ A. So, dom(g) = A and A ∈ RE .

Lemma 181. A ≤m K′ =⇒ A ∈ RE

Proof. Immediate from the lemma above.

Exercise 182. Prove the following:

• ≤m is a preorder (reflexive and transitive)

• A ≤m B iff Ā ≤m B̄

• K 6≤m K̄ and K̄ 6≤m K

Lemma 183. K′ is RE-complete (or m-complete), that is: K′ ∈ RE and for
any A ∈ RE, A ≤m K′.

Proof. We have already proved that K ∈ RE . For the second part, let SA

be the semi-verifier for A, i.e. A = dom(φ#SA
). Consider

f(n) = # (λx. SAppnqq)

That is, f(n) is returning an index of a program M such that M discards its
input, and computes instead φ#SA

(n). This f is a total recursive function1:
let us check that it is an m-reduction from A to K.

n ∈ A ⇐⇒ φ#SA
(n) defined ⇐⇒ φf(n)(f(n)) defined ⇐⇒ f(n) ∈ K

1This is can be justified either by the appeal to inuition, i.e. by applying the Church’s
Thesis, or in a slightly more formal way as follows. Consider g(n, x) = φ#SA

(n). Clearly,
g ∈ R, so g = φj for some j. Taking f(n) = s1

2(j, n) then suffices.

58 CHAPTER 4. CLASSICAL RESULTS

Lemma 184. A ∈ RE if and only if A ≤m K′

Proof. Immediate from the lemmata above.

Exercise 185. Prove that K′ ≡m K. From this, deduce that A ∈ RE if and
only if A ≤m K.

4.7 Rice-Shapiro Theorem

This is a fundamental result.
Recall that, when f, g are partial functions, g ⊆ f means that

g(n) = m ∈ N =⇒ f(n) = m

That is, when g(n) is defined, f(n) is too, and has the same value m. Note
that when g(n) is not defined, f(n) may be anything: either undefined, or
defined to some m.

Theorem 186 (Rice-Shapiro).
Let F be a set of partial recursive functions, i.e. F ⊆ R. Further, let
A = {n|φn ∈ F} be RE. Then, for each partial recursive function f ,

f ∈ F ⇐⇒ ∃g ⊆ f. dom(g) is finite ∧ g ∈ F

Proof. Also see [Cutland]
Since f is recursive, f = φi for some i ∈ N.

• (⇒) By contradiction, assume f ∈ F but for each finite g s.t. g ⊆ f
we have g 6∈ F . Now, consider

h(n) = #

(

λx.

{

f(x) if φn(n) does not halt in x steps
undefined otherwise

)

This means that h(n) returns some program index j such that

φj(x) =

{

f(x) if running φn(n) does not halt in x steps
undefined otherwise

Note that the function h is well-defined: it is possible to decide whether
φn(n) halts in x steps, so λx. . . . can be indeed formalized as an actual
program, and so we can take j as its index.

The function h is also a total recursive function: we can construct the
index of such a j by building the index of λx. . . . given the parameter
n.

Now we note that:

4.8. RICE’S THEOREM 59

– n 6∈ K′ =⇒ φh(n) = f ∈ F =⇒ h(n) ∈ A

– n ∈ K′ =⇒ φh(n) finite and φh(n) ⊆ f =⇒ φh(n) 6∈ F =⇒
h(n) 6∈ A

This means that K̄′ ≤m A ≤m K′, which is a contradiction.

• (⇐) By contradiction, there is some finite g ⊆ f with g ∈ F , but
f 6∈ F .

Now, consider

h(n) = #

(

λx.

{

f(x) if x ∈ dom(g) or n ∈ K′

undefined otherwise

)

Again, such a program λx. . . . indeed exists: the domain of g is finite,
so we can check for that. The other condition asks whether n ∈ K′, and
we can only semi-decide that. However, that is enough since otherwise
we must not terminate.

Again, h(n) is a total recursive function: the index of λx. . . . can be
effectively computed given the number n.

Finally, we have that:

– n 6∈ K′ =⇒ φh(n) = g ∈ F =⇒ h(n) ∈ A

– n ∈ K′ =⇒ φh(n) = f 6∈ F =⇒ h(n) 6∈ A

This means that K̄′ ≤m A ≤m K′, which is a contradiction.

4.8 Rice’s Theorem

Theorem 187. Let F ⊆ (N N) be a set of partial recursive functions,
and A = {n|φn ∈ F}. If A ∈ R, then A is trivial, i.e. either A = ∅ or
A = N.

Proof. We could prove Rice’s Theorem by adapting Th. 107, but we instead
apply Rice-Shapiro (Th. 186). We have A, Ā ∈ R, so A, Ā ∈ RE . Let φi be
the always-undefined function g∅, that has a finite domain. For all partial
functions f , we have g∅ ⊆ f . Clearly, i is in one of the sets A, Ā.

• If i ∈ A, then g∅ ∈ F . By Rice-Shapiro, we have f ∈ F for all f , and
so A = N.

