
Security issues in contract-based computing

Massimo Bartoletti1 and Roberto Zunino2

1 Dipartimento di Matematica e Informatica, Università degli Studi di Cagliari, Italy
2 Dipartimento di Ingegneria e Scienza dell’Informazione, Università di Trento, Italy

Abstract. We propose a computational paradigm for service-oriented
applications, where the interactions among services are driven by con-

tracts. A contract is a commitment between two or more parties, which
specifies the duties and the rights of the parties involved therein. We
study the logical foundations of contracts, through an intuitionistic logic
extended with a “contractual” form of implication. This logic is decid-
able, so we can mechanically infer the consequences deriving from any
set of contracts. Several security issues can be explored, among which:
how to detect when a contract is violated, how to single out the respon-
sible of a violation, how to take countermeasures against violations. New
research directions are then proposed to cope with these issues.

1 Introduction

A crucial aspect of service-oriented applications is how to regulate the interaction
between clients and services, so to guarantee to each party that it will obtain
the desired behaviour from the other parties. Typical service infrastructures are
focussed on protecting services from undesired interactions, while little effort
is devoted to protecting clients. Ideally, client and services should agree on a
common protocol, making explicit their duties and expectations. This can be
done by making each party advertise a contract, that subordinates the behaviour
promised by a client (e.g. “I will pay for a service X”) to the behaviour promised
by a service (e.g. “I will provide you with a service Y”), and vice versa. Contracts
are then first-order citizens in this paradigm: they can be exchanged between
services, used to decide which actions to take, inspected to detect violations, and
possibly contested to invoke third parties for taking recovery actions.

A foundational problem is then how to formalise contracts. First, this would
enable parties to exchange non-repudiable, digitally signed promises. Second,
formalising contracts would allow us to answer the question “are these contracts
sufficient to guarantee the property X?”. Third, when a violation occurs, we
could inspect the contracts and single out the actual responsible party.

To give the intuition about contracts, suppose there are two kids, Alice and
Bob, who want to play together. Alice has a toy airplane, while Bob has a bike.
Both Alice and Bob wish to play with each other’s toy. Before sharing their toys,
Alice and Bob stipulate the following “gentlemen’s agreement”:



Alice: I will lend my airplane to you, Bob, provided that I borrow your bike.
Bob: I will lend my bike to you, Alice, provided that I borrow your airplane.

We want to formally deduce that Alice and Bob will indeed share their toys,
provided they are real “gentlemen” who always respect their promises. Let us
write a for the atomic proposition “Alice lends her airplane” and b for “Bob
lends his bike”. A (wrong) formalisation of the above commitments in classical
propositional logic could be the following, using implication →. Alice’s commit-
ment A is represented as b → a and Bob’s commitment as a → b. While the
above commitments agree with our intuition, they are not enough to deduce that
Alice will lend her airplane and Bob will lend his bike. Formally, it is possible
to make true the formula A∧B by assigning false to both propositions a and b.

The failure to represent scenarios like the one above seems related to the
the Modus Ponens rule: to deduce b from a → b, we need to prove a. That
is, we could deduce that Bob lends his bike, but only after Alice has lent Bob
her airplane. So, one of the two parties must “take the first step”. In a logic
for mutual agreements, we would like our logic able to deduce a ∧ b whenever
A ∧ B is true, without requiring any party to take the first step. To this aim,
we introduce a new form of “contractual” implication, which we denote with the
symbol ։. For instance, the contract declared by Alice, “I will lend my airplane
to Bob provided that Bob lends his bike to me”, will be written b ։ a. Actually,
the following formula is a theorem of our logic:

(b ։ a) ∧ (a ։ b) → a ∧ b (1)

In other words, from the “gentlemen’s agreement” stipulated by Alice and Bob,
we can deduce that the two kids will indeed share their toys. In Section 2 we
will briefly present our logic and some of its main properties.

Our core logic for contracts does not make explicit the identity of the par-
ticipant who is advertising a contract. E.g., in (1) the contract a ։ b does not
mention Bob, but simply states the promise, implicitly modelling the fact that
Bob is authoritative for that contract (Bob can do b). In more complex scenar-
ios, we would like to write Bob says a ։ b, to make explicit the name of who is
issuing a contract. In Section 3 we will further discuss this issue, as well as some
other issues that require further investigation in contract-based computing.

