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Abstract

We introduce weak binders, a lightweight construct to deal with fresh names in nominal calculi. Weak binders
do not define the scope of names as precisely as the standard ν-binders, yet they enjoy strong semantic
properties. We provide them with a denotational semantics, an equational theory, and a trace inclusion
preorder. Furthermore, we present a trace-preserving mapping between weak binders and ν-binders.
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1 Introduction

Over the last few years naming has been envisaged as a suitable abstraction for

capturing and handling a variety of computational concepts, like distributed objects,

cryptographic keys, session identifiers. Also, the dynamicity issues usually arising

in distributed computing (e.g., network reconfiguration, module versioning) may be

usefully explained in terms of naming disciplines such as fresh name generation,

binding and scoping rules. The π-calculus [12,18] is probably the most illustrative

example of nominal calculi, in which many of the concepts outlined above have been

formally modelled and explained. Nominal calculi manipulate names via explicit

binders that define their scope. The standard example is the π-calculus restriction

operator νn. A ν-binder also declares that a fresh name has to be created. A broad

variety of formal theories [8,9,20,17,13,14,4] developed in the last few years shows

the intrinsic difficulties of handling naming and freshness.

This paper aims at contributing to this line of research. Our motivating starting

point is to understand what is the actual gain in using ν-binders to deal with fresh

names. Indeed, the equational theory of ν-binders allows for freely moving them
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almost anywhere in a process (except escaping from a recursion). So, one might

wonder whether ν-binders can be omitted in a process, and replaced by a more

primitive construct, e.g. an atomic action to be interpreted as a gensym() that

explicitly creates a fresh name.

We introduce a nominal calculus with weak binders, a construct for generating

fresh names as an atomic action, without explicit ν-binders. Our calculus slightly

extends Bergstra and Klop’s Basic Process Algebras [3], by allowing parametrized

atomic actions α(r), that abstract from dispatching the action α to the object r.

Objects can be freshly created through the special action new(n), our “weak binder”.

We study under which conditions a weakly bound process can be treated co-

herently with a process with ν-binders. For instance, in the weakly bound process

p = new(n) · α(n) + new(m) · α(m) there is no confusion between the scopes of the

“bound” names n and m, and so p is equivalent to the “strongly bound” process

P = νn.νm.(new(n) ·α(n)+new(m) ·α(m)). We shall then say that p is well-bound,

and that P is its bindification. This transformation makes precise the scopes of

names in weakly bound processes, by inserting the ν-binders at the right points.

This is not always possible, however, e.g. in the process new(n) · (ε +new(n)) ·α(n)

there is an inherent ambiguity, because we cannot tell whether the action α has to

be done on the object created by the first or by the second new. When bindification

is possible, we prove that the semantics of the weakly bound and of the bindified

processes are trace equivalent.

A further contribution is a trace inclusion preorder - for weakly bound processes:

when p - q, the traces of p are included in those of q. We compare this preorder

with a trace inclusion preorder for strongly bound processes. Preorders of processes

are a relevant and non-trivial aspect of subtyping/subeffecting for type and effect

systems [1]. Also, thay can be udes to study the compliance of contracts with

implementations and subcontract relations in calculi for Web services [5,6].

We envisage the impact of our approach as follows. Our main result is the formal

definition of a methodology for handling the freshness of names without resorting

to explicit binders. The overall outcome of our semantical investigation consists in

the full characterization of weak binders. We have proved that weak binders still

enjoy interesting semantic properties, comparably to what can be obtained through

ν-binders. We have exploited weak binders to develop the static machinery (a type

and effect system and a model checker) of a linguistic framework for resource usage

control [1]. As a downside, we have found that weak binders, having a weaker

structure than ν-binders, may make the life hard when going into the proofs.

The paper is organized as follows. We first introduce a calculus with explicit

ν-binders, we give its operational and denotational semantics, and we show them

fully abstract. We then remove ν-binders, and define a denotational semantics

and an equational theory of weakly bound processes. Then, we define the bindify

transformation, and we state its correctness: the bindification of a weakly bound

process p is trace equivalent to p. After that, we compare the equational theories

and the trace inclusion preorders of strongly bound and weakly bound processes. We

conclude by reporting our experience about using weak binders, and by discussing

some related work. Because of space limitations, here we shall omit the proofs of

our statements. All the proofs are available in the companion technical report [2].
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2 Strongly bound processes

We now introduce a process calculus with name binders, building upon Basic Process

Algebras (BPAs, [3]). Our calculus shares with BPAs the primitives for sequential

composition, for non-deterministic choice, and for recursion (though with a slightly

different syntax). Quite differently from BPAs, our atomic actions (called events)

have a parameter, which indicates the resource upon which the action is performed.

Resources r, r′, . . . ∈ Res are system objects that can either be already available in

the environment or be created at run-time. Resources can be accessed through a

given finite set of actions α,α′,new, . . . ∈ Act. The special action new represents the

creation of a fresh resource: this means that for each dynamically created resource

r, the event new(r) must precede any other α(r). 1 An event α(r) ∈ Ev abstracts

from accessing the resource r through the action α. We also have events the target

of which is a name n, n′, . . . ∈ Nam, to be bound by an outer ν. Since the name

binders are explicit in this calculus, we call its processes strongly bound, whose

abstract syntax is given in Def. 2.1.

Definition 2.1 Syntax of strongly bound processes

P,Q ::= ε empty process

h variable

α(ρ) event (ρ ∈ Res ∪ Nam)

νn.P resource binding

P · Q sequential composition

P + Q choice

µh.P recursion

In a recursion µh.P , the free occurrences of h in P are bound by µ. In the

construct νn. P , the ν acts as a binder for the free occurrences of the name n in

P . The intended meaning is to keep track of the binding between n and a freshly

created resource. A process is closed when it has no free names and variables.

The behaviour of a strongly bound process is described by the set of sequential

traces (typically denoted by η, η′, . . . ∈ Ev
∗) of its events. As usual, ε denotes

the empty trace, and εη = η = ηε. The trace semantics JP Kop of a closed, strongly

bound process P , is a function from finite set of resources to sets of traces (Def. 2.2).

We first introduce an auxiliary labelled transition relation P,R
a
−→ P ′,R′ (where

a ∈ Ev ∪ {ε} and R,R′ ⊂ Res). The set R in configurations accumulates the

resources created at run-time, so that no resource can be created twice, e.g.

(νn.new(n)) · (νn.new(n)), ∅
ε

−−−−→ new(r0) · (νn.new(n)), {r0}

new(r0)
−−−−−→ νn.new(n), {r0}

/−−−−→ new(r0), {r0}

1 We conjecture this is a decidable property, e.g. suitably adapting the techniques of [10] should enable us
to identify and discard those P that produce ill-formed traces where an α(r) comes before a new(r).
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The labelled transition relation is then exploited in the definition of JP Kop, which

contains two kinds of traces. First, we include in JP Kop all the traces for terminating

executions, i.e. those leading to ε. Then, we add all the prefixes of all executions,

and mark these truncated traces with a trailing ! symbol. Here, we just let ! be a

distinguished event not in Ev. Including these η! prefixes in JP Kop is useful, since

they allow us to observe non-terminating computations.

Definition 2.2 Trace semantics of strongly bound processes

α(r), R
α(r)
−−→ ε, R∪ {r} νn. P, R

ε
−→ P{r/n}, R∪ {r} if r 6∈ R

ε · P, R
ε
−→ P, R P · Q, R

a
−→ P ′ · Q, R′ if P, R

a
−→ P ′, R′

P + Q, R
ε
−→ P, R P + Q, R

ε
−→ Q, R µh. P, R

ε
−→ P{µh. P/h}, R

The trace semantics JP Kop(R) is then defined as

JP Kop(R) = { η | P, R
η
−→ ε, R′ } ∪ { η! | P, R

η
−→ P ′, R′ }

Example 2.3 Consider the following strongly bound processes:

P0 = µh. α(r) · h P1 = µh. h · α(r) P2 = µh. νn. (ε + α(n) · h)

Then, JP0K
op(∅) = α(r)∗!, i.e. P0 generates traces with an arbitrary, finite number

of α(r). Note that all the traces of P0 are non-terminating (as indicated by the !)

since there is no way to exit from the recursion. Instead, JP1K
op(∅) = {!}, i.e. P1

loops forever, without generating any events. The semantics of JP2K
op(∅) consists

of all the traces of the form α(r1) · · ·α(rk) or α(r1) · · ·α(rk)!, for all k ≥ 0 and

pairwise distinct resources ri. 2

The denotational semantics JP Ks
θ of a strongly bound process P is given below

(Def. 2.5) as a function Y in a cpo Ds, which we define now. We first let D0 be

{X ⊆ Ev
∗∪Ev

∗! | ! ∈ X }, that is the cpo of sets X of traces such that ! ∈ X. Then

we let Dh be the cpo Pfin(Res) ⇀ D0 (where ⇀ denotes partiality). Finally, Ds is

the cpo (Nam → Res) → Dh Intuitively, JP Ks
θ(χ)(R) contains all the possible traces

of P . The first argument χ ∈ Nam → Res records the bindings between names and

resources. The second argument R ∈ Pfin(Res) is a finite set of resources which

indicates those already used, so to make them unavailable for future creations. As

usual, the parameter θ binds the free variables of P (in our case, to values in Dh).