60 CHAPTER 4. CLASSICAL RESULTS

• If i ∈ Ā, then g∅ 6∈ F . By Rice-Shapiro, we have f 6∈ F for all f , and
so Ā = N, implying A = ∅.

Also see [Cutland]

Exercise 188. For any of these sets, state whether the set is R, or RE \R,
or not in RE.

• K ∪ {5}

• {1, 2, 3, 4}

• {n|φn(2) = 6}

• {n|∃y ∈ N. φn(y) = 6}

• {n|∀y ∈ N. φn(y) = 6}

• {n|φn(n) = 6}

• {n|dom(φn) is finite}

• {n|dom(φn) is infinite}

• {n|φn is total}

• {n + 4|dom(φn) is finite}

• { ⌊100/(n + 1)2⌋ | dom(φn) is infinite}

• A ∪B, A ∩B, A \B where A,B ∈ RE

• A ∪B, A ∩B, A \B where A ∈ RE, B ∈ R

• {inL(n) | n ∈ A} ∪ {inR(n) | n ∈ B} where A,B ∈ RE

• {n | ∀m. encode×(m,n) ∈ A} where A ∈ RE

• {encode×(n,m)|encode×(m,n) ∈ A} where A ∈ RE

• {f(n)|n ∈ A} where A ∈ RE and f ∈ R, f total

• {f(n)|n ∈ A} where A ∈ RE and f ∈ R (may be non total)

• {n|f(n) ∈ A} where A ∈ RE and f ∈ R, f total

4.8. RICE’S THEOREM 61

• {n|f(n) ∈ A} where A ∈ RE and f ∈ R (may be non total)

Exercise 189. (Hard) Show that f ∈ R where

f(n) =

{

k if running φn(n) halts in k steps
undefined otherwise

Then show that there is no total recursive g such that f ⊆ g.
Finally, show that {n|∃i. φn ⊆ φi ∧ φi total} 6∈ RE.

Exercise 190. Let A ∈ RE . Define B = {n|∃m ∈ A.n < m}. Can we
deduce B ∈ RE ? What about C = {n|∀m ∈ A.n < m} ?

Exercise 191. Given a λ-term L and a Java program J , let φ#L and ϕ#J

be the respective semantics, as functions N N (assume #J to be the index
of the Java program J , defined using the usual encoding functions). Then,
consider A = {encode×(#L,#J) | φ#L = ϕ#J}. Is A ∈ R? Is it RE?

Exercise 192. Let A ∈ R, and B = {n | ∃m. encode×(n,m) ∈ A}. We
know that B ∈ RE by Lemma 169. Can we conclude that B ∈ RE \ R ?

Exercise 193. Consider the following formal language: (a, b are two con-
stants)

X := a | b | (XX)

and an equational semantics =γ given by

((aX)Y) =γ X
(((bX)Y)Z) =γ ((XZ)(Y Z))
(XY) =γ (X ′Y ′) when X =γ X ′ and Y =γ Y ′

=γ is transitive, symmetric, reflexive

Define #X as the index of X using the usual encoding functions. Discuss
whether you expect the sets below to be in R, RE\R, or not in RE, justifying
your assertions. (Note: I do not expect a real proof, but correct arguments.)

• {#X | X =γ a}

• {encode×(#X,#Y) | X 6=γ Y }

62 CHAPTER 4. CLASSICAL RESULTS

Appendix A

Solutions

Solution 194. We want a Θ such that ΘF = F (ΘF). We first write that
as Θ = λF.F (ΘF). Then, we abstract the Θ recursive call, obtaining

M = λw. λF. F (wF)

Then we duplicate the w inside

M = λw. λF. F (wwF)

And finally, we let Θ = MM , that is

Θ = (λw. λF. F (wwF))(λw. λF. F (wwF))

We are done. Let us check Θ is really a fixed point combinator.

ΘF = (λw. λF. F (wwF))(λw. λF. F (wwF))F

=
(

λF.F
(

(λw. λF. F (wwF))(λw. λF. F (wwF))F
)

)

F

=
(

λF.F (ΘF)
)

F

= F (ΘF)

The Θ above was given by Church. Turing discovered this other fixed
point combinator

Y = λF.MM where M = λw.F (ww)

There other ones, of course. The £ below is a peculiar one given by
Klop.

$ = ££££££££££££££££££££££££££

£ = λabcdefghijklmnopqstuvwxyzr. r(thisisafixedpointcombinator)

63

64 APPENDIX A. SOLUTIONS

Solution 195. By contradiction, assume T =βη F. Clearly, T and F are
βη-normal forms. By Th. 52, we have T→∗

βη F. Since T is a normal form,
this is not possible unless T =α F, which is clearly not the case

Solution 196. Here are many useful combinators:

And = λxy. xyF

Or = λxy. xTy

Not = λx. xFT

Leq = λnm. IsZero (mPredn)

Eq = λnm.And(Leqn m)(Leqm n)

Lt = λnm.Leq(Succ n)m

Add = λnm.nSuccm

Mul = λnm.n(Addm)0

Even = λn. nNotT

LimMinF Zppnqq returns the smallest m ∈ {0..n} such that Fppmqq = T. If
no such m exists, it returns Z. Note that F must return only T or F for
this to work.

