
Securing Java with Local Policies

Massimo Bartoletti1, Gabriele Costa2, Pierpaolo Degano1,
Fabio Martinelli2, and Roberto Zunino3

1 Dipartimento di Informatica, Università di Pisa, Italy
2 Istituto di Informatica e Telematica, Consiglio Nazionale delle Ricerche, Italy
3 Dipartimento di Informatica e Telecomunicazioni, Università di Trento, Italy

Abstract. We propose an extension to the security model of Java. It
allows for specifying, analysing and enforcing history-based policies. Poli-
cies are defined by finite state automata recognizing the permitted execu-
tion histories. Programmers can sandbox an untrusted piece of code with
a policy, which is enforced at run-time through its local scope. A static
analysis allows for optimizing the execution monitor, that will only check
the program points where some security violation may actually occur.

1 Introduction

A fundamental concern of security is to ensure that resources are used correctly.
Devising expressive, flexible and efficient mechanisms to control resource usages
is therefore a major issue in the design and implementation of security-aware
programming languages. The problem is made even more crucial by the current
programming trends, which allow for reusing code, and exploiting services and
components, offered by (possibly untrusted) third parties. It is common practice
to pick from the Web some scripts, or plugins, or packages, and assemble them
into a bigger program, with little or no control about the security of the whole.

Stack inspection, the mechanism adopted by Java [23] and the .NET CLR [31],
offers a pragmatic setting for access control. Roughly, each frame in the call stack
represents a method; methods are associated with “protection domains”, that
reflect their provenance; a global security policy grants each protection domain
a set of permissions. Code includes local checks that guard access to critical re-
sources. At run-time, an access authorization is granted when all the frames on
the call stack have the required permission (a special case is that of privileged
calls, that trust the methods below them in the call stack). Being strongly biased
towards implementation, this mechanism suffers from some major shortcomings.
First, local checks must be explicitly inserted into code by the programmer. Since
forgetting even a single check might compromise the safety of the whole applica-
tion, programmers have to carefully inspect their code. This may be cumbersome
even for small programs, and it may lead to unnecessary checking. Second, many
security policies are not enforceable by stack inspection, because a method re-
moved from the call stack no longer affects security. This may be harmful, e.g.
when trusted code depends on the results supplied by untrusted code [22].

History-based access control has been receiving major attention as an alterna-
tive to stack inspection. Differently from stack inspection, the run-time security

state depends on (a suitable abstraction of) the whole execution. History-based
policies and mechanisms have been studied at both levels of foundations [3, 21,
35] and of language design and implementation [1, 18]. A common drawback of all
these approaches is that the security policy is a global invariant, that must hold
at any point of the execution. This may involve guarding each resource access,
and ad-hoc optimizations are then in order to recover efficiency, e.g. compiling
the global policy to local checks [16, 28]. Furthermore, a large monolithic policy
may be hard to understand, and not very flexible either.

Local policies [6], formalise and enhance the concept of sandbox [23], while
being more flexible than global policies and local checks spread over program
code. In the spirit of history-based security [1], local policies can inspect the
whole trace of security-relevant events generated by a running program. Local
policies smoothly allow for safe composition of programs with their own security
requirements, and they can drive call-by-contract composition of services [9]. In
mobile code scenarios, local policies can be exploited e.g. to model the inter-
play among clients, untrusted applets and policy providers: before running an
untrusted applet, the client asks the trusted provider for a suitable policy, which
will be locally enforced by the client throughout the applet execution.

In this paper, we outline the design of an extension to the Java language, so
to enhance its security mechanism with local policies. In the spirit of JML [27],
policies are orthogonal to Java code and they are specified as comments. Our
policies are defined through a special kind of finite state automata (FSA), where
the input alphabet comprises the security-relevant events, parametrized over
resources. So, policies can express any regular property on execution histories.