Before giving the semantics, it is convenient to introduce some auxiliary defini-

tions that help in composing traces sequentially (see Def. 2.4 below).

The operator ⊙ ensures that all the events after a ! are discarded. For instance,

the process P = (µh. h) · α(r) will never fire the event α(r), because of the infinite

loop that precedes the event. The composition of the semantics of the first com-

ponent µh. h is { !}, while the semantics of α(r) is { ! , α(r), α(r) !}. Combining the

two semantics results in { !} ⊙ { ! , α(r), α(r) !} = { !}.

The operator � takes two semantics and combines their traces sequentially.

While doing that, it records the resources created, so to avoid that a resource is
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generated twice. For instance, let P = (νn.new(n)) · (νn′.new(n′)). The traces of

the right-hand side νn′.new(n′) must not generate the same resources used in the

left-hand side νn.new(n), e.g. new(r0)new(r0) is not a possible trace of P .

The definition of � exploits the auxiliary operator R, that computes the set of

resources occurring in a trace η. Also, ↓∈ R(η) indicates that η is terminating, i.e.

it does not contain any !s.

Definition 2.4 Let X ∈ D0, and x ∈ Ev ∪ { !}. We define x ⊙ X and η ⊙ X as:

x ⊙ X =

{

{x η | η ∈ X } if x 6= !

{x} if x = !
(a1 · · · an) ⊙ X = a1 ⊙ · · · ⊙ an ⊙ X

Given Y0, Y1 ∈ Ds, their composition Y0 � Y1 is:

Y0 � Y1 = λχ,R.
⋃

{ η0 ⊙ Y1(χ)(R ∪ R(η0)) | η0 ∈ Y0(χ)(R) }

where R(η) is defined inductively as follows:

R(ε) = {↓} R(η α(r)) = R(η) ∪ {r} if ! 6∈ η R(η !η′) = R(η) \ {↓}

Definition 2.5 Denotational semantics of strongly bound processes

JεKs
θ = λχ,R. { ! , ε} JhKs

θ = λχ,R. θ(h)(R)

Jα(ρ)Ks
θ = λχ,R.

{

{ ! , α(ρ), α(ρ) !} if ρ = r

{ ! , α(χ(n)), α(χ(n)) !} if ρ = n
JP · QKs

θ = JP Ks
θ � JQKs

θ

Jνn. P Ks
θ = λχ,R.

⋃

r 6∈R JP Ks
θ(χ{r/n})(R ∪ {r}) JP + QKs

θ = JP Ks
θ ⊔ JQKs

θ

Jµh.P Ks
θ = λχ,R.

⋃

i≥0

(

λZ. λR̄. JP Ks
θ{Z/h}(χ)(R̄)

)i
(λR.{ !}) (R)

The semantics of an event α(r) comprises the possible “truncations” of {α(r)},
i.e. ! , α(r) ! and α(r) (notice that ! is always included in the semantics of all P ,

coherently with the definition of the trace semantics). The semantics of α(n) is

similar, but it looks in χ for the resource associated with n. The semantics of

νn. P joins the semantics of P , where the parameters R and χ are updated to

record the binding of n with r, for all the resources r not yet used in R. The

semantics of P · Q combines the semantics of P and Q with the operator �. The

semantics of P + Q is the least upper bound of the semantics of P and Q. The

semantics of a recursion µh. P is the least upper bound of f i(λR.{ !}), where f(Z) =

λR̄. JP Ks
θ{Z/h}(χ)(R̄). Since f is continuous and λR.{ !} is the bottom element of

the cpo Dh, then f i(λR.{ !}) is an ω-chain, and its least upper bound is the least

fixed point of f .

The following theorem states that the denotational semantics of strongly bound

processes is fully abstract with respect to their operational semantics.

Theorem 2.6 (Full abstraction) Let R be a finite sets of resources, and let ∅ be

the empty mapping. Then, for all closed strongly bound processes P :

JP Kop(R) = JP Ks
∅(∅)(R)
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3 Weakly bound processes

In strongly bound processes, the ν-binders precisely define the scope of names.

However, classical equational theories [11] for these processes usually allow binders

to be floated out, towards the top-level, e.g. in P0 + νn. P1 = νn. P0 + P1, under

the usual conditions. Indeed, the binder can always be brought outside a context,

provided that 1) no recursion boundary is crossed, i.e. in µh. νn.P the binder cannot

be moved outside, and 2) no name in the context is captured. Because of this, it

is often convenient to define a normal form for processes, where all the binders are

placed at their top-most position, i.e. at the top-level or just under a recursion.

These are standard and well-known facts about process algebras.

One might wonder what information is actually carried by the presence of the

ν-binders. From an operational point of view, we can see them as the points where

resources are created. In our setting, this information is also carried by the new

events. Therefore, it is interesting to study whether, under this assumption, we can

neglect placing binders in our processes, and let the new events to define, at least

in some loose way, the scope of names.

To this purpose, we now introduce weakly bound processes, which have no

ν-binders (Def. 3.1). For instance, let p = new(n) ·α(n)+new(m) ·α′(m). Here, the

event new(n) binds the name n, while new(m) binds m. We shall later on define a

semantics of weakly bound processes such that p is equivalent to the strongly bound

process (νn.new(n) · α(n)) + (νm.new(m) · α′(m)), as the intuition suggests.

While weakly bound processes may make our reasoning more agile, we must not

neglect that, unlike in the strongly bound case, weakly bound processes are possible

where names have no clear scope. E.g., in new(n) · (new(n)+ ε) ·α(n) it is not clear

what binds the last occurrence of n. Roughly, these troublesome processes are those

that can be derived from a strongly bound process by neglecting to α-convert some

name while enlarging the scope of a ν-binder, yielding to unwanted name captures.

We shall return to this point in Sect. 4.

Definition 3.1 Syntax of weakly bound processes

p, q ::= ε empty process

h variable

α(ρ) event (ρ ∈ Res ∪ Nam)

new(n) resource creation

p · q sequential composition

p + q choice

µh.p recursion

Free names in weakly bound processes have to be dealt with quite peculiarly,

because of the absence of ν-binders. Consider e.g. p = p′ · α(n). To tell whether

n is free in p we have to inspect p′. For example if p′ = new(n), we shall consider

n as non-free; instead, if p′ = ε, the name n is obviously free. Given p′, we define

which names are bound by p′, so to extend the scope of the names of p′ when it

occurs at the left of another process, as in p′ · p′′. Non-determinism complicates
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matters: it might happen than a process p′ binds a name to a resource only in

some, but not all, of its execution, e.g. p′ = new(n) + ε. So, we define two sets

of names, the must-bound names bn2(p) and the may-bound names bn⋄(p), for the

names that are bound in every execution of p, and the names that are bound in

some execution of p, respectively (see Def. 3.2). So, if p′ = new(n) + ε, we have

bn2(p′) = ∅ and bn⋄(p′) = {n}. Note that the sets bn2(p′) and bn⋄(p′) can be seen

as static approximations for the actual run-time bindings created by the process p′.

Of course, bn2(p) ⊆ bn⋄(p). Note that no “weak” binding can escape a recursion,

as real ν-binders cannot cross recursive contexts. So, in (µh.new(n) · h + ε) · α(n)

the last n is free, and is unrelated to the new(n) event under the µh. Therefore, the

bound names (both must and may) of a recursion are empty.

