
Static Enforcement of Service Deadlines

Massimo Bartoletti1 and Roberto Zunino2

1 Dipartimento di Matematica e Informatica, Università degli Studi di Cagliari
2 Dipartimento di Ingegneria e Scienza dell’Informazione, Università di Trento

Abstract. We consider the problem of statically deciding when a service
always provides its functionality within a given amount of time. In a
timed π-calculus, we propose a two-phases static analysis guaranteeing
that processes enjoy both the maximal progress and the well-timedness
properties. Exploiting this analysis, we devise a decision procedure for
checking service deadlines.

1 Introduction

Time plays a crucial role in Service-oriented Computing. Given a formal specifi-
cation of a set of interacting services, a frequent question is whether invoking a
service will yield the desired functionality, and how much time will be required
to complete the whole task. Also, in scenarios where service level agreement and
negotiation are regulated by contracts [3,4,7,8], it is common that such contracts
involve time constraints on the fulfillment of operations. Temporal guarantees
are then in order to devise orchestrations satisfying all the required contracts.

A useful feature of SOC infrastructures would then be the ability to check
whether, from a formal specification, one can infer a static time bound for each
of the provided functionalities. Detecting such static temporal guarantees is the
goal of this paper. We choose, as a minimalistic specification language, a syn-
chronous π-calculus extended with a few primitives to deal with time. We adopt
a discrete time model, where time is measured in atomic units, named ticks.

A first feature of our calculus is the ability of specifying services which can al-
ways complete an arbitrarily complex internal computation within a given num-
ber of time units. In other words, our calculus will enjoy the maximal progress
property [18], that is, the passing of time cannot block internal computations.

To obtain maximal progress for our calculus, we prioritize the computation
steps of services w.r.t. time ticks. In this way, time cannot pass unless the spec-
ification itself explicitly asks for it. This approach provides a lot of power to
the specification, which can precisely handle the flowing of time. This enhanced
expressive power leads, as a drawback, to the possibility of abuses. For instance,
time might be blocked by stuck processes, as well as by processes entering an in-
finite loop of internal computations. Pragmatically, these kinds of specifications
are meaningless: obviously, no real-world service can stop the flowing of time.

A main contribution of this paper is a static analysis allowing to single out
such kind of “ill-timed” specifications. Our analysis consists of two phases. In the
first phase, we develop a type system for checking pulsingness, a property enjoyed

by those processes which will eventually perform (at least) one tick. After a tick,
the behaviour is unpredicted by this analysis. A further type system exploits then
the results of the first phase, to detect those processes that always remain pulsing
after each tick. Such processes enjoy deadlock-freedom and well-timedness [18],
therefore they guarantee that time will never freeze.

This property is pivotal for our global contribution, an algorithm for deciding
if a service actually guarantees some desired property within a given deadline.
While this property is undecidable in the general case of ill-timed services, it
turns out to be decidable for those services typeable in our two-phase system.

An example. Consider a simple scenario with three services. A service broker
B is invoked by a client requiring some functionality f . Two external services
are delegated to provide such functionality: a cheap one C, and an expensive
one E. The broker first attempts to query the cheap service; if no response
arrives within a given timeout, the broker queries the expensive one. Unlike the
expensive service, the cheap one will provide the result only if it can be produced
within a given time bound. We specify the three services as follows:

E = recX. e(x, k)∞.χ.(X|k̄〈f(x)〉∞.Ω∞)

C = recX. c(x, k)∞.χ.(X|⌈χ.k̄〈f(x)〉∞.Ω∞ + χ.χ.χ.k̄〈f(x)〉∞.Ω∞⌉2(Ω∞))

B = recX. b(x, k)∞.χ.νk′
(

c̄〈x, k′〉∞.Ω∞

∣

∣⌊k′(y)∞.k̄y∞.X⌋3(ē〈x, k〉∞.X)
)

The semantics of the above services is formalised in Sect. 2; here, we just describe
intuitively the behavior of the services, and the usage of our static machinery.

Service E receives as input some datum x and a return channel k. The prefix
e(x, k)∞ just means that the process may tick until the input is available. After
that, E computes f(x) and returns the result through k. Again, the output prefix
k̄〈f(x)〉∞ may tick ad libitum. After the result has been returned, the process
does nothing but perpetually ticking, denoted by Ω∞. Note that E performs its
duty within a single tick, denoted as χ.

In service C, an initial tick is required to handle the request; after that,
either one or three ticks (at service discretion) are needed to complete the task.
To abort computations taking too much time, C uses a watchdog [18], written
as ⌈−⌉2(−). After two ticks, the computation is abruptly halted, and no reply
is provided. Globally, C may then require from 2 to 3 ticks to complete its task.

The broker B first forwards its request to C through channel c. The answer,
if any, is received on channel k′, and then forwarded to the client on channel k.
Whenever C reply takes too long, the broker resorts to the expensive service E.
A timeout [18], written as ⌊−⌋3(−), is used by B to stop waiting for the cheap
service after three ticks. We expect that the broker B, once invoked, will always
reply within a fixed time bound. In the worst case, it takes 1 + 3 + 1 = 5 ticks.

We can put our machinery at work to check this formally. First, the static
analyses of Sects. 3, 4 guarantee that the above specification is well-timed. Then,
the decision procedure of Th. 5 ensures that five ticks indeed suffice for a reply.
The same procedure can also tell us that four ticks do not suffice, so five ticks
is the tightest static bound.

2

Outline of the paper. We present our timed calculus in Sect. 2. The maximal
progress property is stated in Th. 1. In Sect. 3 we introduce the first phase of our
static analysis, i.e. a type system that recognizes pulsing processes; its soundness
is stated in Th. 2. The second step of our analysis is in Sect. 4, featuring a type
system for well-timedness (the soundness of which is stated by Th. 4) and our
decision procedure for service deadlines (Th. 5). In Sect. 5 we discuss some
related work. The appendixes contain the proofs of our results.

2 A timed π-calculus

We now present a timed π-calculus. Its syntax is rather standard: it is a syn-
chronous π-calculus, also allowing for non-guarded choice, timeouts and watch-
dogs [18]. The prefix χ (tick) models the passing of one time unit.

Syntax. Let N be a countably infinite set of names, written as lowercase latin
letters a, b, x, . . ., possibly with a bar: ā, b̄, x̄. Prefixes π are defined as follows:

π ::= āx
∣

∣ a(x)
∣

∣ τ
∣

∣ χ

The prefix āx is to send a name x through a; the prefix a(x) is to receive a name
through a and bind it to x; the prefix τ is for an internal computation; the prefix
χ is for making a single time unit pass.

Processes P,Q, . . . comprise prefixed processes π.P , parallel composition P |Q,
non-deterministic choice P + Q, recursion recX.P , restriction (νa)P , timeouts
and watchdogs. A timeout ⌊P ⌋k(Q) behaves as P if an initial action of P is fired
within k ticks; otherwise, it behaves as Q. A watchdog ⌈P ⌉k(Q) behaves as P
until the k-th tick; since then, it behaves as Q.

Definition 1 (Processes). The set P of processes P,Q, . . . is defined as:

P,Q ::= π.P
∣

∣ P + Q
∣

∣ P |Q
∣

∣ recX.P
∣

∣ X
∣

∣ (νa)P
∣

∣ ⌊P ⌋k(Q)
∣

∣ ⌈P ⌉k(Q)

To keep our syntax minimal, we do not explicitly feature the stuck process 0.
Stuckness can be represented as well through the process recX.X (see Ex. 1).
As usual, we consider processes up-to alpha-conversion, and up-to the structural
congruence relation (the definition is standard, see App. A).

Actions comprise the standard ones of the π-calculus: input, free and bound
outputs, and the silent action τ . Additionally, we have the action χ(A), where
the set A is used for making the tick χ a low-priority (non-urgent) action [18]. To
do that, A contains the names associated with potential higher-priority actions.

Definition 2 (Actions). The set A of actions is defined as follows:

α ::= a(x)
∣

∣ āx
∣

∣ ā(x)
∣

∣ τ
∣

∣ χ(A)

where A⊆ N∪{τ} is a finite set. We write α = χ(−) when α=χ(A) for some A.

The set act(P) contains the active names of a process P , i.e. the names of
the channels involved in immediately available actions, possibly including τ . The
definition is mostly standard, so it is postponed to App. A.

3

Semantics. We define the semantics of our calculus through the labelled tran-
sition system in Fig. 1.

The rules [Pref, Sum, Par, Comm, Rec, Open, Close, Res] are rather stan-
dard, defining the behaviour of inputs, (free and bound) outputs, and silent
actions. Note that the side condition α 6= χ(−) prevents these rules from mak-
ing the time pass. The rules [Chi, SumChi, ParChi, ResChi] model the passing
of time, by allowing χ(−) actions to be generated. We briefly comment on these.

Rule [Chi] fires a χ prefix, generating a χ(∅) action. Here, the empty set
represents the fact that the process can perform no other action but χ.

Rule [SumChi] allows a time tick to cause the selection of a branch P in a
non-deterministic choice P +Q. Intuitively, this models the ability of one branch
to signal a time-out, making the other branch no longer available. To prioritize
computation over the passing of time, this is only permitted when the other
branch Q is stuck. To do that, we first check in the side condition that no internal
move is possible for that branch (τ 6∈ act(Q)). Then, we augment the set A in the
action χ(A) with the names act(Q), i.e. with the subjects of inputs and outputs
which can be fired by Q. Each of these inputs and outputs may be stuck or
not, depending on the context. Of course, to maintain our operational semantics
compositional, we cannot put any requirement on the context. Rather, we just
record all the relevant information inside the label, and defer the stuckness check.

Rule [ParChi] allows a composition P |Q to perform a tick. This is possible if
both P and Q perform a tick, unlike rule [Par] requiring just one of them to move.
This causes time to pass for all parallel components, in a synchronous fashion.
The side condition stuck(A,B) performs the check deferred in rule [SumChi]:
communication between P and Q is thus prioritized over the passing of time.

Rule [ResChi] allows time to pass for a restricted process (νa)P . All the
deferred checks about a, ā have already been performed at this point, since we
have reached the boundary of the scope for a. We are then allowed to discharge
the related proof obligations.

The rules [TO1,TO2,TO3] and [WD1,WD2,WD3] deal with timeouts and
watchdogs, respectively. The two sets of rules are mostly similar, the character-
ising ones being [TO1] and [WD1]. Rule [TO1] drives a timeout ⌊P ⌋k(Q) to a
residual of P , when k > 0 and P performs a non-tick action. Rule [WD1] allows
a derivation of P within a watchdog ⌈P ⌉k(Q), when k > 0. The rules [TO2] and
[WD2] perform a tick, decreasing the counter of a timeout/watchdog. The rules
[TO3] and [WD3] allow to leave a timeout/watchdog when the counter reaches 0.

We now introduce some remarkable processes.

Example 1. Consider the processes:

0 = recX.X Ω∞ = recX.χ.X π∞.P = recX.(χ.X + π.P)

The process 0 is always stuck. Note that 0 does not enjoy transition liveness [18],
i.e. it can neither perform an internal action, nor make the time pass. The process
Ω∞ is perpetually ticking, yet it cannot perform any other action. For each prefix
π and process P , the process π∞.P = recX.(χ.X + π.P) may indefinitely defer
the action π, making the time pass until it eventually fires π.