The first contribution of this paper is the design of a run-time mechanism
for enforcing local policies in Java. Apart from the specification of policies and
sandboxes, this requires no intervention by the programmer in the source code.

The second contribution is an optimization of the run-time enforcement
mechanism. This is based on a static analysis that detects the policies violated by
a program in some of its executions [8]. The analysis is performed in two phases.
The first phase over-approximates the patterns of resource usages in a program.
The second phase consists in model-checking the approximation of a program
against the policies on demand. We have implemented this phase in [10], as a
polynomial-time algorithm on the size of the approximation and of the policies.
Summing up, we optimise the run-time security mechanism, by discarding the
policies guaranteed to never fail, and by checking just the events that may lead
to a violation of the other policies.

An example. Consider a trusted component NaiveBackup that offers static meth-
ods for backing up and recovering files. Assume that the file resource can be
accessed through the following interface:

public File(String name, String dir);

public String read();

public void write(String text);

public String getName();

public String getDir();

q1

q2

q0

new(f,"/tmp")

new(f,d) when d!="/tmp"

read(f)

write(f)

where new(f,d) and read(f) stand for:
f = new File(n,d)

f.read()

Fig. 1. File confinement policy file-confine(f,d).

The constructor takes as parameters the name of the file and the directory where
is is located. A new file is created when no file with the given name exists in the
given dir. The meaning of the other methods is as expected.

In the class NaiveBackup, the method backup(src) copies the file src into a
file with the same name, located in the directory /bkp. The method recover(dst)
copies the backed up data to the file dst. As a näıve attempt to optimise the
access to backup files, the last backed up file is kept open.

class NaiveBackup {

static File last;

public static backup(File src) {

if(src.getName() != last.getName())

last = new File(src.getName(), "/bkp");

last.write(src.read());

}

public static recover(File dst) {

if(dst.getName() != last.getName())

last = new File(dst.getName(), "/bkp");

dst.write(last.read());

}

}

Consider now a malicious Plugin class, trying to spoof NaiveBackup so to obtain
a copy of a secret passwords file. The method m() of Plugin first creates a file
called passwd in the directory "/tmp", and then uses NaiveBackup to recover
the content of the backed up password file (i.e. /bkp/passwd).

class Plugin {

public void m() {

File g = new File("passwd","/tmp");

NaiveBackup.recover(g);

}

}

To prevent from this kind of attacks, the Plugin is run inside a sandbox, that
enforces the following policy. The sandboxed code can only read/write files it has
created; moreover, it can only create files in the directory "/tmp". This policy
is modelled by the automaton file-confine(f,d) in Fig. 1. The edge from q0

to q1 represents creating a file f in the directory "/tmp" (the name of the file
is immaterial). The edge from q0 to q2 labelled read(f) prohibits reading the

file f if no new(f,d) has occurred beforehand (the double circle means q2 is
offending). Similarly for the edge labelled write(f). The edge from q0 to q2

labelled new(f,d) when d!="/tmp" prohibits creating a file in any directory d

different from "/tmp".

class Main {

public static void main() {

File f = new File("passwd","/etc");

NaiveBackup.backup(f);

PolicyPool.sandbox("file-confine", new Runnable() {

public void run() {

new Plugin().m();

}});

}

}

The class Main first backs up the passwords file through the NaiveBackup. Then,
it runs the untrusted Plugin inside a sandbox enforcing the policy file-confine.
The Plugin will be authorized to create the file "/tmp/passwd", yet the sand-
box will block it while attempting to open the file "/bkp/passwd" through the
method NaiveBackup.recover(). Indeed, Plugin is attempting to read a file
it has not created, which is prohibited by file-confine. Note also that any
attemp to directly open/overwrite the password file will fail, because the policy
only allows for opening files in the directory "/tmp". Note that our sandbox-
ing mechanism enables us to enforce security policies on the untrusted Plugin,
without intervening in its code.