Definition 3.2 Must-bound names bn2(p) and may-bound names bn⋄(p)

bn2(ε) = bn2(h) = ∅ bn2(α(ρ)) =

{

{n} if α = new and ρ = n

∅ otherwise

bn2(p · q) = bn2(p) ∪ bn2(q) bn2(p + q) = bn2(p) ∩ bn2(q) bn2(µh. p) = ∅

bn⋄(p) =

{

bn2(p) if p = ε, h, α(ρ), µh. p′

bn⋄(p′) ∪ bn⋄(p′′) if p = p′ + p′′ or p = p′ · p′′

We can now define the free names fn(p) of a weakly bound process p. This is

mostly standard, except that must-bound names are checked to single out captured

names. The choice of using must-bound names instead of may-bound names is done

so that, e.g. in p = (new(n) + ε) · α(n) we consider n as free. This has the nice

property that, whenever fn(p) = ∅, in no execution of p we will attempt to fire an

event α(n) without a proper binding for n.

Definition 3.3 Free names fn(p)

fn(h) = ∅ fn(α(ρ)) =

{

{n} if ρ = n and α 6= new

∅ otherwise
fn(µh. p) = fn(p)

fn(ε) = ∅ fn(p · q) = fn(p) ∪ (fn(q) \ bn2(p)) fn(p + q) = fn(p) ∪ fn(q)

We now define a denotational semantics of weakly bound processes. Unlike

in the case of strongly bound processes, where the result of the semantics was a

set of event traces, here we also need to keep track of the bindings generated by

the new events. We shall then use sets of pairs (η, χ) instead of sets of traces η.

Note that this difference – the extra χ – between the semantic domains for the

strongly/weakly bound processes is exactly the same difference between the classic

domains for programming languages with static/dynamic scoping.

As we did with strongly bound processes in Def. 2.4, we introduce the auxiliary

operators ⊙ and � to handle sequential composition.
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The operator ⊙ merges two pairs (η, χ), so ensuring that all the events after a !

are discarded, as well as the bindings created after the !. For example, (η!, χ) ⊙
(η′, χ′) = (η!, χ), discarding both η′ and χ′. Here we also use two cpos, D1 and

Dw, to play the role of D0 and Ds used for strongly bound processes. We let D1

be the cpo of sets X of pairs (η′, χ′) such that there exists a pair in X with η′ = !.

Formally, D1 is the cpo {X ⊆ (Ev
∗ ∪ Ev

∗ !) × (Nam → Res) | ∃χ′. ( ! , χ′) ∈ X }.

Definition 3.4 Let a ∈ Ev ∪ { !}, X ∈ D1, (η, χ), (η′, χ′) ∈ X. We define ⊙ as:

(a, χ) ⊙ (η′, χ′) =

{

(a, χ) if a = !

(aη′, χ′) otherwise

(η, χ) ⊙ (η′, χ′) = (a1, χ) ⊙ · · · ⊙ (ak, χ) ⊙ (η′, χ′) if η = a1 · · · ak

(η, χ) ⊙ X = { (η, χ) ⊙ (η̄, χ̄) | (η̄, χ̄) ∈ X }

The operator � takes two semantics Y0 and Y1 and combines their traces se-

quentially. In Y0 � Y1 the bindings (i.e. the χ) generated by Y0 are passed to Y1, so

that e.g. new(n) · α(n) works as expected.

Definition 3.5 Let Dw = (Nam → Res) → Pfin(Res) ⇀ D1 be the cpo of functions

from functions from names to resources, to the finite subsets of Res to D1 (where

⇀ denotes partiality). Given Y0, Y1 ∈ Dw, their composition Y0 � Y1 is:

Y0 � Y1 = λχ,R.
⋃

{ (η0, χ0) ⊙ Y1(χ0)(R ∪ R(η0)) | (η0, χ0) ∈ Y0(χ)(R) }

The denotational semantics JpKw
θ of a weakly bound process p is defined as a

function Y ∈ Dw, where we assume that Y (χ)(R) is defined only if R ⊇ ran(χ).

The parameter θ is a mapping from the free variables h of p to Dh.

Definition 3.6 Denotational semantics of weakly bound processes

Below, we let setχI = { (η, χ) | η ∈ I }.

JεKw
θ = λχ,R. setχ{ ! , ε} JhKw

θ = λχ,R. setχθ(h)(R)

Jα(ρ)Kw
θ = λχ,R.



















setχ{ ! , α(ρ), α(ρ) !} if ρ = r

setχ{ ! , α(χ(n)), α(χ(n)) !} if ρ = n ∈ dom(χ)

{( ! , χ)} ∪
⋃

r 6∈R setχ{r/n}{α(r), α(r) !} if
ρ = n 6∈ dom(χ)
and α = new

Jp · qKw
θ = JpKw

θ � JqKw
θ Jp + qKw

θ = JpKw
θ ⊔ JqKw

θ

Jµh.pKw
θ = λχ,R. setχ

⋃

i≥0

(

λZ.λR̄. fst(JpKw
θ{Z/h}(χ|dom(χ)\bn⋄(p))(R̄))

)i
(λR.{ !}) (R)

The semantics above is similar to the one for strongly bound processes, so we

just comment on the differences. First, each trace η has now been bundled with

its generated bindings χ. Related to this, now the new(n) event creates the actual

binding, which augments the χ at hand. Note that we assume the operators ∪ and

⊔ to be undefined when one of the arguments is undefined. This must hold also
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for ⊙ and �, so making e.g. the semantics of (new(n) + ε) · α(n) undefined when

n 6∈ dom(χ), since in one branch α(n) is evaluated without a proper binding for n.

The semantics of recursion variables h is peculiar. First, note that we chose the

semantics parameter θ so that θ(h) is an element of Dh and not of Dw. This is

because, when recursion is involved, the bindings of names must not be propagated:

this is strictly related to the fact that ν-binders cannot cross a recursive context in

strongly bound processes. For example, in the strongly bound process µh. νn. P ·h·P ′

there is no way for the resource bound to n to be “passed” to the inner “call” to

h; similarly, if the inner “call” generates a binding, it cannot be “returned” so to

interfere with P ′. Of course, this would change if we allowed a more complex form of

recursion where h can take a resource as an argument. Returning to the semantics

of h, since θ(h) ∈ Dh needs no χ, then it suffices to pass it an R, and then augment

the returned set of traces with χ. This is accomplished by the setχ function.

The semantics of the recursion µh. p is quite similar to the one for strongly bound

processes. For the reasons explained above, we compute a fixed point over Dh and

not Dw. This means that we have to adapt the semantics of p, which is in Dw, to a

function in Dh. More concretely, we just need to provide χ to JpKw and ignore the

χ returned by it. The latter is done by a trivial left projection, the fst in the actual

formula. The χ we pass, instead, is the top-level χ – the one provided to the whole

recursive process – after the bindings which affect bn⋄(p) have been filtered out.

This filtering is needed to prevent name confusion e.g. in new(n) · (µh.new(n) · p),

where the outer n is unrelated to the inner one. Aside from this, the fixed point is

computed exactly as for the strongly bound processes, exploiting the continuity of

f(Z) = λR̄. fst(JpKw
θ{Z/h}(χ

′)(R̄)).

4 Bindifying weakly bound processes

To make precise the scope of names in weakly bound processes, we shall translate

them into strongly bound processes, through the transformation bindify (Def. 4.3).

This transformation will insert the ν-binders at the right points, provided that the

introduced scopes of names do not interfere dangerously. We shall call well-bound

those weakly bound processes that can be safely translated into strongly bound

ones. To help the intuition, we shall first give some examples.

Example 4.1 Consider the weakly bound processes:

p1 = new(n) · new(n) · α(n) p2 = α(n) · new(n) p3 = new(n) + α(n)

p4 = (ε + new(n)) · α(n) p5 = µh.new(n).h p6 = new(n) · (µh. (ε + new(n) · h)) · α(n)

The processes p1, p2, p3, p4 are not well-bound. If p1 were such, its bindification

would either be νn.new(n)·(νn.new(n))·α(n) – where α is performed on the resource

generated by the outer ν-binder – or νn.new(n) · (νn.new(n) ·α(n)) – where α acts

on the resource of the inner binder. Because of this possible ambiguity, we treat p1

as not well-bound. The process p2 is not well-bound, too, because it would produce

an ill-formed trace α(r)new(r) where the event α(r) is fired before the event new(r)

that signals the creation of r. Similarly, the process p3 is not well-bound, because its

bindification would give rise to the ill-formed trace α(r). The process p4 is not well-

bound, because choosing the branch ε would lead to a similar situation. Observe
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that the denotation of p1 contains the non-sense trace new(r)new(r)α(r), while the

semantics of p2, p3 and p4 are undefined, because � and ⊔ are strict. Finally, the

process p5 is well-bound: it loops over new(n), generating a fresh resource at each

iteration. Also, p6 is well-bound, because the µ-binder clearly separates the scope

of the outer new(n) from that of the inner one. 2

The following definition formalizes when a process is well-bound. The empty

process, variables and events are well-bound. A recursion is well-bound when its

body is such. A choice p + q is well-bound when both p and q are well-bound.