LimMin = λfzn.Succn (λgx.fxx(g(Succ x)))(Kz)0

Any = λfn.Leq(LimMin f (Succ n)n)n

All = λfn.Not(Any(◦Not f)n)

The following is integer division: Divppnqqppmqq = pp⌊n/m⌋qq

Div = λnm.LimMin (λx.Ltn(Mul(Succx)m))Ωn

The following is the λ-term defining the encode× function. The definition is
straightforward from the formula for encode×.

Pair = λnm.Add(Div (Mul(Addn m)(Succ (Addn m)))pp2qq)n

We compute the inverse of c = encode×(n,m) by “brute force”. We merely
try all the possible values of n,m, encode them, and stop when we find the
unique n,m pair which has c as its encoding. By Lemma 22, we only need
to search for n,m ∈ {0..c}, so we limit our search to that square.

Proj1 = λc.LimMin (λn.Any(λm.Eq c (Pair n m))c)Ω c

Proj2 = λc.LimMin (λm.Any(λn.Eq c (Pair n m))c)Ω c

65

InL = λn.Mul pp2qqn

InR = λn.Succ(Mul pp2qqn)

Case = λnlr.Evenn (l(Div n pp2qq)) (r(Div n pp2qq))

Above, when n is odd, we compute (n − 1)/2 by just using Divppnqqpp2qq =
pp⌊n/2⌋qq = pp(n− 1)/2qq. We could also apply Pred to n, leading to the same
result.

Solution 197.

Length = Θ(λgl.Eq0 (Fst l)0 (Succ(g(Snd l))))
Merge = Θ(λgab.Eq0 (Fst a) b (Eq0 (Fst b) aA))
A = Leq (Fst a) (Fst b)B C
B = Cons (Fst a) (g (Snd a) b)
C = Cons (Fst b) (g a (Snd b))
Split = Θ(λga.Eq0A1 (Cons a a) (Cons (ConsA1 B2)B1))
B1 = Fst (g Ar)
B2 = Snd (g Ar)
A1 = Fst a
Ar = Snd a
MergeSort = Θ(λga.Eq0A1 a (Eq0A2 aM))
M = Merge (g (Fst (Split a))) (g (Snd (Split a)))
A1 = Fst a
A2 = Fst (Snd a)

Solution 198.

• GpMq = pMMq

G = λm.Appm m

• GpMNq = pNMq

G = λx.CasexΩ (λy.Case y (λz. InR (InL (Pair (Proj2 z) (Proj1 z))))Ω)

• Gpλx.Mq = pMq

G = λx.CasexΩ (λy.Case y Ω (λz.Proj2 z))

66 APPENDIX A. SOLUTIONS

• Gpλx. λy.Mq = pλy. λx.Mq
This is rather complex:

G = λx.CasexΩ (λy.Case y Ω (λz.A (Proj2 z)))
A = λx′.Casex′ Ω (λy′.Case y′ Ω (λz′. B))
B = InR (InR (Pair (Proj1 z′) (InR (InR (Pair (Proj1 z) (Proj2 z′))))))

• GpIMq = pMq and GpKMq = pIq

G = λx.CasexΩ (λy.Case y (λz.Eq(Proj1 z)pIq(Proj2 z)pIq)Ω)

• Gpλxi.Mq = pλxi+1.Mq

G = λx.CasexΩ (λy.Case y Ω (λz. InR (InR (Pair (Succ(Proj1z)) (Proj2z)))))

• GpMq = pNq where N is obtained from M replacing every (bound or
free) variable xi with xi+1

G = Θ(λgx.Case x (λi. InL(Succ i))(λy.Case y AB))
A = λz. InR (InL (Pair (g(Proj1 z)) (g(Proj2 z))))
B = λz. InR (InR (Pair (Succ(Proj1 z)) (g(Proj2 z))))

• GpMq = pM{I/x0}q (this does not require α-conversion)

G = Θ(λgx.Case xA(Case y B C))
A = λi.Eq i0 pIq (InL i)
B = λz. InR (InL (Pair (g(Proj1 z)) (g(Proj2 z))))
C = λz.Eq (Proj1 z)0 z (InR (InR (Pair (Proj1 z) (g(Proj2 z)))))

Solution 199. By contradiction, suppose K0 is λ-defined by F . Then, we
consider

G = λx. F (App pKq (App x(Num x)))

We have that GpMq = FpK(MpMq)q. The latter evaluates to T of F

depending on whether K(MpMq)0 = MpMq has a normal form. So G
actually λ-defines K, which is a contradiction.

Solution 200. Take Pad = λn.App pIqn. Then, PadpMq = pIMq, and we
have

#(IM) = 1 + 2 · (2 · ((#I+#M)(#I+#M+1)
2 + #I)) ≥

≥ 1 + 4 · #M
2 > #M