2 Local policies: specification and enforcement

We start by introducing resources, events and policies. The specification of sand-
boxes and of their run-time enforcement mechanism follows.

2.1 Resources and Events

We model resources R1, R2, . . . as objects, and security-relevant events as method
calls. For notational convenience, we use aliases for events. An alias ev for a
method signature (y : C).m(y1 : C1, ..., yn : Cn) is defined as:

alias ev(x1, ..., xk) = (y : C).m(y1 : C1, ..., yn : Cn)

where ∀j ∈ 1..k : xj ∈ {y, y1, . . . , yn}. For instance:

alias new(f,d) = (f:File).File(string name, string d)

alias read(f) = (f:File).File.read()

alias write(f) = (f:File).File.write(String t)

means new(f,d) is an alias for the constructor File(string name,string d)

of the class File, while read(f) (resp. write(f)) is an alias for the method
read() (resp. write(String t)) of the same class. The parameter f is the
target resource, in this case an object of type File. The method parameters not
involved in the definition of a policy can be omitted, e.g. we simply write alias

ev = C.m(x1,...,xk) when all the parameters are immaterial.

2.2 Policies

Usage policies (Def. 1) constrain the usage of resources to obey a regular property
on the program trace, i.e. the sequence of method calls occurred at run-time. E.g.,
a file usage policy file-usage(x) might require that before reading or writing
a file x, that file must have been opened, and not yet closed. A usage policy
gives rise to an finite state automaton (FSA) when the formal parameters are
instantiated to actual resources (see [8] for further details). These automata will
be exploited in Sec. 2.4 to implement the execution monitor for usage policies.

Definition 1. Usage policies

Let Ev be a set of aliases, and let Res be the set of resources. A usage policy
p(x1, . . . , xk) is a 5-tuple 〈S, Q, q0, F, E〉, where:

– S is the input alphabet, defined as follows:

S = { ev(R1, . . . , Rk) | ev(x1, . . . , xk) ∈ Ev and R1, . . . , Rk ∈ Res}

– Q is a finite set of states,

– q0 ∈ Q \ F is the start state,

– F ⊆ Q \ {q0} is the set of final “offending” states,

– E ⊆ Q×Z×Q is a finite set of labelled edges, where Z is defined as follows:

Z = { ev(Z1, . . . , Zk) when <cond> | ev(x1, . . . , xk) ∈ Ev ∧ Zi ∈ Res ∪ {xi} }

where the condition <cond> is defined with the following syntax:

<cond> ::= true | Zi != Z | <cond> and <cond> (Z ∈ Res ∨ Z = xj)

Usage policies resemble non-deterministic FSA, from which they differ in two
points. First, the input alphabet is infinite; second, it does not coincide with the
set of labels in the transition relation. Indeed, the parameters Zi in the edges of
a usage policy can be of two kinds: Zi = R for a static resource R, or Zi = xi. By
binding the formal parameters x1, . . . , xk to actual resources R1, . . . , Rk we obtain
a FSA p(R1, . . . , Rk), to be used in recognizing those traces respecting the policy.
Roughly, the transformation into a FSA amounts to: (i) instantiating xi to Ri,
while respecting the conditions in the when clauses, (ii) maintaining Zi = R for
R static, and (iii) adding self-loops for all the events not explicitly mentioned in
the policy (see [8] for details).

A trace η respects a policy p(x1, . . . , xk) when, for all the relevant instantia-
tions of the formal parameters x1, . . . , xk to actual resources R1, . . . , Rk in η, we

have that η is not in the language of the FSA p(R1, . . . , Rk) – i.e. it is not possible
to reach an offending state on η. For instance, consider the following traces:

η0 = new(f0,"/tmp") read(f1)

η1 = new(f0,"/tmp") read(f0)

η2 = new(f0,"/tmp") read(f0) new(f1,"/etc")