Additionally, we require that the may-bound names of p are disjoint from the free

names of q, and viceversa (e.g. new(n)+α(n) is not well-bound). A sequence p ·q is

well-bound when both p and q are well-bound, and furthermore (i) the may-bound

names of q are disjoint from the names of p (e.g. α(n) · new(n) and new(n) · new(n)

are not well-bound), and (ii) the free names of q are either must-bound in p, or they

are not may-bound in p (e.g. (ε + new(n)) · α(n) is not well-bound).

Definition 4.2 Well-bound processes

A weakly bound process p is well-bound when wb(p), defined inductively as:

wb(ε) = wb(h) = wb(α(ρ)) = true wb(µh. p) if wb(p)

wb(p + q) if wb(p),wb(q), bn⋄(p) ∩ fn(q) = bn⋄(q) ∩ fn(p) = ∅

wb(p · q) if wb(p),wb(q), bn⋄(q) ∩ (bn⋄(p) ∪ fn(p)) = (bn⋄(p) \ bn2(p)) ∩ fn(q) = ∅

We now introduce the bindify transformation, which is defined on well-bound

processes only. The may-bound names are lifted to the leftmost position of the

bindified process, and they are placed within the scope of a ν-binder. In the case

of a recursion µh. p, the may-bound names of p are lifted to the leftmost position

within the recursion, i.e. they do not escape the scope of the µh.

Definition 4.3 Bindification

If wb(p), the bindification bindify(p) of p is a strongly bound process, defined as:

bindify(p) = ν bn⋄(p). β(p)

where the auxiliary operator β is defined inductively as follows:

β(ε) = ε β(α(ρ)) = α(ρ) β(p + q) = β(p) + β(q)

β(h) = h β(µh. p) = µh. bindify(p) β(p · q) = β(p) · β(q)

Example 4.4 Recall from Sect. 1 the process p = new(n) · α(n) + new(m) · α(m).

It is easy to check that p is well-bound, and that its may-bound names are:

bn⋄(p) = bn⋄(new(n) · α(n)) ∪ bn⋄(new(m) · α(m)) = {n,m}

Then the bindification of p is the strongly bound process:

bindify(p) = νn.νm.(new(n) · α(n) + new(m) · α(m))

10
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Example 4.5 Recall the process p5 = new(n) · (µh. (ε + new(n) · h)) · α(n) from

Ex. 4.1. It is easy to check that p5 is well-bound. Its may-bound names are:

bn⋄(p5) = bn⋄(new(n)) ∪ bn⋄(µh. (ε + new(n) · h)) ∪ bn⋄(α(n)) = {n} ∪ ∅ = {n}

The bindification of p5 is then computed as follows:

bindify(p5) = νn. β
(

new(n) · (µh. (ε + new(n) · h)) · α(n)
)

= νn.
(

β(new(n)) · µh. bindify(ε + new(n) · h) · β(α(n))
)

= νn.new(n) · (µh. νn. β(ε + new(n) · h)) · α(n)

= νn.new(n) · (µh. νn. (ε + new(n) · h)) · α(n)

We now state the correctness of bindification (Theorem 4.6). The “strong” seman-

tics of bindify(p) contains exactly the traces of the “weak” semantics of p.

Theorem 4.6 For all closed, weakly bound processes p such that wb(p), JpKw
∅ (∅)(∅)

is defined, and:

Jbindify(p)Ks
∅(∅)(∅) = fst(JpKw

∅ (∅)(∅))

5 Equational theories and trace inclusion

In this section we provide strongly bound and weakly bound processes with an

equational theory and a trace inclusion preorder. We shall state their correctness,

i.e. the equational theory preserves the set of traces, while the preorder preserves

their inclusion. Finally, we shall highlight some differences between the two calculi.

We first give in Def. 5.1 an equational theory of strongly bound processes.

Definition 5.1 An equational theory of strongly bound processes

The relation = over strongly bound processes is the least congruence including

α-conversion of names and variables such that:

P + P = P (P + P ′) + P ′′ = P + (P ′ + P ′′) P + P ′ = P ′ + P

(P · P ′) · P ′′ = P · (P ′ · P ′′) ε · P = P = P · ε

(P + P ′) · P ′′ = P · P ′′ + P ′ · P ′′ P · (P ′ + P ′′) = P · P ′ + P · P ′′

µh.µh′.P = µh′.µh.P µh.P = P{µh. P/h} νn.ε = ε

νn.νn′.P = νn′.νn.P νn.(P + P ′) = (νn.P ) + P ′ if n 6∈ fn(P ′)

νn.(P · P ′) = P · (νn.P ′) if n 6∈ fn(P ) νn.(P · P ′) = (νn.P ) · P ′ if n 6∈ fn(P ′)

The operation + is associative, commutative and idempotent; · is associative,

has identity ε, and distributes over +. The binders µ and ν allow for α-conversion of

bound names and variables, and can be rearranged. A µh can be introduced/eliminated

when h does not occur free. A νn can be extruded when it does not bind a free

occurrence of n. A µh. P can be folded/unfolded as usual.
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As expected, the equational theory above is not complete, e.g. JP Ks = JP ′Ks does

not imply P = P ′. E.g., µh. α(r) ·h cannot be equated to µh. α(r) ·α(r) ·h, yet they

have the same traces α(r)∗ ! . However, the equational theory is sound w.r.t. our

semantics, as established by the first item Theorem 5.3 below.

We then define a preorder P � Q betweeen strongly bound processes. The

preorder � includes equivalence, and it is closed under contexts. Also, a strongly

bound process P can be arbitrarily “weakened” to P + Q.

Definition 5.2 A trace inclusion preorder of strongly bound processes

The relation � over strongly bound processes is the least precongruence such that:

P � Q if P = Q P � P + Q

The following theorem states that the equational theory = and the preorder �
agree with the semantics of strongly bound processes.

Theorem 5.3 For all closed, strongly bound processes P and Q:

• if P = Q, then JP Ks
∅ = JQKs

∅.

• if P � Q then JP Ks
∅(χ)(R) ⊆ JQKs

∅(χ)(R), for all R and χ.

We now consider how to express an equational theory and a trace inclusion

preorder for weak binders, in the same spirit of Def. 5.1 and Def. 5.2. In spite of

their weaker structure, weakly bound processes still share many semantic-preserving

equational properties with strongly bound processes, as summarized in Def. 5.4.

Notably, the equations involving + and · are identical with respect to Def. 5.1.

The recursions µh can be rearranged, as before. Of course, here we do not have

ν-binders, so the α-conversion of bound names can not be done, in general. As an

important exception, we know that bound names inside a recursion can not escape,

so their scope is completely known. In this case, we allow for α-conversion. Note

that unfolding recursions is not allowed, otherwise we would have µh.new(n) · h ≈
new(n)·(µh.new(n)·h) ≈ new(n)·new(n)·(µh.new(n)·h), so causing name confusion

— indeed, the first two processes are well-bound, while the last one is not. As with

strong binders, the equational theory below is not complete, yet it is sound w.r.t. the

J−Kw semantics, as established by the first item of Theorem 5.7.

Definition 5.4 An equational theory of weakly bound processes

The relation ≈ over weakly bound processes is the least congruence including

α-conversion of variables such that:

p + p ≈ p (p + p′) + p′′ ≈ p + (p′ + p′′) p + p′ ≈ p′ + p ε · p ≈ p ≈ p · ε

(p · p′) · p′′ ≈ p · (p′ · p′′) (p + p′) · p′′ ≈ p · p′′ + p′ · p′′ p · (p′ + p′′) ≈ p · p′ + p · p′′

µh.µh′.p ≈ µh′.µh.p µh.p ≈ µh.(p{m/n}) if n ∈ bn⋄(p) and m 6∈ p

12



Bartoletti, Degano, Ferrari, Zunino

Example 5.5 The equational theories shown above offer an opportunity to com-

pare strong ν-binders with weak new binders. Consider the following equation:

new(n) · p + new(n) · q ≈ new(n) · (p + q). This is a trivial fact, since it di-

rectly follows from the distributive law. Its equivalent for strongly bound processes,

(νn. P )+(νn.Q) = νn. (P +Q), appears instead to be non trivial. Indeed, although

Def. 5.1 comprises all the classic equations for ν-binders, the mentioned equation

can not be derived from them, since we can not identify the two binders. Yet, in

most process algebras, we expect the equation to be sound w.r.t. any reasonable

process equivalence relation. So, in this case weak binders offer a simpler view.