4

π.P
π
−→ P

π 6= χ [Pref] χ.P
χ(∅)
−−−→ P [Chi]

P
α
−→ P ′

P + Q
α
−→ P ′

α 6= χ(−) [Sum]
P

χ(A)
−−−→ P ′

P + Q
χ(A∪act(Q))
−−−−−−−−→ P ′

τ 6∈ act(Q) [SumChi]

P
α
−→ P ′

P |Q
α
−→ P ′|Q

α 6= χ(−)
bn(α) ∩ fn(Q) = ∅

[Par]
P

χ(A)
−−−→ P ′ Q

χ(B)
−−−→ Q′

P |Q
χ(A∪B)
−−−−−→ P ′|Q′

stuck(A, B) [ParChi]

P
āx
−→ P ′ Q

a(x)
−−−→ Q′

P |Q
τ
−→ P ′|Q′

[Comm]
P{rec X.P / X}

α
−→ P ′

rec X.P
α
−→ P ′

[Rec]

P
āx
−→ P ′

(νx)P
ā(x)
−−−→ P ′

x 6= a, ā [Open]
P

ā(x)
−−−→ P ′ Q

a(x)
−−−→ Q′

P |Q
τ
−→ (νx)(P ′|Q′)

[Close]

P
α
−→ P ′

(νa)P
α
−→ (νa)P ′

α 6= χ(−)
a 6∈ n(α)

[Res]
P

χ(A)
−−−→ P ′

(νa)P
χ(A\{a,ā})
−−−−−−−→ (νa)P ′

[ResChi]

P
α
−→ P ′

⌊P ⌋k(Q)
α
−→ P ′

α 6= χ(−)
k > 0

[TO1]
P

α
−→ P ′

⌈P ⌉k(Q)
α
−→ ⌈P ′⌉k(Q)

α 6= χ(−)
k > 0

[WD1]

P
χ(A)
−−−→ P ′

⌊P ⌋k(Q)
χ(A)
−−−→ ⌊P ′⌋k−1(Q)

k > 0 [TO2]
P

χ(A)
−−−→ P ′

⌈P ⌉k(Q)
χ(A)
−−−→ ⌈P ′⌉k−1(Q)

k > 0 [WD2]

Q
α
−→ Q′

⌊P ⌋0(Q)
α
−→ Q′

[TO3]
Q

α
−→ Q′

⌈P ⌉0(Q)
α
−→ Q′

[WD3]

stuck(A, B) ⇐⇒ ∄a. (a ∈ A ∧ ā ∈ B) ∨ (a ∈ B ∧ ā ∈ A)

Fig. 1. The transition rules

The following lemma, given a transition P
χ(A)
−−−→, relates the names contained

in A with the actions occurring in the immediate transitions from P .

Lemma 1. For all processes P :

P
χ(A)
−−−→ ∧ P

a(x)
−−−→ =⇒ a ∈ A(1a)

P
χ(A)
−−−→ ∧ (P

āx
−→ ∨ P

ā(x)
−−−→) =⇒ ā ∈ A(1b)

P
χ(A)
−−−→ ∧ P

τ
−→ =⇒ τ ∈ A(1c)

A key result about our semantics is the maximal progress property (Th. 1).
That is, the time can pass only when no other internal actions are possible.

Theorem 1 (Maximal progress). If P
τ
−→ then P 6

χ(−)
−−−−→.

5

Proof. By contradiction, assume that P
τ
−→ and P

χ(A)
−−−→ for some A. By (1c), it

follows that τ ∈ A. However, by induction on the derivation P
χ(A)
−−−→, it follows

that τ 6∈ A (the only rule which could potentially add τ is [SumChi], yet its side
condition prevents from such behaviour) – contradiction.

We now briefly comment (strong, late) bisimilarity ∼ in our calculus. Its
definition can be given through standard means [22], so we omit it.

In the π-calculus, (strong, late) bisimilarity ∼π satisfies P + 0 ∼π P and
P |0 ∼π P , so making 0 a neutral element of + and |. This holds even when these
laws are not comprised in the structural equivalence relation.

In our calculus, 0 is just a shorthand for recX.X. It is easy to see that our 0
is a neutral element for +, but not for |. For instance, we have χ.Q|0 6∼ χ.Q,
because the right hand side can perform χ(∅), while the left hand side is stuck:
applying [ParChi] would require 0 to move as well. Therefore, the correct law
in this case would be χ.Q|0 ∼ 0. Note that parallel composition still admits
Ω∞ as a neutral element, since Ω∞|P ∼ P holds. Further interesting laws are
χ.Q | āx.P ∼ āx.(χ.Q | P) and χ.Q + τ.P ∼ τ.P . In the former, the action
χ in χ.Q cannot be fired until P performs χ as well. This allows χ.Q to be
pushed inside the continuation of the output. Similar laws hold if we replace the
output prefix with τ or input, as long as no captures occur. In the latter, the
side condition of [SumChi] prevents the χ in χ.Q + τ.P from being fired, thus,
χ.Q + τ.P is actually bisimilar to τ.P .

3 Pulsing processes

The maximal progress property allows us to specify processes guaranteed to
finish their job in a given amount of ticks. This is because no ticks (i.e. χ actions)
can be performed while a process is performing internal computation (i.e. while
τ actions are enabled). In a sense, this gives too much power to processes, which
are able to avoid the passing of time as long as desired. Indeed, a misbehaving
process could perform an infinite sequence of τ actions, so “freezing” the passing
of time. Stuck processes can stop time as well. Clearly, these processes should
not be regarded as faithful specifications of real-world systems, since no real
system can hinder the passing of time.

In the rest of the paper, we will study how to statically prevent from these
kinds of misbehaviour. More precisely, we will introduce a type system which
ensures that typable processes will perform an unbounded number of ticks. Our
analysis consists of two steps.

In the first step (developed in this section), we single out the processes that
are guaranteed to eventually perform at least one χ action. We say such processes
to be pulsing. Note that a pulsing process is guaranteed to not get stuck only
until the first tick is performed. After that, the behaviour of a pulsing process is
no longer constrained.

In the next section, we will present a type system to ensure that the pulsing-
ness of a given process is preserved in each possible run. In that case, after the

6

first χ the process will still be pulsing. This guarantees that an infinite number
of χ will be eventually produced.

We start here by formalising when a process is pulsing.

Definition 3. The maximal traces of a process P are defined as follows:

Tr (P) = {α0α1 · · · | P
α0−→

α1−→ · · · } ∪ {α0 · · ·αn | P
α0−→ · · ·

αn−−→6→}

For each trace η and k ≥ 0, we write η|k for the truncation of η to the first k
actions (if k = 0, then η|k = ε). Note that, if P is stuck, then Tr (P) = {ε}.

Definition 4 (Pulsingness). We say that a process P is pulsing whenever:

∀η ∈ Tr (P) : ∃k : χ(−) ∈ η|k

We now introduce our types. A type R can either be ⊤, denoting the absence
of information about a process, or χ, for a process which is ready to perform a
tick, or ΠS, for a process which will behave according to the type S after having
accomplished with the type prefix Π. The type prefix Π can be of three kinds:
τ is for a process which is ready to perform a τ action (but not a tick); ! is for
a process ready to perform a τ action or a tick; finally, ? is for a process which
is either stuck or will perform some action (of any kind).

Definition 5. The set of type prefixes and the set T of types (ranged over by
R,S, . . .) are defined by the following grammars:

Π ::= τ
∣

∣ !
∣

∣ ?

R ::= ⊤
∣

∣ χ
∣

∣ Π R

We now provide a subtyping relation ⊑ for our types and type prefixes.

Definition 6. We define the total order ⊑ between type prefixes as follows:

τ ⊑ ! ⊑ ?

The relation ⊑ over types is then defined as the smallest preorder such that:

χ ⊑ !R R ⊑ ⊤ Π R ⊑ Π ′
R
′ whenever Π ⊑ Π ′ and R ⊑ R

′

Our subtyping relation forms a join semilattice. The lub ⊔ on type prefixes
is just the maximum, since type prefixes are totally ordered. The lub on types
has the following algebraic characterization (symmetric laws are omitted).

Lemma 2. The pair (T ,⊑) is a join semilattice. Furthermore, we have: Proof in
App. B

⊤ ⊔ R = ⊤ χ ⊔ R =

{

!S if R = τS

R otherwise
Π R ⊔ Π ′

R
′ = (Π ⊔ Π ′) (R ⊔ R

′)

7

To assign types to processes, we proceed in a compositional way. We abstract
the semantics of parallel composition and choice, by defining corresponding ab-
stract operators on types and type prefixes. Most cases follow the intuition be-
hind our types, so we now comment the most peculiar cases. If a process can
perform a τ action, then adding a parallel component will still preserve the ability
to fire τ , so τ |Π = τ . The same holds for τ +Π = τ . A choice having a non-stuck
process in a branch will be non-stuck: ! + Π =!. For parallel composition, we
first note that !|! =! agrees with our intuition: either one side can perform a τ ,
or both can perform a χ. In both cases, the process at hand is non-stuck, hence
can be typed with !. Also, we let !|? =? since the left component could be able to
perform a tick, only, while the right component could be stuck: in this case the
whole process would be stuck, so we abstract that using ?. Both equations !|! =!
and !|? =? are generalized by !|Π = Π. This concludes the equations on type
prefixes. Among the type equations, we have χ|R = R since an idle process does
not affect its parallel components. Since we are concerned with pulsingness, we
can safely define χ+R to be R, thus choosing the worst-case branch. We actually
refine that equation so that χ+?R =!R, reflecting that in this case we know that
the abstracted process is not stuck: if the right branch is stuck, we can perform
χ. As usual, below we omit the symmetric laws.

Definition 7. We define the operators | and + between type prefixes as:

τ | Π = τ ! | Π = Π ? | ? = ?

τ + Π = τ ! + Π = ! (if Π 6= τ) ?+? =?

We define the operators | and + between types as follows:

⊤ | R = ⊤ χ | R = R Π R | Π ′
R
′ = (Π|Π ′) (R|Π ′

R
′ ⊔ ΠR|R′ ⊔ R|R′)

⊤+R = ⊤ χ+R =

{

!S if R =?S

R o.w.
Π R+Π ′

R
′ = (Π+Π ′) (R ⊔ R

′)

We are now ready to assign a type ∆(P) to each process P . This is done
in an algebraic fashion. A χ.P process is abstracted with the type χ, neglecting
the continuation P , since we only care about pulsingness at this stage. Internal
τ actions are abstracted with τ , and potentially blocking prefixes are abstracted
with ?. We use our abstract operators to handle choice and parallel composition.
Restriction and recursion do not affect the result of ∆. Variables can stand for
anything, so we abstract them with ⊤. Timeouts and watchdogs behave as either
their first or second components, so we type them accordingly.