The trace η0 violates the policy file-confine, because it drives the instan-
tiation file-confine(f1,"/tmp") to the offending state q2. The trace η1 re-
spects the policy, because the read event is performed on a newly created file
f in the directory "/tmp" (recall that instantiations have a self-loop labelled
read(f) on q1). Instead, η2 violates the policy, because it drives the instantia-
tion file-confine(f1,"/etc") to the state q2. Indeed, instantiating the when

clause results in an edge labelled new(f1,"/etc") from q0 to q2.
We advocate an extension of JML [27, 15] as an instrument for the formal

specification of usage policies. The following comment specifies the file confine-
ment policy of Fig. 1. The first part introduces the needed aliases. The usage
policy follows, where states, start, final, and trans stand respectively for
the sets Q, q0, F and E of Def. 1.

*@ alias new(f,d) = (f:File).File(String name, string d)

@ alias read(f) = (f:File).File.read()

@ alias write(f) = (f:File).File.write(String t)

@ name: file-confine

@ states: q0 q1 q2

@ start: q0

@ final: q2

@ trans: q0 -- new(f,"/tmp") --> q1

@ q0 -- new(f,d) --> q2 when d != "/tmp"

@ q0 -- read(f) --> q2

@ q0 -- write(f) --> q2

@*/

Note that policies can only control methods known at static time. In the case
of dynamically loaded code, where methods are only discovered at run-time, it
is still possible to specify and enforce policies on statically-known methods. For
instance, system resources – which are accessed through the JVM libraries only
– can always be protected by policies.

2.3 Sandboxes

The programmer defines the scope of a local policy through the method sandbox()
of the static class PolicyPool. This signature of sandbox() is:

public static void sandbox(String pol,Runnable c) throws SecurityException

The string pol is the name of the policy to be enforced through the execution
of the code c. For instance:

PolicyPool.sandbox("file-confine", new Runnable() {

public void run() {

// sandboxed code

...

}

});

The set of policies to be checked at run-time is passed as an option to the
java command, with the following syntax (where p1, . . . , pk are policy names):

java -Dcheck=<value> class where value ::= NONE | ALL | p1; · · · ; pk

When value = NONE, no policy is checked at run-time; when value = ALL, all
the policies mentioned in the program are checked; in the other case, only the
policies p1, . . . , pk are checked. Typically, the set of policies that need to be
checked at run-time will be provided by the static analysis in Sec. 3.

2.4 Run-time enforcement

The implementation of the execution monitor for local policies goes through the
following steps:

– as a preprocessing step, the specification of the policies to be enforced is
extracted from the source code and translated into Java code.

– a custom class loader is set up, to act as a proxy for method invocations.
– when starting the execution of a method sandbox(p,c), the policy p is

activated.
– the proxy dispatches a monitored method call to the actual class, only if the

call respects all the active policies.
– when leaving a sandbox(p,c), the policy p is deactivated.

The first step is straightforward. For the second step, we use a statically
generated proxy for wrapping method calls, similarly to JavaCloak [34]. Before
dispatching the call to the actual class, the proxy updates the state of the policy
automata. If an active policy is violated, then the proxy throws an exception.

public class SecurityProxy implements InvocationHandler {

private Object obj;

...

public Object invoke(Object proxy, Method meth, Object[] args)

throws Throwable {

Object result;

if(PolicyPool.check(obj, meth, args)) // monitor call

result = meth.invoke(obj, args); // method call

else throw new SecurityException(meth.toString());

}

}

The method PolicyPool.check() is the core of the enforcement mechanism.
For each active usage policy, it tracks the states of all the needed instantia-
tions. States are modelled as sets of pairs ((R1, . . . , Rk), q), where (R1, . . . , Rk)
is a tuple of weak references 4 to the resources upon which the policy is in-
stantiated, and q is the current state of the automaton. The result of check()
is true if and only if no policy automaton reaches an offending state. If so,
the method call is authorized and forwarded to the actual class; otherwise, a
SecurityException is thrown. For instance, consider the policy file-confine

of Fig. 1. Assume that the policy is active when the proxy traps a call to the
constructor File("passwd","/tmp"). The check() method looks up the aliases
table and finds the event new(f0,"/tmp") associated with the constructor. Fir-
ing this event updates the states of the policy file-confine to:

{((f0, "/tmp"), q1), ((f1, "/tmp"), q0)}

Assume now the method read() is invoked on the file f1. The state becomes:

{((f0, "/tmp"), q1), ((f1, "/tmp"), q2)}

Since the offending state q2 has been reached, the call to read() is not dispatched
by the proxy, which instead throws a SecurityException.

3 Static analysis and optimizations

We statically analyse programs to detect those policies that are always respected
in all possible executions, so to avoid checking them at run-time. For those
policies that may fail, our static analysis finds the method calls that may lead
to violations. This allows for optimizing the execution monitor, that will only
check the program points where some security violation may actually occur.

The static analysis consists in two phases, briefly described below.

– first, we extract the program control flow graph (CFG), and we transform it
into a history expression.

– then, we model-check the history expression against the usage policies en-
forced by the sandboxes used in the program.

The CFG of a program is a static-time data structure that represents all the
possible run-time control flows. In particular, we are interested in constructing
a CFG the paths of which describe the possible sequences of method calls. This
construction is the basis of many interprocedural analyses, and a large amount of
algorithms, with different tradeoffs between complexity and precision, have been

4 Weak references [17] are used to avoid interference with the garbage collector. Us-
ing standard references would indeed prevent the garbage collector from disposing
resources referenced by the PolicyPool only, so potentially leading to memory ex-
haustion. An object referenced only by weak references is considered unreachable,
and so it may be disposed by the garbage collector.

new(g,"/tmp")

read(last)

write(g)

f
i
l
e
-
c
o
n
f
i
n
e

new(last,"/bkp")

new(f,"/etc")

read(f)

write(last)

new(last,"/bkp")

νf. new(f,"/etc") · νlast. (ε + new(last,"/bkp")) · read(f) · write(last) ·

file-confine[νg. new(g,"/tmp") · νlast. (ε + new(last,"/bkp")) · read(last) · write(g)]

Fig. 2. CFG and history expression of the method main(). Sequential composition is
modelled by the operator ·, while + stands for non-deterministic choice. The scope of
a dynamically created resource n is defined by the binder νn.

developed [24, 32]. CFGs hide most of the data flow, so approximating the actual
behaviour. This approximation is safe, in the sense that each actual execution
flow is represented by a path in the CFG. Yet, some paths may exist which
do not correspond to any actual execution. A typical source of approximation
is dynamic dispatching. When a program invokes a method on an object O,
the run-time environment chooses among the various implementations of that
method. The decision is not based on the declared type of O, but on the actual
class O belongs to, which is unpredictable at static time. To be safe, CFGs over-
approximate the set of methods that can be invoked at each program point.

Once a context-sensitive CFG has been extracted, it is transformed into
a history expression [6], a sort of context-free grammar enriched with special
constructs for dealing with policies and resources. To do that, we suitably adapt
the classical state-elimination algorithm for FSA [14]. E.g., the CFG and the
history expression associated with the main() of Sec. 1 are depicted in Fig. 2.

The second phase consists in model-checking history expressions against us-
age policies. As a first step, history expressions are transformed into Basic Pro-
cess Algebras (BPAs, [13]), so to enable us to exploit standard model-checking
techniques [20]. Roughly, one checks the emptiness of the pushdown automaton
resulting from the conjunction of the BPA obtained in the previous step, and
the negation of the policy. The transformation into BPA preserves the validity
of the approximation, i.e. the traces of the BPA respect the same policies as
those of the history expression. The two main issues are dealing with dynamic
creation of resources (not featured by BPAs), and with redundant sandboxes,
i.e. nested occurrences of the same sandbox. For the first item, we devised a sort
of Skolemization of history expressions, which uses a finite number of witness
resources in place of the ν-binders. For the second item, we transformed history
expressions to remove the redundant sandboxes therein. Full details about our
technique and our model-checking tool can be found in [8, 10].