We shall now introduce a preorder p -N q on weakly bound processes. Here,

we use a set of names N as an index to the preorder relation. This index is needed

to avoid name confusion, as we shall see below. When p -N q holds, then the

semantics of p is included in that of q (second item of Theorem. 5.7).

Definition 5.6 A trace inclusion preorder of weakly bound processes

The relation -N over weakly bound processes is the least preorder such that:

p -∅ q if p ≈ q p -∅ p + q p -N∪N ′ p′′ if p -N p′ and p′ -N ′ p′′

C(p) -N C(q) if p -N q and N ∩ (bn⋄(C) ∪ fn(C)) = ∅

pσ{µh. p/h} -ran(σ) µh. p if ran(σ) ∩ fn(p) = ∅

where C = p · • | • · p | p + • | • + p is a context, σ : Nam→Nam is an injective

function with dom(σ) = bn⋄(p), and pσ{µh. p/h} is capture-avoiding.

The preorder -N includes ≈-equivalence (Def. 5.4). A process p can be arbi-

trarily “weakened” to p + q. The relation is closed under contexts, provided that

the names in N are disjoint from those in the context. Note that, because of this

side condition, -N is not a precongruence, unlike � for strongly bound processes.

Folding/unfolding is possible, but in a weaker form than in Def. 5.1. To avoid name

confusion and preserve well-boundness, the unfolded names must be fresh. For in-

stance, if p = µh.new(n) · α(n) · h, then we shall have new(n′) · α(n′) · p -{n′} p.

The name n′ in -{n′} is needed to avoid name clashes. For instance, it prevents

from using the previous unfolding in the context C = • · α′(n′), since the extruded

new(n′) would bind the name n′ in α′(n′), as checked by the context rule above.

The side condition on the rule for folding/unfolding is needed to ensure that all

the processes smaller (w.r.t. -) than a well-bound process are well-bound (Theo-

rem 5.8). Omitting the disjointness condition between fn(p) and the range of the

substitution σ would lead to situations like α(n′) · new(n′) -{n′} µh. α(n′) · new(n),

where the right-hand side is well-bound, while the left-hand side is not. Substitu-

tions of names must be coherent with bindification, i.e. they must not affect names

that would be put under a ν-binder by β(−), e.g. (new(n) · µh.new(n)){m/n} =

new(m) · µh.new(n). Similarly, substitutions can trigger α-conversions to avoid

name captures, e.g. (µh.new(m) · α(n)){m/n} = µh.new(m′) · α(m).

We now formally state that our syntactic preorder agrees with the semantics
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of weakly bound processes, as it yields trace inclusion. Note that trace inclusion

requires the two semantics to be defined. Otherwise we have new(n) · µh. α(n) -∅

new(n) · µh. (new(n) + ε) · α(n): when the branch ε is chosen in the right-hand

side, we find χ′(n) = χ|dom(χ)\{n}(n), so α(n) cannot be evaluated, and the whole

semantics is undefined (while the semantics of the left-hand side is always defined).

Note however that is q is well-bound, then also p is such (Theorem 5.8), and so by

Theorem 4.6 both the semantics are defined.

Theorem 5.7 For all closed, weakly bound processes p and q:

• if p ≈ q, then JpKw
∅ = JqKw

∅ .

• if p -N q and, then fst(JpKw
∅ (χ)(R)) ⊆ fst(JqKw

∅ (χ)(R)), for all R and χ such

that dom(χ) ∩ N = ∅ and both the semantics are defined.

The projection fst in the statement above is necessary. Consider e.g. p =

new(n) -{n} µh. new(m) = q. Here, the semantics of p and q agree on the η

components, i.e. the truncations of new(r) with r 6∈ R, but p will augment χ with

the new binding {r/n}, unlike q which does not affect χ.

The next theorem guarantees that bindify is well-defined, i.e. it maps ≈-equivalent

weakly bound processes to =-equivalent strongly bound processes. Moreover, pro-

cesses smaller (w.r.t. -N ) than well-bound processes are well-bound.

Theorem 5.8 For all weakly bound processes p and q:

• if p ≈ q, then wb(p) if and only if wb(q).

• if p ≈ q and wb(p), then bindify(p) = bindify(q).

• if p -N q and wb(q), then wb(p).

6 Conclusions

We have investigated weak binders – a construct for fresh name generation – as

an alternative for ν-binders in nominal calculi. Weak binders allow for a looser

reasoning, while still admitting a trace-preserving translation into strong binders.

However, this comes at a cost: often, useful properties, e.g. trace inclusion (Th. 5.7),

require more side conditions to be checked for ensuring sanity. Also, α-conversion

of names can only be applied inside µ-binders. This is possible through the last rule

of the equational theory in Def. 5.4. An alternative would be to always consider

weakly bound processes modulo α-conversion within the µ-binders, at the cost of

making some proofs (e.g. those that do not depend on ≈) more complex. A further

downside of weak binders is that compositionality is reduced, since e.g. wb(p) and

wb(q) do not automatically imply wb(p · q) which – if needed – must be established

by exploiting further assumptions on the names of p and q. Future work would

address the use of weak binders in other process calculi. Indeed, we expect that

weak binders enjoy stronger properties in calculi without sequential composition

(e.g. CCS [11]). Moreover, studying some relaxed variants of well-boundness could

improve the applicability of weak binders.

In our experiments with weak binders, we also found they sometimes lead to

intricate proofs, since particular care must be exercised with corner cases. For in-

stance, handling recursion in an operational semantics for weakly bound processes
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seems to be quite complex. Indeed, näıve unfolding causes name confusion, so one

has to resort to either renaming all bound names so that they are indeed globally

fresh, or to record the “call frames” (entering/leaving the body of a recursion) in

a stack. Since we need to keep track of this, run-time configurations become more

complex, and we found our operational semantics (not presented in this paper) to

be too inconvenient to be used in proofs. Even when using the denotational seman-

tics (Def. 3.6), we felt that writing inductive statements for weak binders required

more trial-and-error steps, w.r.t. strong binders. However, in some occasions weak

binders may become a more agile tool. For instance, they can be exploited to im-

plement a type and effect inference algorithm for a calculus with side effects and

explicit name binders (like [1]), on top of an existing algorithm for a calculus without

binders. Each time a ν-binder is encountered, a fresh name is generated, similarly

to fresh type variables in Hindley-Milner type inference. After solving the obtained

type and effect constraints through unification, the resulting effect is bindified. Of

course, this is not always possible, e.g. when the effect is not well-bound. Possible

counter-measures consist in suitably extending let-polymorphism to ν-binders.

Related work. A number of formal techniques have been developed to handle bind-

ing and freshness of names. The permutation model of sets introduced by Fraenkel-

Mostowski has led to an elegant and powerful mathematical theory of naming [8].

The key observation of this approach is that α-conversion, binding and freshness can

be defined through name permutations (or swappings). For instance, the freshness

axiom for a name of a computational entity (i.e. an object, a process, a context,

etc.) is expressed by saying that the fresh name does not belong to the support of

the computational entity. Notably, in the permutation model the support of com-

putational entities is finite. This mathematical theory has been used to model early

and late semantics of the π-calculus [9]. Also, it has driven the design of a func-

tional language, FreshML [20], which includes primitive mechanisms for handling

fresh bindable names. In FreshML freshness is managed by a gensym() primitive

to dynamically generate names, and a primitive for permuting names. Our notion

of weakly bound processes exploits the gensym() primitive without resorting to

α-conversion. Indeed, the bindify trasformation singles out the names in the finite

support of a weakly bound process. A monadic denotational semantics for FreshML

has been used to handle freshness through a continuation monad on FM-sets [19].

This semantics allows for translating the usual domain-theoretic results in the con-

text of FM-sets, and to use them to prove freshness-related properties. There is

also a cost associated to α-converting names [7,15] which could be reduced e.g. by

compiling strong binders into weak binders.