2 A logic for contracts

We propose an extension of intuitionistic propositional logic IPC, called propo-
sitional contract logic (PCL). PCL features a new form of implication, which we
denote with the symbol ։. The proof system of PCL comprises the axioms of
IPC, the Modus Ponens rule, and the following additional axioms:

⊤ ։ ⊤ Zero

(p ։ p) → p Fix

(p′ → p) → (p ։ q) → (q → q′) → (p′ ։ q′) PrePost



Back to the example of Sect. 1, the axioms of PCL allow us to deduce the
agreement between Alice and Bob, i.e. (1) is a theorem of PCL. Some generali-
sations of this “handshaking” are also provable. For instance, a sort of “greedy”
handshaking holds, where a party promises pi only provided that all the other
parties promise their duties, i.e. p1, . . . , pi−1, pi+1, . . . , pn:

⊢
∧

i∈1..n

(

(p1 ∧ . . . ∧ pi−1 ∧ pi+1 ∧ . . . ∧ pn) ։ pi

)

→ p1 ∧ · · · ∧ pn

We can also prove a “circular” handshaking, where the i-th party promises pi

only provided that the (circularly) preceding party promises pi−1:

⊢ (p1 ։ p2) ∧ · · · ∧ (pn−1 ։ pn) ∧ (pn ։ p1) → p1 ∧ · · · ∧ pn

Several interesting properties follow from the axioms of PCL, among which:

⊢ (p ։ q) ∧ (q ։ r) → (p ։ r) ⊢ (p ։ q) → (p → q)

⊢ (p ։ q) ∧ (q → q′) → (p ։ q′) ⊢ q → (p ։ q)

⊢ (p′ → p) ∧ (p ։ q) → (p′ ։ q) ⊢ (p ։ q) → ((q → p) → q)

⊢ (p ։ q) ∧ (q ։ r) → (p ։ (q ∧ r)) ⊢ (p ։ (q ∧ r)) → (p ։ q) ∧ (p ։ r)

⊢ (p ։ q) ∨ (p ։ r) → (p ։ (q ∨ r)) ⊢ p ։ ⊤

Theorem 1. The logic PCL is consistent, i.e. 6⊢ ⊥.

The following formulae are not tautologies of PCL :

6⊢ (p → q) → (p ։ q) 6⊢ (p ։ q) → q

6⊢ ⊥ ։ p 6⊢ ((q → p) → q) → (p ։ q)

Note that if we augment our logic with the axiom of excluded middle, then
(p ։ q) ↔ q becomes a theorem, so making contractual implication trivial. For
this reason we use IPC, instead of classical logic, as the basis of PCL .

A main result about PCL is its decidability. To prove that, we have devised a
Gentzen-style sequent calculus, which is equivalent to the Hilbert-style axioma-
tisation. In particular, we have extended the sequent calculus for IPC presented
in [4], with the following rules to deal with the connective ։:

Γ ⊢ q

Γ ⊢ p ։ q
Zero

Γ, p ։ q, r ⊢ p

Γ, p ։ q, q ⊢ r

Γ, p ։ q ⊢ r
Fix

Γ, p ։ q, a ⊢ p

Γ, p ։ q, q ⊢ b

Γ, p ։ q ⊢ a ։ b
PrePost

Cut elimination holds for PCL; we have proved this in full details in [1].

Theorem 2. If p is provable in PCL , then there exists a proof of p which does
not use the Cut rule.

Decidability then follows from the subformula property, which is enjoyed by
our Gentzen rules, and by the cut elimination theorem:



Theorem 3. The logic PCL is decidable.

As a further support to our logic, we have implemented a proof search al-
gorithm, which decides if any given formula is a tautology or not. In [1] we
have proved further properties of PCL , among which equivalence of the Hilbert
and the Gentzen systems, the subformula property, and some relations between
PCL and IPC, the modal logic S4, and propositional lax logic. Also, we have
explored further interesting properties and application scenarios for our logic.

3 Future Research Directions

Our investigation on contracts is still at its beginnings, and in future work we
plan to study, along with logics for contracts, programming languages that ex-
ploit their features. In particular, we will develop process calculi to describe
the behaviour of services in the presence of contracts and attackers. The main
features of these calculi will be the possibility of publishing and stipulating con-
tracts, deciding whether a given formula is on duty, and taking recovery actions
in the case a contract is not respected. We plan to develop analysis techniques
to formally and automatically prove the correctness of the service infrastructure,
i.e. that the contracts are always respected, without the need for resorting to
third parties external to the model.