4 Conclusions

We have presented a proof-of-concept for an extension of the security mechanism
of Java. This is based on history-based local policies. These policies are naturally
expressed through a sort of finite state automata, the edges of which are para-
metric over resources. The use of these automata is new in the context of Java.
It required extending the formal model of [7] with polyadic events, that model
method invocations. We have proposed a programming construct for specify-
ing sandboxes, and designed an execution monitor for enforcing them. We have
devised a static analysis that optimizes the run-time enforcement of policies.
The analysis exploits call-graph construction and model-checking to predict the
policies that will always be obeyed, and to single out the program points where
run-time checks are needed. An implementation of our framework is currently
under development; only the model-checking tool is already available [10]. It
runs in polynomial time in the size of the history expression extracted from the
analysed program.

Extensions. A significant improvement to our model consists in extending the
language of policies by allowing for more logical operators in conditions. The
expressive power can be increased by including the usage of JML boolean ex-
pressions, like e.g. the evaluation of pure methods without side effects. This
would allow to directly specify policies that depend on implicit counters (e.g.
no more than N kilobytes of data can be transmitted). The impact of such a
refinement on the static analysis requires further investigation.

Related work. Many authors [16, 19, 28, 36] mix static and dynamic techniques
to transform programs and make them obey a given policy. Our model allows
for local, polyadic policies and events parameterized over dynamically created
resources, while the above-mentioned papers only consider global policies and
no parameterized events. Polymer [12] is a language for specifying, composing
and enforcing (global) security policies, based on edit automata [11]. Run-time
monitoring is necessary to enforce policies, while our model-checking tecnique
may avoid this overhead. A typed λ-calculus with primitives for creating and
accessing resources, and for defining their permitted usages, is presented in [25].
A type system guarantees that well-typed programs are resource-safe, yet no
effective algorithm is given to check compliance of the inferred usages with the
permitted ones. The policies of [25] can only speak about the usage of single

resources, while ours can span over many resources, e.g. a policy requiring that
no socket connections can be opened after a local file has been read. Wang,
Takata and Seki [37] propose a model for history-based access control. They use
control-flow graphs enriched with permissions and a primitive to check them,
similarly to [5]. The run-time permissions are the intersection of the static per-
missions of all the nodes visited in the past. The model-checking technique can
decide if all the permitted traces of the graph respect a given regular property
on its nodes. Unlike our local policies, that can enforce any regular policy on
traces, the technique of [37] is less general, because there is no way to enforce