The λν-calculus presented in [16] extends the pure λ-calculus with names. In

contrast to λ-bound variables, nothing can be substituted for a name, yet names can

be tested for equality. Reduction in λν is confluent, and it allows for deterministic

evaluation. Furthermore, all the observational equivalences that hold in the pure λ-

calculus still hold in λν. This has the practical consequence that all the equational

techniques for transforming and verifying pure functional programs are also appli-

cable to programs with local names. Nominal techniques have been implicitly used

for reasoning about the semantics of functional languages with local state in [17],

to prove when two functional programs are equivalent in every evaluation context.
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Binding and freshness of names have been a main concern in process calculi.

History-Dependent automata [13,14] provide an automata-based model where states

are equipped with name permutations to manage freshness and garbage collections

of names. They automatically manage the creation and deallocation of names, while

allowing for a compact representation of the system behaviour, by collapsing the

states that only differ for the renaming of local names. The π-calculus is extended

in [4] with an operational model where names are localized to their owners; each

sequential process has its logical space on names and a local manager generates

fresh names whenever necessary.
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A Appendix: strongly bound processes

This appendix contains a number of intermediate definitions and lemmata that are

necessary to prove Theorem 2.6. All the detailed proofs are in [2].

Remark A.1 To simplify the proof of full abstraction, hereafter we shall extend

strongly bound processes with the process !, that models a non-terminated com-

putation. The labelled transition system in Def. 2.2 is enriched with the following

rule, that allows for observing the finite prefixes of non-terminating computations:

P, R
!
−→ ! ,R

The trace semantics JP Kop(R) is then defined as follows:

JP Kop(R) = { η | P, R
η
−→ ε, R′ } ∪ { η ! | P, R

η !
−→ Q, R′ and ! 6∈ η }

Lemma A.2 For all strongly bound processes P and for all R, if η ∈ JP Kop(R) and

! ∈ η, then η = η′ ! for some η′ such that ! 6∈ η′.

We now define the function R(P ), that computes the set of resources mentioned

in P and reachable in some computations of P . To do that, R(P ) performs a sort

of reachability analysis, e.g. R(α(r) · (µh. h) · α(r′)) contains r but not r′, since the

non-terminaing loop µh. h makes α(r′) unreachable. Having ↓∈ R(P ), means that

P allows for some terminating computations. The function T(P ) defined below

exploits this fact to characterize the processes that may terminate.

Definition A.3 For all strongly bound processes P and for all functions Θ from

variables h to Res ∪ {↓}, we define RΘ(P ) inductively as follows:

RΘ(ε) = {↓} RΘ( !) = ∅ RΘ(h) = Θ(h) RΘ(νn. P ) = RΘ(P )

RΘ(α(ρ)) =

{

{r, ↓} if ρ = r

{↓} otherwise
RΘ(P · Q) =

{

(RΘ(P ) \ {↓}) ∪ RΘ(Q) if ↓∈ RΘ(P )

RΘ(P ) otherwise

RΘ(P + Q) = RΘ(P ) ∪ RΘ(Q) RΘ(µh. P ) = RΘ{{↓}∩RΘ{∅/h}(P )/h}(P )

Also, we define TΘ(P ) as follows:

TΘ(P ) = {↓} ∩ RΘ(P )

Example A.4 Let P = µh. νn. h ·α(r) + α(n). Since T{∅/h}(νn. h ·α(r) + α(n)) =

T{∅/h}(h · α(r)) ∪ T{∅/h}(α(n)) = {↓} and ↓∈ R{{↓}/h}(h) = {↓}, we have that:

R∅(P ) = R{T{∅/h}(νn. h·α+α(n))/h}(νn. h · α(r) + α(n))

= R{{↓}/h}(νn. h · α(r) + α(n))

= R{{↓}/h}(h · α(r)) ∪ R{{↓}/h}(α(n))

= R{{↓}/h}(h) ∪ R{{↓}/h}(α(r)) ∪ {↓}

= {↓, r}
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Lemma A.5 For all P and Θ, we have that TΘ(P ) equals to:

{↓} if P = ε or P = α(ρ)

{↓} ∩ Θ(h) if P = h

∅ if P = !

TΘ(Q) if P = νn.Q

TΘ(P0) ∩ TΘ(P1) if P = P0 · P1

TΘ(P0) ∪ TΘ(P1) if P = P0 + P1

TΘ{∅/h}(Q) if P = µh.Q

The following lemma proves some basic facts about R and T.

Lemma A.6 For all P , h, R, R′, Θ, and for all χ : Nam → Res:

R ⊆ R′ =⇒ TΘ{R/h}(P ) ⊆ TΘ{R′/h}(P )(A.6a)

TΘ(P ) = TΘ{TΘ(h)/h}(P )(A.6b)

TΘ{TΘ{∅/h}(P )/h}(P ) = TΘ{∅/h}(P )(A.6c)

R ⊆ R′ =⇒ RΘ{R/h}(P ) ⊆ RΘ{R′/h}(P )(A.6d)

RΘ(P ) ⊆ RΘ(Pχ) ⊆ RΘ(P ) ∪ ran(χ)(A.6e)

RΘ(P ) ⊆ RΘ{TΘ(h)/h}(P ) ∪ Θ(h)(A.6f)

RΘ(µh. P ) = RΘ{RΘ(µh. P )/h}(P )(A.6g)

The following lemma states two basic properties of the trace semantics. The first

item guarantees that the freshly created resources are disjoint from R. The second

item shows that the trace semantics is antimonotonic w.r.t. R.

Lemma A.7 For all closed strongly bound processes P :

η ∈ JP Kop(R) =⇒ (R \ R∅(P )) ∩ R(η) = ∅(A.7a)

R ⊆ R′ =⇒ JP Kop(R) ⊇ JP Kop(R′)(A.7b)

We study below how the trace semantics is affected by adding/removing resources

from R, and by substituting a resource for a name.

Lemma A.8 For all strongly bound processes P and P ′:

P, R
η
−→ P ′, R′ =⇒ P, R \ {r}

η
−→ P ′, R′ \ {r} if r ∈ R \ R(η)(A.8a)

P, R
η
−→ P ′, R′ =⇒ P, R∪ {r}

η
−→ P ′, R′ ∪ {r} if r 6∈ R′(A.8b)

P{r/n}, R
η
−→ ε, R′ =⇒ P{r′/n}, R

η
−→ ε, R′ if r 6∈ R(η)(A.8c)

P{r/n}, R
η
−→ ε, R′ =⇒ P{r′/n}, R{r′/r}

η
−→ ε, R′{r′/r} if

r 6∈ R(η),

r′ 6∈ R′
(A.8d)

The following lemma relates the labelled transition relation with the trace semantics.

Lemma A.9 For all strongly bound processes P,P ′:

P, R
a
−→ P ′,R′ =⇒ JP Kop(R) ⊇ a ⊙ JP ′Kop(R′)
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We now introduce a further denotational semantics J−Ksub of strongly bound

processes. The main difference from J−Ks of Def. 2.5 is the way the two semantics

handle the case νn. P . In Jνn. P Ks, the freshly created resource r is used to extend

the environment χ with the binding {r/n}. Instead, in Jνn. P Ksub the substitution

{r/n} is performed directly on P — hence the environment χ can be omitted.

Since substitutions are also used by J−Kop, in the proof of full abstraction we shall

conveniently use J−Ksub as a bridge between J−Kop and J−Ks.

Definition A.10 Substitution semantics of strongly bound processes

The substitution semantics JP Ksub
θ of a strongly bound process P such that

fn(P ) = ∅ is defined below. Let D0 be the following cpo of sets of traces or-

dered by set inclusion: D0 = {X ⊆ (Ev∪{ !})∗ | ! ∈ X ∧ ∀η ∈ X : η ! ∈ X }. The

set { !} is the bottom element of D0. Then, let Dsub = Pfin(Res) → D0 be the cpo

of functions from the finite subsets of Res to D0. Note that the bottom element

⊥ of Dsub is λR. { !}. Then, the semantics of P (parametrized by θ) is a function

in Dsub. The parameter θ is a function that maps each variable h to a function

in Dsub. We require dom(θ) ⊇ fv(P ). The semantics JP Ksub
θ is inductively defined

through the following equations.

JεKsub
θ = λR. { ! , ε}

Jα(ρ)Ksub
θ = λR. { ! , α(ρ), α(ρ) !} if ρ ∈ Res

Jνn. P Ksub
θ = λR.