Definition 8. We define the function ∆ : P → T as follows:

∆(χ.P) = χ ∆(τ.P) = τ∆(P) ∆(a(x).P) = ∆(āx.P) = ?∆(P) ∆(X) = ⊤

∆(P + Q) = ∆(P) + ∆(Q) ∆(P |Q) = ∆(P)|∆(Q) ∆((νa)P) = ∆(P)

∆(recX.P) = ∆(P) ∆(⌊P ⌋k(Q)) = ∆(⌈P ⌉k(Q)) =

{

∆(P) if k > 0

∆(Q) if k = 0

8

Example 2. Recall the processes of Ex. 1. We have that:

∆(0) = ∆(recX.X) = ∆(X) = ⊤

∆(Ω∞) = recX.χ.X = ∆(χ.X) = χ

∆(π∞.P) = ∆(recX.(χ.X + π.P)) = χ+?∆(P) = !∆(P)

The first item deals with the stuck process 0: of course, no ticking is guaranteed.
The second item guarantees that the first step of the perpetually ticking process
Ω∞ will be a tick. In the last item, π∞.P is guaranteed to perform an action.
This can be either a tick, if the left branch of the sum is chosen, or the prefix π
on the right branch. In the second case, the residual pulsingness is that of P .

A subject reduction result holds for our type system. First, processes typed
by χ, τR, !R actually enjoy the corresponding semantic properties (items 3a, 3b
and 3c). Second, typing is preserved by process transitions, except for ticks
(item 3d). The exception for ticks is a crucial one, yet it still allows our type
system to correctly approximate the pulsingness of processes. Indeed, pulsing-
ness does not require to consider what happens after the first tick. In the next
section we shall see a further type system, which exploits the current pulsingness
analysis to approximate well-timedness of processes.

Lemma 3 (Subject reduction). For all processes P and for all types R: Proof in
App. B

∆(P) ⊑ χ =⇒ (∀α, P ′ : P
α
−→ P ′ =⇒ α = χ(∅)) ∧ (∃P ′ : P

χ(∅)
−−−→ P ′)(3a)

∆(P) ⊑ τR =⇒ ∃P ′ : P
τ
−→ P ′(3b)

∆(P) ⊑ !R =⇒ ∃P ′ : P
τ
−→ P ′ ∨ P

χ(−)
−−−→ P ′(3c)

∆(P) ⊑ ?R =⇒ ∀α, P ′ : P
α
−→ P ′ =⇒ α = χ(−) ∨ ∆(P ′) ⊑ R(3d)

We now introduce a static notion of pulsingness. Theorem 2 below states
that this static notion correctly approximates the dynamic one (Def. 4).

Definition 9. We inductively define the predicate pulsingk(R) as follows:

– pulsing0(R) iff R = χ.
– pulsingk+1(R) iff there exists S such that R ⊑ !S and pulsingk(S).

We say R is pulsing if there exists k such that pulsingk(R).
We say R is weakly pulsing if either R is pulsing, or R =?S for some pulsing S.

The following lemma is crucial in establishing our abstraction correct. Let P
be a statically pulsing process, i.e. pulsingk(∆(P)) for some k. Item 4a says that
P is not stuck. Item 4b says that P will remain pulsing until it performs a tick.
Finally, item 4c says that a tick will eventually be performed.

Lemma 4. For all processes P , if pulsingk(∆(P)), then:

∃α, P ′ : P
α
−→ P ′ ∧ α ∈ {τ, χ(−)}(4a)

P
α
−→ P ′ ∧ α 6= χ(−) =⇒ k > 0 ∧ pulsingk−1(∆(P ′))(4b)

∀η ∈ Tr (P) : χ(−) ∈ η|k+1(4c)

9

Proof. The item (4a) follows by (3c), since pulsingk(∆(P)) implies ∆(P) ⊑!R for
some R. The item (4b) follows by (3d), since pulsingk(∆(P)) implies ∆(P) ⊑?R
for some R. We prove (4c) by induction on k. If k = 0, (3a) suffices. If k > 0,
note that η = αη′ from some α, since P is not stuck by (4a) and η is maximal.
If α = χ(−), we directly obtain the thesis. Otherwise, by (4b) and the ind. hyp.
we obtain χ(−) ∈ η′

|k, hence χ(−) ∈ η|k+1. ⊓⊔

The main result of this section is that if (statically) the type of a process P
is pulsing, then (dynamically) P is pulsing. This follows directly from 4c.

Theorem 2. If pulsing (∆(P)), then P is pulsing.

4 Well-timedness and Service Deadlines

In this section we introduce a type system that guarantees each typable process
to produce an infinite number of ticks. Since only a finite number of actions
can be performed between two consecutive ticks, this implies the so-called well-
timedness (or finite variability) property [18]. Intuitively, this models the fact
that, in any finite time interval, only a finite amount of work can be performed.

Before presenting our type system, we briefly discuss three different formali-
sations of well-timedness. Intuitively, any definition of this property requires that
in all the traces Tr (P) of a process P , the label χ(−) occurs infinitely often.
That is to say, in each process P ′ reachable from P , χ(−) occurs in all the traces
of P ′. This closely corresponds to the formulation of well-timedness in [18].

Definition 10 (Well-timedness). A process P is well-timed iff, whenever
P →∗ P ′ and η ∈ Tr (P ′), we have χ(−) ∈ η.

A bit stronger definition would require that, for each residual P ′ of P , an
upper bound k is known within which the action χ(−) will eventually occur. We
call this property strong well-timedness.

Definition 11 (Strong well-timedness). A process P is strongly well-timed
iff, whenever P →∗ P ′, there exists k such that, for all η ∈ Tr (P ′), χ(−) ∈ η|k.

An even stronger requirement asks that an upper bound k exists on the
number of actions that can be performed between two ticks. That is to say,
whatever derivation of P we have at hand, a tick will occur within k steps.
This property, named here bounded well-timedness, closely corresponds to the
bounded variability property mentioned in [18].

Definition 12 (Bounded well-timedness). A process P is bounded well-
timed iff there exists k such that, for all P →∗ P ′ and η ∈ Tr (P ′), χ(−) ∈ η|k.

Note that the above three definitions of well-timedness only differ for the
placement of an existential quantifier. More precisely, they can be rephrased as:

well-timedness : ∀P ′, η : P →∗ P ′ ∧ η ∈ Tr (P ′) =⇒ ∃k : χ(−) ∈ η|k

strong well-timedness : ∀P ′ : P →∗ P ′ =⇒ ∃k : ∀η ∈ Tr (P ′) : χ(−) ∈ η|k

bounded well timedness : ∃k : ∀P ′, η : P →∗ P ′ ∧ η ∈ Tr (P ′) =⇒ χ(−) ∈ η|k

10

This immediately proves inclusion between the three above well-timedness
properties, as formalized by the following lemma.

Lemma 5. For all processes P : (i) if P is bounded well-timed, then P is strongly
well-timed; (ii) if P is strongly well-timed, then P is well-timed.

Separation results hold for the three notions of well-timedness (Lemma 7), i.e.
there exists processes which are “classically” (yet not strongly) well-timed, and
processes which are strongly (yet not boundedly) well-timed. However, classical
and strong well-timedness coincide for finitely-branching LTSs (Lemma 6).

Lemma 6. Let P be a process with a finitely-branching LTS. If P is well-timed, Proof in
App. Cthen it is also strongly well-timed.

Lemma 7. There exists a well-timed process P which is not strongly well-timed.
Also, there exists a strongly well-timed process Q which is not bounded well-timed.

Proof. Take as P and Q the following process (more details in App. C):

P = (νa) (recX.(X + āa∞.Ω∞|a(x).āa∞.Ω∞))

Q = (νa) (recX.(τ.χ.X + āa∞.Ω∞| R)) where R = a(x)∞.āa∞.Ω∞ ⊓⊔

Type system. The main goal of our type system (Table 1) is to preserve the
pulsingness of a process after each χ step. This will guarantee that an infinite
number of χ will be eventually produced. Type judgements have the form Γ ⊢ P ,
where Γ is a typing environment mapping variables X to (closed) processes. The
typing environment is used to keep track of recursive processes. The typing rules
are mostly straightforward, so we comment on the most peculiar ones, only.

To preserve pulsingness, rule [T-Chi] checks that the continuation P of a
χ-prefix is still pulsing. In the general case, the continuation can be an open
process, e.g. recX. χ.X. So, before checking P for pulsingness, we subtitute the
variable for its own definition by applying the environment Γ . This is done by
augmenting Γ with the recursive definition in rule [T-Rec], so that we can then
check PΓ in rule [T-Chi]. Roughly, this amounts to unfold (once) the recursion.

The rules [T-TO0]/[T-WD0] deal with the case k = 0 of timeouts/watchdogs:
in such case, we know that only Q matters. In a timeout with k > 0, we consider
two cases. If ∆(P) predicts a τ move within k steps, we know that Q will never be
executed. Otherwise, we require Q to be typeable and pulsing, as shown in rule
[T-TO1]. For a watchdog, we simply check both components in rule [T-WD1].

Note that our typing rules proceed by structural induction on the syntax of
processes. Indeed, the right hand side of each judgment in a premise is a strict
subprocess of the right hand side of the judgment in the conclusion. Also, when
constructing a typing derivation in a bottom-up fashion, at most one rule can be
applied at each step. This immediately proves the decidability of type inference.

We can now state subject reduction: pulsingness and typeability, taken to-
gether, are preserved through transitions. Technically, the actual inductive state-
ment is stronger, just requiring weak pulsingness in the hypotheses.

11

Γ ⊢ P Γ ⊢ Q

Γ ⊢ P + Q
[T-Sum]

Γ ⊢ P Γ ⊢ Q

Γ ⊢ P |Q
[T-Par]

Γ ⊢ P pulsing (∆(PΓ))

Γ ⊢ χ.P
[T-Chi]

Γ ⊢ P π 6= χ

Γ ⊢ π.P
[T-Pref]

Γ ⊢ P

Γ ⊢ (νa)P
[T-Res]

Γ, X : (rec X.P)Γ ⊢ P pulsing (∆(rec X.PΓ))

Γ ⊢ rec X.P
[T-Rec] Γ, X : Q ⊢ X [T-Var]

Γ ⊢ Q

Γ ⊢ ⌊P ⌋0(Q)
[T-TO0]

Γ ⊢ P
`

τ ∈ ∆(P)|k+1 ∨ (Γ ⊢ Q ∧ pulsing (∆(QΓ)))
´

Γ ⊢ ⌊P ⌋k+1(Q)
[T-TO1]

Γ ⊢ Q

Γ ⊢ ⌈P ⌉0(Q)
[T-WD0]

Γ ⊢ P Γ ⊢ Q pulsing (∆(QΓ))

Γ ⊢ ⌈P ⌉k+1(Q)
[T-WD1]

Table 1. The type system

Theorem 3 (Subject reduction). For all closed processes P : Proof in
App. C

weakly pulsing (∆(P)) ∧ ⊢ P ∧ P
α
−→ P ′ =⇒ pulsing (∆(P ′)) ∧ ⊢ P ′

We now establish the soundness of our type system. Typeable pulsing pro-
cesses are well-timed (actually, strong well-timedness is guaranteed as well).

Theorem 4 (Type Soundness). Let P be a closed process. If ⊢ P and ∆(P)
is pulsing, then P is strongly well-timed.