a policy unless it is encoded as a suitable assignment of permissions to nodes.
Pandey and Hashii [33] enhance the access control model of Java, by specifying
fine-grained constraints on the execution of mobile code. A method invocation
is denied when a certain condition on the dynamic state of the system is false.
Since this condition may be the result of calling an arbitrary method, this mech-
anism is quite general, yet is has some drawbacks. First, the process of deciding
if an action must be denied might not terminate. Second, the dynamic condi-
tions in the policy might prevent from static optimizations. Our local policies
and static analysis can be smoothly adapted to the case of mobile code. This
extension requires analysing bytecode instead of source code when extracting
usage policies and when constructing the CFG. Martinelli et al. [2, 29, 30] model
security policies as process algebras. They implement a custom JVM, with an
execution monitor that traps system calls and fires them concurrently to the
policy. When a trapped system call is not permitted by the policy, the execution
monitor tries to force a corrective event – if possible – otherwise it aborts the
system call. Being interested in efficient run-time enforcement, this framework
neglects static optimizations, which however might be unfeasible because of dy-
namic conditions in the policies. In [26] a customization of the JVM/KVM is
proposed for extending the Java run-time enforcement to a wider class of security
policies, mainly designed for devices with reduced computational capabilities. As
before, the presented framework does not feature any static analysis. JACK [4]
is a tool for the validation of Java applications, both at the levels of bytecode
and of source code. Programmers specify application properties through JML
annotations, which are equi-expressive with first-order logics. These annotations
give rise to proof obligations, to be statically verified by a theorem prover. The
verification process might require the intervention of the developer to resolve
the proof obligations, while in our framework the verification is fully automated.
JACK can specify history-based policies by using ghost variables spread over
JML annotations to mimick the evolution of a finite-state automaton defining
the policy. Our formalism allows for expressing history-based policies in a more
direct and compact way, although our syntax is not pure JML. The problem of
wrapping method calls has been widely studied, and several frameworks have
been proposed in the last few years. Some approaches, e.g. the Kava system [38],
use bytecode rewriting to obtain behavioural run-time reflection. This amounts
to modifying the structure of the bytecode, by inserting additional instructions
before and after a method invocation. A less invasive solution, adopted e.g. by
JavaCloak [34], consists in exploiting the Java core package java.lang.reflect.
This approach seems particularly appropriate in our framework. Indeed, we can
use a custom class loader to substitute a dynamic proxy for the classes involved
in the enforcement of security policies. Notably, this solution does not require
custom JVMs.

Acknowledgments. This research has been partially supported by EU-FETPI
Global Computing Project IST-2005-16004 Sensoria (Software Engineering for
Service-Oriented Overlay Computers) and by EU-funded project IST-033817
GridTrust – Trust and Security for Next Generation Grids.

References

1. M. Abadi and C. Fournet. Access control based on execution history. In Proc. 10th
Annual Network and Distributed System Security Symposium, 2003.

2. F. Baiardi, F. Martinelli, P. Mori, and A. Vaccarelli. Improving grid services
security with fine grain policies. In OTM Workshops, 2004.

3. A. Banerjee and D. A. Naumann. History-based access control and secure in-
formation flow. In Workshop on Construction and Analysis of Safe, Secure and
Interoperable Smart Cards (CASSIS), 2004.

4. G. Barthe et al. JACK - a tool for validation of security and behaviour of Java
applications. In Formal Methods for Components and Objects, 2007.

5. M. Bartoletti, P. Degano, and G. L. Ferrari. Static analysis for stack inspection.
In Proc. International Workshop on Concurrency and Coordination, 2001.

6. M. Bartoletti, P. Degano, and G. L. Ferrari. History based access control with
local policies. In Proc. Fossacs, 2005.

7. M. Bartoletti, P. Degano, G. L. Ferrari, and R. Zunino. Types and effects for
resource usage analysis. In Proc. Fossacs, 2007.

8. M. Bartoletti, P. Degano, G. L. Ferrari, and R. Zunino. Model checking usage
policies. Technical report, Dip. Informatica, Univ. Pisa, 2008.

9. M. Bartoletti, P. Degano, G. L. Ferrari, and R. Zunino. Semantics-based design
for secure web services. IEEE Transactions on Software Engineering, 34(1), 2008.

10. M. Bartoletti and R. Zunino. LocUsT: a tool for checking usage policies. Technical
Report TR-08-07, Dip. Informatica, Univ. Pisa, 2008.

11. L. Bauer, J. Ligatti, and D. Walker. More enforceable security policies. In Foun-
dations of Computer Security (FCS), 2002.

12. L. Bauer, J. Ligatti, and D. Walker. Composing security policies with Polymer. In
Proc. PLDI, 2005.

13. J. A. Bergstra and J. W. Klop. Algebra of communicating processes with abstrac-
tion. Theoretical Computer Science, 37:77–121, 1985.

14. J. Brzosowski and J. E. McCluskey. Signal flow graph techniques for sequential
circuit state diagrams. IEEE Trans. on Electronic Computers, 1963.