⋃

r 6∈R JP{r/n}Ksub
θ (R∪ {r})

JP · P ′Ksub
θ = JP Ksub

θ � JP ′Ksub
θ

JP + P ′Ksub
θ = JP Ksub

θ ⊔ JP ′Ksub
θ

J!Ksub
θ = ⊥

JhKsub
θ = θ(h)

Jµh.P Ksub
θ =

⊔

i≥0

f i(⊥) where f(Y ) = JP Ksub
θ{Y/h}

We first check that the above semantics is well-defined. Lemma A.11 proves that

the image of the semantics function is indeed D0. Lemma A.14 guarantees that the

least upper bound in the last equation exists (since f is monotone). Also, since f is

continuous, by the Knaster-Tarski theorem the semantics of µh. P is the least fixed

point of f .

Lemma A.11 For all strongly bound processes P , for all θ and R, ! ∈ JP Ksub
θ (R).

Lemma A.12 The structure (Dsub,⊔,�, id⊔, id�), where id⊔ = ⊥ and id� =

λR.{ ! , ε} is a semi-ring.

Lemma A.13 Let {Yi}i and {Zi}i be subsets of Dsub. Then:

⊔

i

(Yi � Zi) =
(

⊔

i

Yi

)

�
(

⊔

i

Zi

)
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Lemma A.14 For all strongly bound processes P such that fn(P ) = ∅, and for all

θ such that dom(θ) ∪ {h} ⊇ fv(P ), the function fP (Y ) = JP Ksub
θ{Y/h} is continuous.

Lemma A.15 We say Y ∈ Dsub anti-monotone when R ⊆ R′ implies Y (R) ⊇
Y (R′) for all R,R′. For all P and anti-monotone θ, JP Ksub

θ is anti-monotone.

Definition A.16 For all Y ∈ Dsub, we define R(Y ) and T(Y ) as follows:

R(Y ) =
⋂

R

R(Y (R)) T(Y ) = {↓} ∩ R(Y )

Here we state that T correctly characterizes termination.

Lemma A.17 For all Y ∈ Dsub:

T(Y ) =

{

∅ if ∀R : η ∈ Y (R) =⇒ ! ∈ η

{↓} otherwise

Remark A.18 The function R is not continuous. For instance, take a set of

distinct resources {ri}i∈ω. Let {Yi}i∈ω a family of functions in Dsub, defined as

Yi = λR. {α(rk) | k > |R| − i } where |R| denotes the cardinality of the finite set

R. This family is actually an ω-chain, since k > |R| − i implies k > |R| − (i + 1).

However, it is easy to check that R(
⊔

i Yi) = { rk | k ∈ ω } while
⋃

i R(Yi) = ∅.

The following lemma provides an alternative definition of R(Y ), in terms of R(η).

Lemma A.19 For all monotone non-increasing Y , and for all ω-chain {Ri}i such

that
⋃

i Ri = Res:

R(Y ) =
⋂

i

⋃

{R(η) | η ∈ Y (Ri) }

Termination is not affected by the particular choice of R.

Lemma A.20 For all Y ∈ Dsub and for all R, T(Y ) = T(Y (R)).

We now state the correspondence between the syntactic and semantic variants of R.

Lemma A.21 For all strongly bound processes P with fn(P ) = ∅:

R(JP Ksub
θ ) = RR(θ)(P )

for all θ such that: ∀R ∀h ∈ fv(P ) : R(θ(h)(R)) ⊆ R(θ(h)) ∪ (Res \ R).

This is the analogous of Lemma A.7a, adapted to the substitution semantics.

Lemma A.22 For all P , θ, R, we have that:

η ∈ JP Ksub
θ (R) =⇒ (R \ RR(θ)(P )) ∩ R(η) = ∅

We now state that the substitution semantics is included in the trace semantics.

Lemma A.23 Let P be a strongly bound processes with fn(P ) = ∅, let θ be a

function such that dom(θ) = {h1, . . . , hk} ⊇ fv(P ) and θ(hi)(R̄) ⊆ JPiK
op(R̄) for all
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i ∈ 1..k and for all R̄ ⊇ R, and let R ⊇ RR(θ)(P ) be a finite set of resources. Then:

JP Ksub
θ (R) ⊆ JP{P1/h1, · · · , Pk/hk}K

op(R)

The next two lemmata allow for substitution of h-variables and for unfolding of

recursions in strongly bound processes.

Lemma A.24 For all strongly bound processes P,P ′ with fn(P ) = fn(P ′) = ∅, for

all θ such that dom(θ) ⊇ fv(P ) ∪ fv(P ′), and for all h 6∈ fv(P ′):

JP{P ′/h}Ksub
θ = JP Ksub

θ{JP ′Ksub
θ /h}

Lemma A.25 (Unfolding) For all strongly bound processes P , and for all θ:

Jµh. P Ksub
θ = JP Ksub

θ{Jµh. P Ksub
θ /h}

We now state the opposite direction of Lemma A.23, i.e. that the labelled transition

relation is included in the substitution semantics.

Lemma A.26 Let P,P ′ be closed, strongly bound process, let R,R′ be finite sets

of resources, and let θ0 = ∅. Then:

P, R
a
−→ P ′, R′ =⇒ JP Ksub

θ0
(R) ⊇ a ⊙ JP ′Ksub

θ0
(R′)

The next two lemmata relate the operational, the denotational and the substitution

semantics. Summed up, they imply the full abstraction result (Theorem 2.6).

Lemma A.27 Let P be a closed, strongly bound process, and let R be a finite set

of resources. Then:

JP Kop(R) = JP Ksub
∅ (R)

Lemma A.28 For all strongly bound P , for all R, θ and χ such that fn(Pχ) = ∅:

JPχKsub
θ (R) = JP Ks

θ(χ)(R)

B Appendix: weakly bound processes

In this Appendix we prove some intermediate results about weakly bound processes.

These will be exploited in App. C and in App. D to show the correctness of the

bindify transformation and of the trace inclusion preorder, respectively.

Lemma B.1 For all weakly bound processes p:

fn(p) ∩ bn2(p) = ∅(B.1a)

Fn(p) ⊇ fn(p) ∪ bn⋄(p)(B.1b)

The following lemma ensures that the condition R ⊇ ran(χ) is always respected by

the intermediate results of Def. 3.6. Therefore, in what follows we shall always omit

to explicitly check this condition.
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Lemma B.2 For all weakly bound processes p, and for all R, χ:

(η, χ′) ∈ JpKw
θ (χ)(R) ∧R ⊇ ran(χ) =⇒ R∪ R(η) ⊇ ran(χ′)

The weakly-bound analogous of Def. A.16 and Lemma A.17 follow.

Definition B.3 For all Y ∈ Dw, we define T(Y ) and R(Y ) as follows:

R(Y ) =
⋂

R,χ

R(fst(Y (χ)(R))) T(Y ) = {↓} ∩ R(Y )

Lemma B.4 For all Y ∈ Dw:

T(Y ) =

{

∅ if ∀R, χ. (η, χ′) ∈ Y (χ)(R) =⇒ ! ∈ η

{↓} otherwise

The following definition enumerates some sanity conditions that any reasonable

semantics of weakly bound process must adhere to. Lemma B.6 below ensures that

the semantics of Def. 3.6 fulfills all these conditions.

Definition B.5 We say that Y ∈ Dw is sane if and only if, for all R, χ:

Y (χ)(R) 6= ∅(B.5a)

Y (χ)(R) ⊇ Y (χ)(R′) if R ⊆ R′(B.5b)

(η, χ′) ∈ Y (χ̄)(R) =⇒ χ′ ⊇ χ̄(B.5c)

(η, χ′{r/n}) ∈ Y (χ{r/n})(R) ∧ r 6∈ η =⇒ (η, χ′) ∈ Y (χ)(R)(B.5d)

if r 6∈ R(η) ∧ n 6∈ dom(χ′) :(B.5e)

(η, χ′) ∈ Y (χ)(R) =⇒ (η, χ′{r/n}) ∈ Y (χ{r/n})(R ∪ {r})

(η, χ′) ∈ Y (χ)(R) =⇒ R(Y ) ⊆ R(η) ⊆ R(Y ) ∪ ran(χ) ∪ (Res \ R)(B.5f)

We say that Z ∈ Dsub is sane if λR, χ.setχZ(R) is sane.

We say that θ is sane if θ(h) is sane for all h ∈ dom(θ).