Proof. Assume P →∗ P ′. By repeated application of Th. 3, we have ⊢ P ′ and
pulsing (∆(P ′)). By Def. 9, there exists k such that pulsingk(∆(P ′)). Let η ∈
Tr (P ′). Then, by Lemma 4c, we get χ(−) ∈ η|k+1. ⊓⊔

Example 3. Recall the processes of Ex. 1. We have the following judgements:

6⊢ 0 ⊢ Ω∞ ⊢ π∞.P iff ⊢ P ∧ pulsing (∆(P))

Enforcing Deadlines. We now establish our main decidability result. First,
we define when a process satisfies a predicate within a bounded number of ticks.

Definition 13. Let φ : P → {false, true} be a decidable predicate on processes,
and let k ∈ N. We say that a process P satisfies “φ within k ticks” if there exist
no runs P = P0

α0−→ P1 · · ·
αn−−→ Pn such that χ(−) occurs k times in the trace

α0 · · ·αn but none of the processes P0, . . . , Pn satisfies φ.

In general, it is undecidable to state whether a process P satisfies φ within k
ticks, as the halting problem can be reduced to this. Trivially, a process P can
simulate a Turing machine without producing any tick, and then on termination
exposes a barb so to satisfy φ. However, for well-timed finite-branching processes,
this property turns out to be decidable.

12

Theorem 5. Let P be a well-timed process with a finitely branching LTS. Let φ
be a decidable predicate on processes, and let k ∈ N. Then, it is decidable whether
P satisfies φ in k ticks.

Proof (Sketch). Intuitively, we can decide “P satisfies φ in k ticks” by exploring
the LTS of P until k ticks are found in every branch. This can be done, e.g.,
through a depth-first search. When k ticks are found without φ being true, we
can output false; otherwise, when the visit is completed, we output true.

This procedure terminates. To prove that, we first label P with the ordinal
number ω ·k, and then we label each other process in the LTS of P such that, in
each transition, the residual has a strictly lower label than the antecedent. For a
successor ordinal ω · n + m + 1 it is sufficient to pick ω · n + m for each residual.
When a limit ordinal ω ·n is found at a process Q, we can choose ω · (n− 1)+m
where m is the threshold provided for Q by strong well-timedness of P , implied
by the hypothesis and Lemma 6. This ensures that we will find at least k ticks
before the labels reach zero. We can then establish termination by contradiction
as follows. If our procedure does not terminate, it will visit an infinite number of
nodes. By König’s lemma, an infinite branch exists, which implies the existence
of an infinite descending chain of ordinals – contradiction. ⊓⊔

5 Discussion and Related Work

Timed extensions of process calculi have been studied since the late eight-
ies [1,2,5,10,11,16,19,21,24]. A number of these calculi have been compared in [18],
by considering their behaviour w.r.t. some relevant time-related properties. We
now briefly examine our calculus w.r.t. such properties. To do that, we rephrase
them in our idiom, since the formulation in [18] considers delays instead of ticks.

Our calculus enjoys the maximal progress property (Th. 1), i.e. internal com-
putation is prioritized over time ticks. This is important in SOC, since we want
to model services guaranteed to terminate within a given amount of time. This
would not be possible if time could pass with no control from the service.

Another relevant property is persistency, stating that the passing of time
never conflicts with other transitions.

P
α
−→ ∧ α 6= χ(−) ∧ P

χ(−)
−−−→ P ′ =⇒ P ′ α

−→ (persistency)

This property does not hold in our calculus, e.g. in χ.τ.P +a(x).Q the input is no
longer available after a tick. A similar effect can be achieved through a timeout.
Actually, persistency prevents us from modelling timeouts, because we cannot
disable a pending communication after a given amount of time. Since timeouts
are crucial in SOC, we admit to violate persistency in our calculus.

Time determinism states that time affects processes in a deterministic way:

P
χ(−)
−−−→ P ′ ∧ P

χ(−)
−−−→ P ′′ =⇒ P ′ = P ′′ (time determinism)

This is not the case in our calculus, as shown by P = χ.Q + χ.R. Actually, we
do not believe that time determinism is an essential property for our purposes:
in particular, it is not required for our decision procedure of Th. 5. However,

13

one can recover time determinism if needed, by using a semantics similar to that

in [12], where it is true that, e.g., P
χ(∅)
−−−→ Q + R.

The transition liveness property states that processes are never stuck:

P
τ
−→ ∨ P

χ(−)
−−−→ (transition liveness)

This property can be violated in our calculus, e.g. by 0. This is because we
want to completely specify the passing of time within processes, thus making
each χ-move explicit. We believe that this choice helps identifying problems
in the specifications. For instance, when a potentially blocking action is used,
e.g. a(x).P , the designer is then invited to decide whether a timeout is needed,
and change that to a(x).P + χ.Q, or no timeout is needed, and change that to
a(x)∞.P . Again, this property can be recovered, if needed: it suffices to modify
our semantics so that an otherwise stuck process will continuosly perform a tick.

A huge number of timed calculi has been proposed over the years. TCSP [10]
is a timed extension of CSP, which enjoys several time-related properties, among
which maximal progress and (a weak version of) well-timedness. Compared
to [10], our calculus also enjoys the isomorphism property[18], i.e. the (timed)
semantics of the untimed fragment of the calculus coincides with the (untimed)
semantics of the untimed calculus. In [23] another Timed CSP is presented,
with a synctactic condition on processes which ensures non-stuck processes to
be well-timed. Compared to [23], our type system considers stuckness as well.

In [12] the timed process language TPL is presented, with a correct and com-
plete equational theory with respect to the must preorder. There, well-timedness
is not addressed. We believe the approach presented here can be adapted to TPL
by redefining the types for choice and prefix.

Our procedure for enforcing deadlines consists of two phases: first, we anal-
yse the specification to check well-timedness; then, we apply a (sound and com-
plete) decision procedure for reachability. Actually, attaching reachability di-
rectly would be unfeasible, since such problem is undecidable for the π-calculus
and for CCS. An alternative approach would be the following. First, one con-
structs an abstraction of the original specification, using a simpler process alge-
bra. Then, the abstracted specification is model-checked, e.g. as in [6,9,15]. Fol-
lowing this approach would require, in our case, extending the types of Sect. 3,
to make them track the behaviour after the first tick.

Recently, the challenges of SOC have fostered the attention to temporal as-
pects of programming languages for Web services. In [14] a temporal extension
to the COWS language is presented. Compared to our calculus, timed COWS
does not feature timeouts and watchdogs; a sort of timeout can however be de-
fined through non-deterministic choice. On the other side, our calculus does not
feature primitives to handle sessions, while [14] inherits correlation sets from
COWS. However, we believe that our techniques can be suitably exploited to
guarantee well-timedness of services modelled in timed COWS.

Further approaches to time are stochastic Markov chains and stochastic cal-
culi, which have been widely used in the context of Web Services, e.g. in [20,17].
Also in these approaches, model-checking techniques are applicable [13].

14

Acknowledgments This research has been partially supported by EU-FETPI
Global Computing Project IST-2005-16004 Sensoria.

References

1. Jos C. M. Baeten and Jan A. Bergstra. Real time process algebra. Formal Asp.

Comput., 3(2):142–188, 1991.
2. Jos C. M. Baeten and Jan A. Bergstra. Discrete time process algebra. In Proc.

CONCUR, pages 401–420, 1992.
3. M. Bartoletti, P. Degano, and G.L. Ferrari. Planning and verifying service com-

position. Journal of Computer Security, 17(5), 2009.
4. M. Bartoletti, P. Degano, G.L. Ferrari, and R. Zunino. Secure service orchestration.

In Proc. FOSAD, 2007.
5. G. Berry and L. Cosserat. The ESTEREL synchronous programming language

and its mathematical semantics. In Proc. CMU Seminar on Concurrency, 1984.
6. Patricia Bouyer. Model-checking timed temporal logics. ENTCS, 231, 2009.
7. M. Bravetti and G. Zavattaro. Contract-based discovery and composition of web

services. In Proc. SFM, 2009.
8. M. Buscemi and U. Montanari. CC-Pi: A constraint-based language for specifying

service level agreements. In Proc. ESOP, volume 4421 of LNCS, 2007.
9. Sagar Chaki, Sriram K. Rajamani, and Jakob Rehof. Types as models: model

checking message-passing programs. In Proc. POPL, 2002.
10. J. Davies and S. Schneider. An introduction to Timed CSP. Technical Report

PRG-75, Oxford University Computing Laboratory, 1989.
11. Matthew Hennessy and Tim Regan. A temporal process algebra. In Proc. FORTE,

1990.
12. Matthew Hennessy and Tim Regan. A process algebra for timed systems. Inf.

Comput., 117(2):221–239, 1995.
13. Jane Hillston. Process algebras for quantitative analysis. In Proc. LICS, 2005.
14. Alessandro Lapadula, Rosario Pugliese, and Francesco Tiezzi. COWS: A timed

service-oriented calculus. In Proc. ICTAC, 2007.
15. Richard Mayr. Weak bisimulation and model checking for basic parallel processes.

In Proc. FSTTCS, 1996.
16. Faron Moller and Chris M. N. Tofts. A temporal calculus of communicating sys-

tems. In Proc. CONCUR, 1990.
17. Rocco De Nicola, Diego Latella, Michele Loreti, and Mieke Massink. MarCaSPiS:

a markovian extension of a calculus for services. ENTCS, 229(4):11–26, 2009.
18. Xavier Nicollin and Joseph Sifakis. An overview and synthesis on timed process

algebras. In Proc. CAV, pages 376–398, 1991.
19. Xavier Nicollin and Joseph Sifakis. The algebra of timed processes, ATP: Theory

and application. Inf. Comput., 114(1), 1994.
20. Davide Prandi and Paola Quaglia. Stochastic COWS. In Proc. ICSOC, 2007.
21. George M. Reed and A. W. Roscoe. A timed model for communicating sequential

processes. Theor. Comput. Sci., 58:249–261, 1988.
22. Davide Sangiorgi and David Walker. The π-calculus: a theory of mobile processes.

Cambridge University Press, 2001.
23. Steve Schneider. An operational semantics for Timed CSP. Inf. Comput.,

116(2):193–213, 1995.
24. Wang Yi. CCS + time = an interleaving model for real time systems. In Proc.

ICALP, 1991.

15

A Proofs for Section 2

Definition 14. The structural congruence relation ≡ is the smallest congruence
satisfying the following axioms:

P + Q ≡ Q + P P + (Q + R) ≡ (P + Q) + R

P | Q ≡ Q | P P | (Q | R) ≡ (P | Q) | R

(νx)(νy)P ≡ (νy)(νx)P (νx)(P | Q) ≡ P | (νx)Q if x 6∈ fn(P)

The definition of the set act(P) of the active names of a process P follows in
Def. 15. The only worth-mentioning cases of the definition are those dealing with
recursion and parallel composition. For recursion, note that act(P) is always
bounded by the set of the free names of P , possibly including τ . Therefore,
computing the fixed point of a recursive process recX.P only requires a finite
number of steps. The operator fix denotes the least fixed point on the cpo 2A.
For a parallel composition P |Q, the active names also include τ when a name a
is active in P and its co-name ā is active in Q.