15. L. Burdy, Y. Cheon, D. R. Cok, M. D. Ernst, J. R. Kiniry, G. T. Leavens, K. R. M.
Leino, and E. Poll. An overview of jml tools and applications. Int. J. Softw. Tools
Technol. Transf., 7(3), 2005.

16. T. Colcombet and P. Fradet. Enforcing trace properties by program transforma-
tion. In Proc. 27th ACM SIGPLAN-SIGACT Symposium on Principles of Pro-
gramming Languages, 2000.

17. K. Donnelly, J. J. Hallett, and A. Kfoury. Formal semantics of weak references. In
ISMM ’06: Proceedings of the 5th international symposium on Memory manage-
ment, 2006.

18. G. Edjlali, A. Acharya, and V. Chaudhary. History-based access control for mobile
code. In Secure Internet Programming, volume 1603 of Lecture Notes in Computer
Science, 1999.

19. Ú. Erlingsson and F. B. Schneider. SASI enforcement of security policies: a retro-
spective. In Proc. 7th New Security Paradigms Workshop, 1999.

20. J. Esparza. On the decidability of model checking for several µ-calculi and Petri
nets. In Proc. 19th Int. Colloquium on Trees in Algebra and Programming, 1994.

21. P. W. Fong. Access control by tracking shallow execution history. In IEEE Sym-
posium on Security and Privacy, 2004.

22. C. Fournet and A. D. Gordon. Stack inspection: theory and variants. ACM Trans-
actions on Programming Languages and Systems, 25(3):360–399, 2003.

23. L. Gong. Inside Java 2 platform security: architecture, API design, and implemen-
tation. Addison-Wesley, 1999.

24. D. Grove and C. Chambers. A framework for call graph construction algorithms.
ACM Transactions on Programming Languages and Systems, 23(6), 2001.

25. A. Igarashi and N. Kobayashi. Resource usage analysis. In Proc. 29th ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages, 2002.

26. I. Ion, B. Dragovic, and B. Crispo. Extending the java virtual machine to enforce
fine-grained security policies in mobile devices. In ACSAC, 2007.

27. G. T. Leavens, A. L. Baker, and C. Ruby. JML: A notation for detailed design.
In H. Kilov, B. Rumpe, and I. Simmonds, editors, Behavioral Specifications of
Businesses and Systems, pages 175–188. Kluwer Academic Publishers, 1999.

28. K. Marriott, P. J. Stuckey, and M. Sulzmann. Resource usage verification. In Proc.
First Asian Programming Languages Symposium, 2003.

29. F. Martinelli and P. Mori. Enhancing Java security with history based access
control. In FOSAD, 2007.

30. F. Martinelli, P. Mori, and A. Vaccarelli. Towards continuous usage control on
grid computational services. In ICAS/ICNS, 2005.

31. Microsoft Corp. .NET Framework Developer’s Guide: Securing Applications.
32. F. Nielson, H. R. Nielson, and C. Hankin. Principles of Program Analysis. Springer-

Verlag, 1999.
33. R. Pandey and B. Hashii. Providing fine-grained access control for Java programs.

In Proc. ECOOP, 1999.
34. K. V. Renaud. Experience with statically-generated proxies for facilitating Java

runtime specialisation. IEEE Proc. Software, 149(6), Dec 2002.
35. C. Skalka and S. Smith. History effects and verification. In Asian Programming

Languages Symposium, 2004.
36. P. Thiemann. Enforcing safety properties using type specialization. In Proc. ESOP,

2001.
37. J. Wang, Y. Takata, and H. Seki. HBAC: A model for history-based access control

and its model checking. In Proc. ESORICS, 2006.
38. I. Welch and R. J. Stroud. Kava - using byte code rewriting to add behavioural

reflection to Java. In USENIX Conference on Object-Oriented Technology, 2001.