We expect that many useful features can be added to our logic, to make it
more suitable for modelling complex scenarios. First, we could introduce pred-
icates and quantifiers. This will allow us to model more accurately several sce-
narios, where a party issues a “generic” contract that can be matched by many
parties. While this first order extension shall force us to drop the decidability
result, we expect to find interesting decidable fragments of the logic, through
which modelling many relevant situations.

We will consider extending our logic with a says modality, similarly to [3].
This will enable us to write, e.g. Alice says (b ։ a) to represent the fact that
Alice has issued that contract. Back to our example of Sect. 1, one could expect
a handshaking of the following form:

Alice says (b ։ a) ∧ Bob says (a ։ b) → Alice says a ∧ Bob says b

in which the duties of Alice and Bob are made clear. This additional information
can be exploited by a third party (a sort of “automated” judge) which has to
investigate the responsibilities of various parties, in the unfortunate case that
a contract is not respected. For instance, if our automated judge is given the
evidence that Alice’s airplane has never been lent to Bob, from the above he will
infer that (Alice says a) ∧ ¬a, hence Alice says ⊥, meaning that Alice has not
respected her contract and can be prosecuted for that. We now model an attack,
where an adversary maliciously issues a “fake” contract, making a promise that
he cannot actually implement. Consider e.g. the following buyer-seller scenario:

Seller = ∀item, cust , addr : pay(item, cust , addr) ։ ship(item, addr)

Bob = ship(drill, bobAddress) ։ pay(drill,Bob, bobAddress)



Assume now that the adversary wants to maliciously exploit the seller contract,
in order to receive a free item, and make the unaware customer Bob pay for it:

FakeBob = ship(10Kdiamond, fakeAddress) ։ pay(10Kdiamond,Bob, fakeAddress)

Joining the seller and the attacker contracts will then cause an unwelcome situ-
ation for Bob, who is due to pay for a 10K diamond, shipped to the adversary:

Seller∧FakeBob → pay(10Kdiamond,Bob, fakeAddress)∧ ship(10Kdiamond, fakeAddress)

Revisiting our example with the says modality, we would deduce:

Seller ∧ Bob → Bob says pay(drill,Bob, bobAddress)

In this case, we have a successful transaction, because Bob is stating that he will
pay for his drill. Instead, joining the seller and the attacker contracts produces:

Seller ∧ FakeBob → FakeBob says pay(10Kdiamond,Bob, fakeAddress)

Now, it is easy to realize that someone has attempted a fraud, because the
principal who has signed the contract (FakeBob) is different from that who is
due to pay (Bob).

Another possible future direction for our logic would be that of extending its
axioms with those of propositional lax logic [2]. This would allow for establish-
ing further properties of contracts, which are not implied by the current PCL
axioms, e.g. (a ։ c) ∧ (b ։ d) → (a ∧ b ։ c ∧ d).

Time is another useful feature that may arise while modelling real-world
scenarios. For instance, in an e-commerce transaction, a contract may state that
if the customer returns the purchased item within 10 days from the purchase
date, then she will have a full refund within 21 days from then. We would like to
model such a contract in a temporal extension of our logic, so to reason about
the obligations that arise when the deadlines expire. There are a number of
techniques aimed at dealing with time in logical systems, so we expect to be
able to reuse some of them for extending PCL .

Acknowledgements. Work partially supported by EU-FETPI Global Computing
Project IST-2005-16004 SENSORIA and by the MIUR-PRIN project SOFT.

References

1. Massimo Bartoletti and Roberto Zunino. A logic for contracts. Technical Report
DISI-09-034, DISI - Università di Trento, 2009.

2. Matt Fairtlough and Michael Mendler. Propositional lax logic. Information and

Computation, 137(1):1–33, 1997.
3. Deepak Garg and Mart́ın Abadi. A modal deconstruction of access control logics.

In Proc. FoSSaCS, pages 216–230, 2008.
4. Frank Pfenning. Structural cut elimination - I. intuitionistic and classical logic.

Information and Computation, 157(1/2):84–141, 2000.