Definition 15. We define the functions actρ, coactρ : P → 2A from processes
to actions as follows, where ρ is an environment that maps variables to 2A.

actρ(āx.P) = {ā} actρ(a(x).P) = {a} actρ(τ.P) = {τ} actρ(χ.P) = ∅

actρ(P + Q) = actρ(P) ∪ actρ(Q) actρ((νa)P) = actρ(P) \ {a, ā}

actρ(P | Q) = actρ(P) ∪ actρ(Q) ∪

{

∅ if (actρ(P) ∩ coactρ(Q)) \ {τ} = ∅

{τ} otherwise

actρ(recX. P) = fix (λA. actρ{X 7→A}(P)) actρ(X) = ρ(X)

actρ(⌊P ⌋k(Q)) = actρ(⌈P ⌉k(Q)) =

{

actρ(P) if k > 0

actρ(Q) if k = 0

coactρ(P) = { ā | a ∈ actρ(P) } ∪ { a | ā ∈ actρ(P) } ∪ ({τ} ∩ actρ(P))

The operator act behaves coherently with structural congruence (Lemma 9)
and with substitutions (Lemma 10).

Example 4. Let 0 be the stuck process recX.X. We have that:

act(0) = fix (λA. act{X 7→A}(X)) = fix (λA.A) = ∅

Let now P = recX.(X | (a(x).0 + āb)). We have:

act(P) = fix (λA. act{X 7→A}(X | (a(x).0 + āb))) = {a, ā, τ}

16

The following lemma establishes the corretness of act with respect to the
operational semantics of processes. That is, the active names of a process P are
exactly those names involved in the transitions from P . The proof is straight-
forward by induction on the structure of P .

Lemma 8. (Correctness of act) For all processes P :

a ∈ act(P) ⇐⇒ ∃x, P ′ : P
a(x)
−−−→ P ′(8a)

ā ∈ act(P) ⇐⇒ ∃x, P ′ : P
āx
−→ P ′ ∨ P

ā(x)
−−−→ P ′(8b)

τ ∈ act(P) ⇐⇒ ∃P ′ : P
τ
−→ P ′(8c)

Proof. All the items are straightforward by induction on the structure of P .

Lemma 9. If P ≡ Q then act(P) = act(Q) and coact(P) = coact(Q).

Proof. Mostly straightforward. The only interesting case is parallel composition,
for which it suffices to show that the condition (actρ(P) ∩ coactρ(Q)) \ {τ} = ∅
is equivalent to the symmetric (coactρ(P) ∩ actρ(Q)) \ {τ} = ∅).

Lemma 10. actρ(P{Q/X}) = actρ{X 7→ actρ(Q)}(P).

Proof. Easy induction on the structure of P .

Lemma 11. If P
χ(A)
−−−→ P ′, then A = act(P).

Proof. By induction on the derivation of P
χ(A)
−−−→ P ′. There are the following

cases on the last rule used.

– [Chi]. We have A = ∅ = act(P).
– [SumChi]. We have P = Q0 +Q1, P ′ = Q′

0 and A = A′∪act(Q1) for some Q0

and Q1 such that Q0
χ(A′)
−−−→ Q′

0. By the induction hypothesis, A′ = act(Q0).
Then, A = A′ ∪ act(Q1) = act(Q0) ∪ act(Q1) = act(P).

– [ParChi]. We have P = Q0|Q1, P ′ = Q′
0|Q

′
1 and A = A′ ∪ B′ for some

Q0, Q1, A
′, B′ such that Q0

χ(A′)
−−−→ Q′

0, Q1
χ(B′)
−−−−→ Q′

1 and stuck(A′, B′). By
applying twice the induction hypothesis, we have A′ = act(Q0) and B′ =
act(Q1). Since stuck(A′, B′), then either act(Q0)∩coact(Q1) = ∅ or act(Q0)∩
coact(Q1) = {τ}. Then, A = A′ ∪ B′ = act(Q0) ∪ act(Q1) = act(P).

– [Rec]. We have P = recX.Q and Q{P/X}
χ(A)
−−−→ P ′. By the induction

hypothesis, A = act(Q{P/X}). Lemma 10 then concludes.

– [ResChi]. We have P = (νa)Q, for some Q and A′ such that Q
χ(A′)
−−−→ P ′

and A = A′ \ {a, ā}. By the induction hypothesis, A′ = act(Q). Then, by
Def. 15, A = A′ \ {a, ā} = act(Q) \ {a, ā} = act(P).

– [TO*,WD*]. Straightforward.

Lemma 12. If P
χ(A)
−−−→ and P

χ(B)
−−−→ then A = B.

Proof. Straightforward from Lemma 11.

17

B Proofs for Section 3

Lemma 13 (Right Inversion). For all type prefixes Π, and R,S ∈ T :

1. if R ⊑ χ, then R = χ
2. if R ⊑ Π S, then either one of the following cases hold:

– Π = τ and R = τU for some U ⊑ S.
– Π 6= τ and either R = χ or R = Π ′ U, for some Π ′ ⊑ Π and U ⊑ S.

Proof. By induction on the derivation of R ⊑ S.

Lemma 14 (Left Inversion). For all type prefixes Π, and R,S ∈ T :

1. if ⊤ ⊑ S, then S = ⊤
2. if χ ⊑ S, then S ∈ {⊤, ?U, !U, χ} for some U.
3. if Π R ⊑ S, then either S = ⊤, or S = Π ′ U for some Π ′ ⊒ Π and U ⊒ R.

Proof. By induction on the derivation of R ⊑ S.

Proof of Lemma 2. First, we prove that (T ,⊑) is a join semilattice. By
Lemma 13 and structural induction we can see that ⊑ is antisymmetric, so
(T ,⊑) is a partial order. Second, we prove the following equations:

⊤ ⊔ R = ⊤(1)

χ ⊔ R =

{

!S if R = τS

R otherwise
(2)

Π R ⊔ Π ′
S = (Π ⊔ Π ′) (R ⊔ S)(3)

Each of these equations has the form R ⊔ S = U, for some R, S and U. By
Def. 6, it follows directly by structural induction that U is an upper bound of R

and S. It then suffices to show that, for all types V:

R ⊑ V ∧ S ⊑ V =⇒ U ⊑ V

This is done by Lemma 14 and structural induction, as follows.

– Equation (1) (⊤ ⊔ R = ⊤) is trivial.
– For (2), we have to prove:

χ ⊔ R =

{

!S if R = τS

R otherwise

We have χ ⊑ V and R ⊑ V. Since χ ⊑ V, lemma 14 implies that V ∈
{⊤, ?W, !W, χ} for some W. There are two cases.
If R = τR′ for some R′, then U =!R′. By Lemma 14, either V = ⊤, or there
exist Π ′ ⊒ τ and W ⊒ R′ such that V = Π ′ W. Summing up, we have one of
the following three subcases.

18

• V = ⊤. It is trivially true that V = ⊤ ⊒ !R′.
• V =?W and W ⊒ R′. By Def. 6 we have V =?W ⊒ !W ⊒ !R′.
• V = !W and W ⊒ R′. By Def. 6 we have V = !W ⊒ !R′

Otherwise, if R has not the form τR′, then U = R. The thesis follows from
the hypothesis R ⊑ V.

– For (3), we have to prove:

Π R ⊔ Π ′
S = (Π ⊔ Π ′) (R ⊔ S)

By Lemma 14, Π R ⊑ V and Π ′ S ⊑ V imply, respectively:

• V = ⊤ or V = Π ′′ W, for some Π ′′ ⊒ Π and W ⊒ R

• V = ⊤ or V = Π ′′ W, for some Π ′′ ⊒ Π ′ and W ⊒ S

Summing up, either V = ⊤, or V = Π ′′W for some Π ′′ ⊒ Π ⊔ Π ′ and
W ⊒ R⊔ S. In both cases, Def. 6 trivially implies that V ⊒ (Π ⊔Π ′) (R⊔ S).

Of course, types are stable under structural equivalence.

Lemma 15. If P ≡ Q, then ∆(P) = ∆(Q).

Proof. Easy structural induction.

Substituting an actual process for a free variable can cause a refinement of
the type, only.

Lemma 16. ∆(P{Q/X}) ⊑ ∆(P)

Proof. By structural induction. The base case ∆(X{Q/X}) ⊑ ∆(X) = ⊥ is
trivial. The inductive cases follow from our type operators being monotonic.

Lemma 17. For all P, P ′, Q,Q′, and for all X, if σ = {Q/X}:

P
τ
−→ P ′ =⇒ Pσ

τ
−→ P ′σ(17a)

P
χ(∅)
−−−→ P ′ ∧ ∀α : (Q

α
−→ Q′ =⇒ α = χ(∅)) =⇒ Pσ

χ(∅)
−−−→ P ′σ(17b)

Proof of Lemma 3. We start with proving (3a), that is:

∆(P) ⊑ χ =⇒ (∀α, P ′ : P
α
−→ P ′ =⇒ α = χ(∅)) ∧ (∃P ′ : P

χ(∅)
−−−→ P ′)

We will first prove that, for all α, if P
α
−→ P ′ then α = χ(∅). This is done by

induction on the derivation of P
α
−→ P ′. We have the following cases on the last

rule used in the derivation P
α
−→ P ′. Note that the hypothesis ∆(P) ⊑ χ requires

that P has one of the following forms: χ.Q, Q0 + Q1, Q0|Q1, (νa)Q, recX.Q.
Therefore, only the following cases apply:

– case [Chi]. Straightforward.

19

– case [Sum]. We have P = Q0 + Q1 with α 6= χ, and either Q0
α
−→ Q′

0 and

P ′ = Q′
0, or Q1

α
−→ Q′

1 and P ′ = Q′
1. Since the two cases are symmetrical,

it suffices to consider e.g. P ′ = Q′
0. We shall prove by contradiction that

this rule does not apply. By Def. 7, ∆(P) = ∆(Q0) + ∆(Q1) ⊑ χ requires
∆(Q0) = ∆(Q1) = χ. By the induction hypothesis, it follows that α = χ(∅).
This is a contradiction, since [Sum] requires α 6= χ.

– case [SumChi]. Straightforward.
– case [Par]. Similarly to the case [Sum], ∆(P) = ∆(Q0)|∆(Q1) ⊑ χ requires

∆(Q0) = ∆(Q1) = χ, and the induction hypothesis leads to a contradiction
since α 6= χ.

– case [ParChi] Straightforward.
– case [Comm]. We have P = Q0|Q1 with α = τ . Similarly to the case [Sum],

∆(P) = ∆(Q0)|∆(Q1) ⊑ χ requires ∆(Q0) = ∆(Q1) = χ, and the induction
hypothesis leads to a contradiction since α = τ .

– case [Rec]. We have P = recX.Q for some Q such that Q{P/X}
α
−→ P ′.

By Def. 8 and by hypothesis we have ∆(P) = ∆(Q) ⊑ χ. By Lemma 16, it
follows that ∆(Q{P/X}) ⊑ χ. Then, by the induction hypothesis we have
the thesis α = χ(∅).

– case [Open]. We have P = (νx)Q for some Q such that Q
āx
−→ P ′, with

α = ā(x). By Def. 8, ∆(P) = ∆(Q) ⊑ χ, which by the induction hypothesis
implies āx = χ – contradiction.

– case [Close]. Similarly to the case [Sum], ∆(P) = ∆(Q0)|∆(Q1) ⊑ χ requires
∆(Q0) = ∆(Q1) = χ, and the induction hypothesis leads to a contradiction
since ā(x) 6= χ.

– case [Res]. Similarly to the case [Sum], we have a contradiction with the side
condition α 6= χ.

– case [ResChi],[TO*],[WD*]. Straightforward.

We now prove that, if ∆(P) ⊑ χ, then P
χ(∅)
−−−→ P ′ for some P ′. By induction

on the structure of P , we have the following exhaustive cases:

– P = χ.Q. Straightforward.
– P = Q0 + Q1. By Def. 7, it must be ∆(Q0) = ∆(Q1) = χ. By the induction

hypothesis on the left component Q0 (the other case is symmetrical), it

follows that Q0
χ(∅)
−−−→ Q′

0 for some Q′
0. By the proof of the first part of (3a),

we have that Q1
α
−→ Q′

1 implies α = χ(∅). Then, by Lemma 8 it follows that
act(Q1) = ∅. The rule [SumChi] then concludes.

– P = Q0|Q1. By Def. 7, it must be ∆(Q0) = ∆(Q1) = χ. By applying

twice the induction hypothesis, it follows that Q0
χ(∅)
−−−→ Q′

0 for some Q′
0, and

Q1
χ(∅)
−−−→ Q′

1 for some Q′
1. The rule [ParChi] then concludes.

– P = (νa)Q. We have ∆(Q) = ∆(P) ⊑ χ. By the induction hypothesis, there

exists Q′ such that Q
χ(∅)
−−−→ Q′. The rule [ResChi] then concludes.

– P = recX.Q. We have ∆(Q) = ∆(P) ⊑ χ. Let σ = {P/X}. The first part

of (3a) implies that, whenever Q
α
−→ Q′, then α = χ(∅). Then, by (17b) it

follows that Qσ
χ(∅)
−−−→ Q′σ. The rule [Rec] then concludes.

20

– P = ⌊Q0⌋
k(Q1), P = ⌈Q0⌉

k(Q1). Direct by the induction hypothesis.

For (3b), we have to prove that:

∆(P) ⊑ τR =⇒ ∃P ′ : P
τ
−→ P ′

We proceed by induction on the structure of P . According to Def. 6 and Def. 8,
∆(P) ⊑ τR requires that P has one of the following forms:

– P = τ.Q, and ∆(P) = τ∆(Q). The rule [Pref] then yields P
τ
−→ Q.

– P = Q0 +Q1 and ∆(P) = ∆(Q0)+∆(Q1). By Def. 7, ∆(Q0)+∆(Q1) ⊑ τR

implies that ∆(Q0) and ∆(Q1) have one of the following forms (since the
operator + is commutative, the symmetrical cases are omitted)

∆(Q0) = τS0 ∆(Q1) = χ with S0 ⊑ R

∆(Q0) = τS0 ∆(Q1) = Π S1 with S0 ⊔ S1 ⊑ R

In both cases, we have ∆(Q0) ⊑ τS0, hence by the induction hypothesis

there exists Q′
0 such that Q0

τ
−→ Q′

0. Then, by the rule [Sum] we conclude

that P
τ
−→ Q′

0.
– P = Q0|Q1 and ∆(P) = ∆(Q0)|∆(Q1). By Def. 7, ∆(Q0)|∆(Q1) ⊑ τR

implies that ∆(Q0) and ∆(Q1) have one of the following forms (since the
operator | is commutative, the symmetrical cases are omitted)

∆(Q0) = τS0 ∆(Q1) = χ with S0 ⊑ R

∆(Q0) = τS0 ∆(Q1) = Π S1 with S0|Π S1 ⊔ τS0|S1 ⊔ S0|S1 ⊑ R

In both cases, we have ∆(Q0) ⊑ τS0, hence by the induction hypothesis

there exists Q′
0 such that Q0

τ
−→ Q′

0. Then, by the rule [Par] we conclude

that P
τ
−→ Q′

0|Q1.
– P = (νa)Q, and ∆(P) = ∆(Q) ⊑ τR. By the induction hypothesis, there

exists Q′ such that Q
τ
−→ Q′. The rule [Res] then concludes.

– P = recX.Q, and ∆(P) = ∆(Q) ⊑ τR. By Lemma 16, it follows that
∆(Q{P/X}) ⊑ ∆(Q) ⊑ R. By the induction hypothesis, there exists Q′ such

that Q{P/X}
τ
−→ Q′. The rule [Rec] then concludes.

– P = ⌊Q0⌋
k(Q1), P = ⌈Q0⌉

k(Q1). Direct by the induction hypothesis.

For (3c), we have to prove that:

∆(P) ⊑ !R =⇒ ∃P ′ : P
τ
−→ P ′ ∨ P

χ(−)
−−−→ P ′

We proceed by induction on the structure of P . According to Def. 6 and Def. 8,
∆(P) ⊑ !R requires that P has one of the following forms:

– P = χ.Q. By the rule [Chi], P
χ(∅)
−−−→ Q.

– P = τ.Q. By the rule [Pref], P
τ
−→ Q.

21

– P = Q0 + Q1 and ∆(P) = ∆(Q0) + ∆(Q1). By Def. 7, ∆(Q0) + ∆(Q1) ⊑!R
implies that ∆(Q0) and ∆(Q1) have one of the following forms (since the
operator + is commutative, the symmetrical cases are omitted)

∆(Q0) = χ ∆(Q1) = χ

∆(Q0) = τS0 ∆(Q1) = χ with S0 ⊑ R

∆(Q0) = τS0 ∆(Q1) = Π S1 with S0 ⊔ S1 ⊑ R

∆(Q0) = χ ∆(Q1) = Π S1 with S1 ⊑ R

∆(Q0) = !S0 ∆(Q1) = Π S1 with S0 ⊔ S1 ⊑ R and Π 6= τ

For the first case, we have shown in (3a) that Q0
χ(∅)
−−−→ Q′

0 for some Q′
0, and

that, whenever Q1
α
−→ Q′

1 for some Q′
1, then α = χ. By Lemma 8, it follows

that τ 6∈ act(Q1). The rule [SumChi] then concludes, with P ′ = Q′
0.

For the second and third cases, we have shown in (3b) that Q0
τ
−→ P ′.

Therefore, the rule [Sum] yields the thesis P
τ
−→ P ′.

For the fourth case, we have shown in (3a) that Q0
χ(∅)
−−−→ Q′

0 for some Q′
0.

There are two further subcases.
• if τ 6∈ act(Q1), then the thesis follows directly from the rule [SumChi],

with P ′ = Q′
0.

• if τ ∈ act(Q1), then Lemma 8 implies that Q1
τ
−→ Q′

1 for some Q′
1.

Therefore, the thesis follows from the rule [Sum], with P ′ = Q′
1.

For the fifth case, we have ∆(Q0) ⊑ !S0, hence by the induction hypothesis

there exists P ′ such that either Q0
τ
−→ P ′ or Q0

χ(∅)
−−−→ P ′. There are three

further subcases.
• If Q0

τ
−→ Q′

0, then the thesis follows directly from the rule [Sum], with
P ′ = Q′

0.

• if Q0
χ(A)
−−−→ Q′

0 and τ 6∈ act(Q1), then the thesis follows directly from the
rule [SumChi], with P ′ = Q′

0.

• if Q0
χ(A)
−−−→ Q′

0 and τ ∈ act(Q1), then by Lemma 8 we have that Q1
τ
−→ Q′

1

for some Q′
1. The thesis follows from the rule [Sum], with P ′ = Q′

1.
– P = Q0|Q1 and ∆(P) = ∆(Q0)|∆(Q1). By Def. 7, ∆(Q0)|∆(Q1) ⊑!R implies

that ∆(Q0) and ∆(Q1) have one of the following forms (since the operator
| is commutative, the symmetrical cases are omitted)

∆(Q0) = χ ∆(Q1) = χ

∆(Q0) = χ ∆(Q1) = Π S1 with Π ⊑ ! and S1 ⊑ R

∆(Q0) = τS0 ∆(Q1) = Π S1 with S0|Π S1 ⊔ τS0|S1 ⊔ S0|S1 ⊑ R

∆(Q0) = !S0 ∆(Q1) = Π S1 with Π ⊑ ! and S0|Π S1⊔ !S0|S1 ⊔ S0|S1 ⊑ R

For the first case, we have shown in (3a) that Q0
χ(∅)
−−−→ Q′

0 for some Q′
0, and

Q1
χ(∅)
−−−→ Q′

1 for some Q′
1. The rule [ParChi] then concludes, with P ′ = Q′

0|Q
′
1

(note that stuck(∅, ∅) is true).

22

For the second case, we have shown in (3a) that Q0
χ(∅)
−−−→ Q′

0 for some Q′
0.

Since ∆(Q1) ⊑ !R, the induction hypothesis implies that either Q1
τ
−→ Q′

1 or

Q1
χ(−)
−−−→ Q′

1, for some Q′
1. There are then two subcases.

• if Q1
τ
−→ Q′

1, then the thesis follows directly from the rule [Par], with
P ′ = Q0|Q′

1.

• if Q1
χ(−)
−−−→ Q′

1, then the thesis follows directly from the rule [ParChi]

with P ′ = Q′
0|Q

′
1 (note that stuck(∅, A) is true for all A).

For the third case, we have shown in (3b) that Q0
τ
−→ Q′

0 for some Q′
0. The

thesis follows directly from the rule [Par], with P ′ = Q′
0|Q1.

For the fourth case, since ∆(Q0) ⊑!S0 then the induction hypothesis implies
one of the following two subcases:
• Q0

τ
−→ Q′

0. In this case, the rule [Par] concludes, with P ′ = Q′
0|Q1.

• Q0
χ(A)
−−−→ Q′

0, for some Q′
0. In this case, since ∆(Q1) ⊑ !R we can ap-

ply again the induction hypothesis and obtain that either Q1
τ
−→ Q′

1 or

Q1
χ(B)
−−−→ Q′

1, for some Q′
1. In the former case, the rule [Par] concludes,

with P ′ = Q0|Q
′
1. In the latter case, we have two further subcases, ac-

cording to whether stuck(A,B) is true or false. If stuck(A,B) is true,
then the rule [ParChi] yields the thesis with P ′ = Q′

0|Q
′
1. If stuck(A,B)

is false, then by definition there must exist a name a such that either
a ∈ A, ā ∈ B or a ∈ B, ā ∈ A. Since the two cases are symmetrical,
we consider e.g. the first one. By Lemma 11, we have that A = act(Q0)

and B = act(Q1). Then, Lemma 8 implies that Q0
a(x)
−−−→ Q′′

0 for some

Q′′
0 , and one of the following cases holds for Q1: either Q1

āx
−→ Q′′

1 , or

Q1
ā(x)
−−−→ Q′′

1 for some Q′′
1 . The thesis is obtained through the [Comm] or

the [Close] rules, respectively.
– P = (νa)Q. We have ∆(P) = ∆(Q) ⊑ !R, hence the induction hypothesis

yields either Q
τ
−→ Q′ or Q

χ(−)
−−−→ Q′, for some Q′. We then obtain thesis

through the rule [Res] or the rule [ResChi], respectively.
– P = recX.Q, We have ∆(P) = ∆(Q) ⊑ !R. By Lemma 16, ∆(Q{P/X}) ⊑

∆(Q) ⊑ !R. The induction hypothesis then gives either ∆(Q{P/X})
τ
−→ P ′

or ∆(Q{P/X})
χ(−)
−−−→ P ′, from which the rule [Rec] concludes.

– P = ⌊Q0⌋
k(Q1), P = ⌈Q0⌉

k(Q1). Direct by the induction hypothesis.

For (3d), we have to prove that:

∆(P) ⊑ ?R =⇒ ∀α, P ′ : P
α
−→ P ′ =⇒ α = χ(−) ∨ ∆(P ′) ⊑ R

We proceed by induction on the derivation of P
α
−→ P ′. We have the following

cases, according to the last rule used in the derivation:

– case [Pref]. We have P = π.P ′ with π 6= χ. If π 6= τ , the thesis follows from
∆(P) =?∆(P ′), since ?∆(P ′) ⊑?R implies ∆(P ′) ⊑ R by Def. 6. Otherwise,
if π = τ , the thesis follows from ∆(P) = τ∆(P ′).

23

– case [Chi]. We have P = χ.P ′ and α = χ(∅), which implies the thesis.
– case [Sum]. We have P = Q0 + Q1, and either Q0

α
−→ Q′

0 and P ′ = Q′
0,

or Q1
α
−→ Q′

1 and P ′ = Q′
1. Since the two cases are symmetrical, it suffices

to consider e.g. P ′ = Q′
0. By Def. 8 and by hypothesis, we have ∆(P) =

∆(Q0)+∆(Q1) ⊑?R. By Lemma 13, we have that either ∆(Q0)+∆(Q1) = χ,
or ∆(Q0) + ∆(Q1) = Π S for some Π and S ⊑ R.
By Def. 7, the case ∆(Q0) + ∆(Q1) = χ is only possible when ∆(Q0) =
∆(Q1) = χ. By (3a), from ∆(Q0) = χ it follows that α = χ(A) for some A,
which implies the thesis.
If ∆(Q0) + ∆(Q1) = Π S then by Def. 7 it must be the case that ∆(Q0) =
Π0 S0, ∆(Q1) = Π1 S1, Π = Π0 + Π1, and S = S0 ⊔ S1. Since S ⊑ R,
then S0 ⊑ R. By Def. 6, ∆(Q0) = Π0 S0 implies ∆(Q0) ⊑ ?S0 ⊑?R. By
the induction hypothesis, either α = χ(A) for some A, or ∆(Q′

0) ⊑ R.
The first case implies the thesis. In the second case, the thesis follows from
∆(P ′) = ∆(Q′

0) ⊑ R.
– case [SumChi]. We have α = χ(A), which implies the thesis.
– case [Par]. We have P = Q0|Q1, and either Q0

α
−→ Q′

0 and P ′ = Q′
0|Q1, or

Q1
α
−→ Q′

1 and P ′ = Q0|Q
′
1. Since the two cases are symmetrical, it suffices

to consider e.g. P ′ = Q′
0|Q1. By Def. 8 and by hypothesis, we have ∆(P) =

∆(Q0)|∆(Q1) ⊑?R. By Lemma 13, we have that either ∆(Q0)|∆(Q1) = χ,
or ∆(Q0)|∆(Q1) = Π S for some Π and S ⊑ R.
By Def. 7, the case ∆(Q0)|∆(Q1) = χ is only possible when ∆(Q0) =
∆(Q1) = χ. By (3a), from ∆(Q0) = χ it follows that α = χ(A) for some A,
which implies the thesis.
If ∆(Q0)|∆(Q1) = Π S then by Def. 7 it must be the case that ∆(Q0) =
Π0 S0, ∆(Q1) = Π1 S1, Π = Π0|Π1, and S = Π0 S0|S1 ⊔S0|Π1 S1 ⊔S0|S1. By
Def. 6, Π S ⊑?R implies S ⊑ R. Hence, S0|Π1 S1 ⊑ R. Also, ∆(Q0) = Π0 S0

implies ∆(Q0) ⊑?S0. By the induction hypothesis, we have that either α =
χ(A) for some A, or ∆(Q′

0) ⊑ S0. In the first case, the thesis holds trivially;
in the second case, the thesis follows from:

∆(P ′) = ∆(Q′
0) | ∆(Q1) ⊑ S0 | Π1 S1 ⊑ R

– case [ParChi]. We have α = χ(A), which implies the thesis.
– case [Comm]. We have P = Q0 | Q1, α = τ , and P ′ = Q′

0 | Q′
1, for some Q0

and Q1 such that Q0
ā(x)
−−−→ Q′

0 and Q1
a(x)
−−−→ Q′

1.
By Def. 8 and by hypothesis, we have ∆(P) = ∆(Q0)|∆(Q1) ⊑?R. By
Lemma 13, we have that either ∆(Q0)|∆(Q1) = χ, or ∆(Q0)|∆(Q1) = Π S

for some Π and S ⊑ R.
The first case is dealt with similarly to the corresponding case for rule [Par].
For the second case, by Def. 7 we have that ∆(Q0) = Π0 S0, ∆(Q1) = Π1 S1,
Π = Π0|Π1, and S = Π0 S0|S1⊔S0|Π1 S1⊔S0|S1. By Def. 6, Π S ⊑?R implies
S ⊑ R. Hence, S0|S1 ⊑ R. Also, ∆(Q0) = Π0 S0 and ∆(Q1) = Π1 S1 imply
∆(Q0) ⊑ ?S0 and ∆(Q1) ⊑ ?S1, respectively. By applying twice the induction
hypothesis, we have that ∆(Q′

0) ⊑ S0 and ∆(Q′
1) ⊑ S1. The thesis follows

from:
∆(P ′) = ∆(Q′

0) | ∆(Q′
1) ⊑ S0 | S1 ⊑ R

24

– case [Rec]. We have P = recX.Q, for some Q such that Q{P/X}
α
−→ P ′. By

Def. 8 and by hypothesis, ∆(P) = ∆(Q) ⊑ ?R. By Lemma 16, ∆(Q{P/X}) ⊑
∆(Q). The thesis follows by the induction hypothesis.

– case [Open]. We have P = (νx)Q and P ′ = Q′, for some Q and Q′ such that

Q
āx
−→ Q′. By Def. 8 and by hypothesis, ∆(P) = ∆(Q) ⊑ ?R. Then, by the

induction hypothesis it follows that ∆(Q′) ⊑ R (note that āx 6= χ(A) for
any A. The thesis follows then from ∆(P ′) = ∆(Q′).

– case [Close]. Similar to the case [Comm].
– case [Res]. We have P = (νa)Q and P ′ = (νa)Q′, for some Q such that

Q
α
−→ Q′ with α 6= χ. By Def. 8 and by hypothesis, ∆(P) = ∆(Q) ⊑ ?R.

Then, by the induction hypothesis, we have ∆(Q′) ⊑ R (the case Q
χ(A)
−−−→ Q′

is excluded by α 6= χ). Then, ∆(P ′) = ∆(Q′) ⊑ R.
– case [ResChi]. We have P = (νa)Q and P ′ = (νa)Q′, for some Q′ such that

Q
χ(B)
−−−→ Q′ and α = χ(B \ {a, ā}), which implies the thesis.

– case [TO*],[WD*]. Straightforward.

Lemma 18. Let pulsing (R) and pulsing (S). Then,

pulsing (R ⊔ S)(18a)

pulsing (R|S)(18b)

pulsing (R + S)(18c)

Proof. Let r, s be the pulsingness degrees of R,S, respectively.

– For (18a), we proceed by induction on the pair (r, s), ordered pointwise.
• If r = s = 0, hence R = S = χ, the thesis follows from R ⊔ S = χ.
• Otherwise, if r = 0, s > 0, then we have S ⊑!S′ where pulsings−1(S

′).
Then, R ⊔ S ⊑ χ⊔!S′ =!S′ = S which is pulsing. The case r > 0, s = 0 is
analogous.

• Otherwise, if r > 0, s > 0, we have R ⊑!R′ and S ⊑!S′ where pulsingr−1(R
′)

and pulsings−1(S
′). Then, R ⊔ S ⊑!R′⊔!S′ =!(R′ ⊔ S′). We conclude by

the induction hypothesis, stating that R′ ⊔ S′ is pulsing.
– For (18b), we proceed by induction on the pair (r, s), ordered pointwise.

• If r = 0, hence R = χ, the thesis follows from R|S = S. The case s = 0 is
analogous.

• Otherwise, we have R ⊑!R′ and S ⊑!S′ where pulsingr−1(R
′) and pulsings−1(S

′).
Therefore,

R|S ⊑!(R′|!S′⊔!R′|S′ ⊔ R
′|S′)

since | is monotonic. By the induction hypothesis, R′|!S′, !R′|S′, and
R′|S′ are pulsing. By (18a), we have that R|S ⊑!W for some pulsing
W, implying the thesis.

– For (18c), we proceed by cases on the pair (r, s).

• If r = s = 0, hence R = S = χ, the thesis follows from R + S = χ.

25

• Otherwise, if r = 0, s > 0, then we have S ⊑!S′ where pulsings−1(S
′).

Then, R + S ⊑ χ+!S′ =!S′ = S which is pulsing. The case r > 0, s = 0 is
analogous.

• Otherwise, if r > 0, s > 0, we have R ⊑!R′ and S ⊑!S′ where pulsingr−1(R
′)

and pulsings−1(S
′). Then, R + S ⊑!R′+!S′ =!(R′ ⊔ S′). We conclude by

(18a).

Lemma 19.

R ⊑ S ∧ pulsing (S) =⇒ pulsing (R)(19a)

¬pulsing (?R|S)(19b)

pulsing (R|S) =⇒ pulsing (R)(19c)

weakly pulsing (R|S) =⇒ weakly pulsing (R)(19d)

weakly pulsing (R + S) =⇒ weakly pulsing (R)(19e)

Proof.

– The item (19a) follows directly from Def. 9.
– For (19b), we proceed by induction on the structure of S.

If S = χ, ?R|χ =?R is not pulsing. Otherwise, S = Π S′. If Π ∈ {!, ?}, we
have Π|? =?, making ?R|Π S′ not pulsing. So, we must have Π = τ . We
obtain:

?R | τS
′ = τ(R|Π S

′ ⊔ ?R|S′ ⊔ R|S′)

By contradiction, assume the above is pulsing. Then, also R|Π S′⊔?R|S′⊔R|S′

is such, which in turn implies pulsing (?R|S′). This contradicts the inductive
hypothesis.

– For (19c), we proceed by induction on the pulsingness degree k of R|S.
If k = 0, then R|S = χ, and by Def. 7 this is possible only if R = S = χ.
If k > 0, then R|S ⊑!W where pulsingk−1(W). If R|S = χ, we proceed as
for k = 0. Otherwise, by Def. 7, we have R = Π R′ and S = Π ′ S′ satisfying
(Π|Π ′) ⊑! and Π R′|S⊔R′|Π ′ S′⊔R′|S′ ⊑ W. In particular, we have R′|S′ ⊑ W

which, by induction hypothesis, implies pulsing (R′). By (19b), we have Π 6=?,
so Π ⊑!. This implies R ⊑!R′, thus proving pulsing (R).

– For (19d), we proceed by case analysis.
• If R = χ, the thesis follows trivially.
• If S = χ, the thesis follow from R|χ = R.
• Otherwise, we have R = Π R′ and S = Π ′ S′. So, we have R|S =

(Π|Π ′) (R′|Π ′ S′ ⊔ Π R′|S′ ⊔ R′|S′) being weakly pulsing. This implies
that R′|Π ′ S′ ⊔ Π R′|S′ ⊔ R′|S′ is pulsing, hence R′|S′ is such. By (19c),
R′ is pulsing, therefore R is weakly pulsing.

– For (19e), we proceed by case analysis.
• If R = χ, the thesis follows trivially.
• Otherwise, if R =?R′ and S = χ, we have R + S =!R′ weakly pulsing,

therefore R′ is pulsing, implying the R is weakly pulsing.
• Otherwise, if R = Π R′ with Π 6=? and S = χ, we have that R + S = R

is weakly pulsing by hypothesis.

26

• Otherwise, if R = Π R′ and S = Π ′ S′, we have that R + S = (Π +
Π ′) (R′ ⊔ S′) is weakly pulsing. Hence, R′ ⊔ S′ is pulsing, which implies
that R′ is pulsing, and so R is weakly pulsing.

Lemma 20. If ∆(P) is weakly pulsing and P
α
−→ P ′ for some α 6= χ(−), then

∆(P ′) is pulsing.

Proof. Straightforward from (3d).

C Proofs for Section 4

Proof of Lemma 6. Consider the truncation of LTS(P) obtained by removing
each subtree reached through a χ step. By hypothesis, this truncated LTS is a
finitely branching tree. By contradiction, assume that P is not strongly well-
timed. This implies that the truncated LTS has arbitrarily long paths, hence it
is an infinite tree. By König’s Lemma, an infinite path also exists, so LTS(P)
has an infinite χ-free trace as well. This violates well-timedness.

Proof of Lemma 7. For the first part, take:

P = (νa)(recX.(X + āa∞.Ω∞|a(x).āa∞.Ω∞))

In one τ step, this becomes a process of the form:

Qi = (νa)(āa∞.Ω∞|a(x).āa∞.Ω∞| · · · |a(x).āa∞.Ω∞)

where a(x).āa∞.Ω∞ is replicated i times, for some i. Also, the converse holds:
any such Qi can be reached by P in one τ step. Note in passing that this makes
LTS(P) infinitely branching. Each Qi has a single trace τ iχω. Hence, we have
P well-timed, since we can pick the limit k to be i + 2. Moreover, we do not
have P strongly well-timed, since for any limit k, we can pick the trace of Qk+1

which does not perform χ in the first k steps.

For the second part, let:

Q = (νa)Q′

Q′ = recX.(τ.χ.X + āa∞.Ω∞ | R)

R = a(x)∞.āa∞.Ω∞

Each run of Q can be split in two phases. In the first phase, the left branch of the
choice is taken and the process builds up a number of parallel R components:

Q
τ
−→

χ
−→ (νa)(Q′|R)

τ
−→

χ
−→ (νa)(Q′|R|R)

τ
−→

χ
−→ (νa)(Q′|R|R|R) → · · ·

In the second phase, the right branch of the choice is taken, stopping recursion.
This generates a sequence of communications, each one “consuming” an R:

· · · → (νa)(Q′|R|R|R)
τ
−→ (νa)(āa∞.Ω∞|R|R)

τ
−→ (νa)(Ω∞|āa∞.Ω∞|R)

τ
−→ (νa)(Ω∞|Ω∞|āa∞.Ω∞)

27

Note that the traces of Q are of the form (τχ)iτ iχω. The process Q is strongly
well-timed, since we can increment the limit k during the first phase, counting
the number of R components. If Q keeps on building R’s, it performs a χ every
other step, so any k > 2 is fine. Otherwise, if Q starts the second phase we know
that that will generate a χ after all the R’s are consumed.

However, Q is not bounded well-timed. Given the limit k, Q can just build
k +1 R-components, and perform k +1 consecutive τ steps in the second phase.

The following technical lemma states that variables occurring in Γ , but not
in P , can be neglected from a judgment Γ ⊢ P .

Lemma 21. For all processes P,Q and for all variables X:

Γ,X : Q ⊢ P ∧ X 6∈ fv(P) =⇒ Γ ⊢ P

Substitution of a pulsing typeable process for a variable preserves typing.

Lemma 22 (Substitution). For all processes P and closed Q, and for all X:

pulsing (∆(Q)) ∧ Γ ⊢ Q ∧ Γ,X : Q ⊢ P =⇒ Γ ⊢ P{Q/X}

Proof. By induction on the structure of P , there are the following cases:

– case [T-Chi]. By the induction hypothesis: Γ,X : Q ⊢ P implies Γ ⊢
P{Q/X}.
pulsing (∆(P{Q/X}Γ)) and Q closed implies pulsing (∆(PΓ{Q/X}))

– the cases [T-Sum], [T-Par], [T-Pref], [T-Res] are straightforward by the
induction hypothesis.

– case [T-Rec]. It is easy to verify that:

Γ,X : Q,Y : (rec Y.P)Γ{Q/X} ⊢ P pulsing (∆((rec Y.PΓ){Q/X}))

Γ,X : Q ⊢ rec Y.P

implies the following:

Γ, Y : (rec Y.P{Q/X})Γ ⊢ P{Q/X} pulsing (∆((rec Y.P{Q/X})Γ))

Γ ⊢ rec Y.P{Q/X}

– the remaining cases are trivial.

Theorem 3. For all closed P :

weakly pulsing (∆(P)) ∧ ⊢ P ∧ P
α
−→ P ′ =⇒ pulsing (∆(P ′)) ∧ ⊢ P ′

Proof. By induction on the derivation of P
α
−→ P ′. There are the following ex-

haustive cases.

28

– case [Pref]. We have P = π.P ′, π 6= χ, and α = π. Each derivation of ⊢ P
has the following form:

⊢ P ′ π 6= χ

⊢ π.P ′
[T-Pref]

which implies ⊢ P ′. Also, pulsing (∆(P ′)) follows from Lemma 20.
– case [Chi]. We have P = χ.P ′ and α = χ(∅). Each derivation of ⊢ P has the

following form:
⊢ P ′ pulsing (P ′)

⊢ χ.P ′
[T-Chi]

The thesis follows directly from the hypotheses of the typing rule.
– case [Sum]. We have P = Q0 + Q1 for some Q0 such that Q0

α
−→ P ′ (the

other case is symmetrical). Each derivation of ⊢ P has the following form:

⊢ Q0 ⊢ Q1

⊢ Q0 + Q1

[T-Sum]

By Lemma 19e, weakly pulsing (∆(Q0+Q1)) implies weakly pulsing (∆(Q0)).
Then, by the induction hypothesis it follows that ⊢ P ′ and pulsing (∆(P ′)).

– case [SumChi]. We have P = Q0 + Q1 and α = χ(A ∪ act(Q1)) for some

Q0 such that Q0
χ(A)
−−−→ P ′ (the other case is symmetrical). Similarly to the

case [Sum], weakly pulsing (∆(Q0)) is obtained through Lemma 19e, so the
the thesis follows from the induction hypothesis.

– case [Par]. We have P = Q0|Q1 and P ′ = Q′
0|Q1 for some Q0 such that

Q0
α
−→ Q′

0 and α 6= χ(−) (the other case is symmetrical). Each derivation of
⊢ P has the following form:

⊢ Q0 ⊢ Q1

⊢ Q0|Q1

[T-Par]

By Lemma 19e, weakly pulsing (∆(Q0|Q1)) implies weakly pulsing (∆(Q0)).
Then, by the induction hypothesis it follows that ⊢ Q′

0 and pulsing (∆(Q′
0)).

We have the following typing derivation:

⊢ Q′
0 ⊢ Q1

⊢ Q′
0|Q1

[T-Par]

Also, pulsing (∆(P ′)) follows from Lemma 20.
– case [ParChi]. We have P = Q0|Q1 and P ′ = Q′

0|Q
′
1 for some Q0, Q1 such

that Q0
χ(A′)
−−−→ Q′

0, Q1
χ(B′)
−−−−→ Q′

1, and α = χ(A′ ∪ B′). Each derivation of
⊢ P has the following form:

⊢ Q0 ⊢ Q1

⊢ Q0|Q1

[T-Par]

29

By Lemma 19e, weakly pulsing (∆(Q0|Q1)) implies weakly pulsing (∆(Q0))
and weakly pulsing (∆(Q1)). Then, by applying twice the induction hypoth-
esis it follows that ⊢ Q′

0, ⊢ Q′
1, pulsing (∆(Q′

0)) and pulsing (∆(Q′
1)). We

have the following typing derivation:

⊢ Q′
0 ⊢ Q′

1

⊢ Q′
0|Q

′
1

[T-Par]

By Lemma 18b, it follows that pulsing (∆(Q′
0)) and pulsing (∆(Q′

1)) imply
pulsing (∆(Q′

0) | ∆(Q′
1)), i.e. pulsing (∆(P ′)).

– case [Comm]. We have P = Q0|Q1, P ′ = Q′
0|Q

′
1 and α = τ , for some Q0, Q1

such that Q0
āx
−→ Q′

0 and Q1
a(x)
−−−→ Q′

1. The proof proceeds similarly to the
case [ParChi].

– case [Rec]. We have P = recX.Q for some Q such that Q{P/X}
α
−→ P ′.

Each typing derivation of ⊢ P has the following form:

X : P ⊢ Q pulsing (∆(P))

⊢ recX.Q
[T-Rec]

By Lemma 16 and Def. 8, ∆(Q{P/X}) ⊑ ∆(Q) = ∆(P). Therefore, since
pulsing (∆(P)), then Lemma 19a implies that pulsing (∆(Q{P/X})). Lemma 22
then implies ⊢ Q{P/X}. The thesis follows then directly from the induction
hypothesis.

– case [Open]. We have P = (νx)Q and α = ā(x), for some Q such that

Q
āx
−→ P ′. Each typing derivation for ⊢ P has the following form:

⊢ Q

⊢ (νx)Q
[T-Res]

By Def. 8, weakly pulsing (∆(P)) implies weakly pulsing (∆(Q)). Then, the
thesis follows directly by the induction hypothesis.

– case [Close]. We have P = Q0|Q1, P ′ = (νx)(Q′
0|Q

′
1) and α = τ , for some

Q0, Q1 such that Q0
ā(x)
−−−→ Q′

0 and Q1
a(x)
−−−→ Q′

1. The proof is mostly the same
as the case [Comm].

– case [Res]. The proof is mostly the same as the case [Open].
– case [ResChi]. The proof is mostly the same as the case [Open].
– cases [TO*],[WD*]. Simple use of the induction hypothesis.

30