Lemma B.6 For all weakly bound processes p and sane θ:

JpKw
θ is sane(B.6a)

f(Z) = λR̄. fst(JpKw
θ{Z/h}(χ)(R̄)) is sane, for all χ and sane Z ∈ Dsub(B.6b)

Lemma B.7 For all weakly bound processes p and sane θ:

JpKw
θ (χ)(R) ⊆

⋃

r 6∈R

JpKw
θ (χ)(R ∪ {r})

The following lemma is the weakly-bound analogous of Lemma A.21.

Lemma B.8 For all weakly bound processes p and sane θ, R(JpKw
θ ) = RR(θ)(p).

C Appendix: correctness of bindification

In this Appendix we shall establish in Theorem 4.6 the correctness of bindification,

i.e. that JpKw
∅ = Jbindify(p)Ks

∅ for each well-bound p. Some intermediate results and

definitions precede the proof of the main theorem.
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We start by defining the action of filtering a name n from a pair (η, χ). If χ(n)

does not occur in η, then the filter removes from χ the binding for n (Def. C.1). This

is used in the following Def. C.2. A semantic function Y is “anticipating on n” when

Y (χ)(R) can be computed by joining the possible instantiations Y (χ{r/n})(R∪{r})
for all r 6∈ R – modulo filtering of n. This is the weakly-bound analogous of lifting a

νn binder to the top-level, as done in strongly-bound processes. Lemma C.3 below

states that the semantics of weakly bound processes in Def. 3.6 is anticipating, for

all names n.

Definition C.1 For all η, χ and n ∈ Nam, we define:

fltn((η, χ)) =

{

(η, χ) if χ(n) ∈ R(η)

(η, χ|dom(χ)\{n}) otherwise

Definition C.2 We say Y ∈ Dw is anticipating on n if, for all χ such that n 6∈
dom(χ) and R ⊇ R(Y ) such that Y (χ)(R) is defined:

Y (χ)(R) = fltn(
⋃

r 6∈R

Y (χ{r/n})(R ∪ {r}))

We say that Y ∈ Dsub is anticipating if λR, χ. setχY (R) is anticipating on Nam.

Lemma C.3 For all weakly bound processes p, for all anticipating θ such that

dom(θ) ⊇ fv(p), and for all n 6∈ fn(p), JpKw
θ is anticipating on n.

The following lemma relates the free names and the R-function of (well-bound)

weakly bound processes with their strongly-bound counterparts. Also, the third

item guarantees that the χ component is preserved when it already contains the

bindings for all the may-bound names of the process.

Lemma C.4 For all weakly bound processes p such that wb(p):

fn(p) = Fn(bindify(p))(C.4a)

RΘ(p) = RΘ(bindify(p))(C.4b)

(η, χ′) ∈ JpKw
θ (χ)(R) ∧ dom(χ) ⊇ bn⋄(p) =⇒ χ = χ′(C.4c)

The following lemma contains the inductive statements about the bindify transfor-

mation that will allow us to prove in Theorem 4.6 its correctness.

Lemma C.5 For all weakly bound processes p such that wb(p), and for all R, χ, θ

such that dom(χ) ⊇ fn(p), dom(θ) ⊇ fv(p), and R ⊇ RR(θ)(p):

JpKw
θ (R)(χ) is defined(C.5a)

Jbindify(p)Ks
θ(χ)(R) = fst(JpKw

θ (χ)(R)) if dom(χ) ∩ bn⋄(p) = ∅(C.5b)

Jβ(p)Ks
θ(χ)(R) = fst(JpKw

θ (χ)(R)) if dom(χ) ⊇ bn⋄(p)(C.5c)

The following Theorem states the correctness of the bindify transformation. Its

proof is direct from Lemma C.5b, the hypotheses of which are trivially satisfied.

Theorem 4.6. For all closed, weakly bound processes p such that wb(p), JpKw
∅ (∅)(∅)

is defined, and Jbindify(p)Ks
∅(∅)(∅) = fst(JpKw

∅ (∅)(∅)).
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D Appendix: equational theories and trace inclusion

In this Appendix we prove the main results from Sect. 5, i.e. that the preorder for

strongly bound processes preserves trace inclusion (Theorem 5.3), and that the same

happens for weakly bound processes (Theorem 5.7). Finally, in Theorem 5.8 we show

that the equational theory of weakly bound processes preserve well-boundness, and

that processes smaller (w.r.t. -N ) than well-bound processes are well-bound.

Definition D.1 The names N(p) of a weakly bound process p are defined as:

N(p) = fn(p) ∪ bn⋄(p)

The following definition introduced a preorder -N between semantic functions

in Dw. Roughly, Y -N Z holds when the traces returned by Y are included in

those of Z, neglecting the possible extra bindings of names in N returned by Y .

Definition D.2 Let Y,Z ∈ Dw. We write Y -N Z when for all R, χ such that

χ ∩ N = ∅:

{ (η, χ′|dom(χ′)\N ) | (η, χ′) ∈ Y (χ)(R) } ⊆ Z(χ)(R)

Let Y,Z ∈ Dsub, we write Y � Z whenever for all R we have Y (R) ⊆ Z(R).

The following lemma states that the semantic function J·Ksub
θ is monotonic on the

argument θ. This fact is used in the proof of Theorem 5.3, in the case of recursion.

Lemma D.3 For all strongly bound processes P , and for all θ, θ′:

θ � θ′ =⇒ JP Ksub
θ � JP Ksub

θ′

Theorem 5.3. For all closed, strongly bound processes P and P ′:

• if P = P ′, then JP Ks
∅ = JP ′Ks

∅.

• if P � P ′ then JP Ks
∅(χ)(R) ⊆ JP ′Ks

∅(χ)(R), for all R and χ.

The following two lemmata about bound and free names are straightforward.

Lemma D.4 For all weakly bound processes p and q such that p ≈ q:

fn(p) = fn(q) bn2(p) = bn2(q) bn⋄(p) = bn⋄(q)

Lemma D.5 For all weakly bound processes p and q such that p -N q:

fn(p) ⊆ fn(q) bn⋄(p) ⊆ bn⋄(q) ∪N bn2(p) ⊇ bn2(q)

The following definition formalizes the notion of “captures” and capture-avoidance

in substitutions of h-variables in weakly bound processes.
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Definition D.6 The captures cptN (p, h) of h in a weakly bound process p are

defined inductively as follows:

cptN (ε, h) = cptN ( ! , h) = cptN (α(ρ), h) = ∅ cptN (h′, h) =

{

N if h = h′

∅ otherwise

cptN (p0 · p1, h) = cptN (p0 + p1, h) = cptN (p0, h) ∪ cptN (p1, h)

cptN (µh′.p′, h) =

{

cptN∪bn⋄(p′)(p
′, h) if h 6= h′

∅ otherwise

We say p{p′/h} capture-avoiding if bn⋄(p′) = ∅ = cptbn⋄(p)(p, h) ∩ fn(p′).

The following lemma is the weakly-bound analogous of Lemma A.24. Note that

in this case the statement is trickier, since it requires capture-avoidance, and the

semantics Jp′Kw
θ must be suitably projected on Dsub.

Lemma D.7 (Substitution) If p{p′/h} is capture-avoiding, then:

Jp{p′/h}Kw
θ (χ)(R) = JpKw

θ{λR̄. fst(Jp′Kw
θ (χ)(R̄))/h}

(χ)(R)

Lemma D.8 If X -N Y , Y -N ′ Z, then X -N∪N ′ Z.

The following lemma states that the semantic function JpKw
θ is monotonic on the

argument p w.r.t. the preorder -. This fact is used to prove Theorem 5.7.

Lemma D.9 For all weakly bound processes p, p′ and for all N and θ:

p ≈ p′ =⇒ JpKw
θ -∅ Jp′Kw

θ(D.9a)

p -N p′ =⇒ JpKw
θ -N Jp′Kw

θ(D.9b)

The following Theorem relates ≈ and - with trace inclusion. The first item follows

from Lemma D.9a. The second item follows from Lemma D.9b and by Def. D.2.

Theorem 5.7. For all closed, weakly bound processes p and q:

• if p ≈ q, then JpKw
∅ = JqKw

∅ .

• if p -N q, then fst(JpKw
∅ (χ)(R)) ⊆ fst(JqKw

∅ (χ)(R)), for all R and χ such that

dom(χ) ∩ N = ∅ and both the semantics are defined.

The following Theorem relates well-boundness with ≈ and -. The first items is

straightforward by Lemma D.4 and by induction on the derivation of p ≈ q. The

second item is by induction on the structure of p. The last item is straightforward

by Lemma D.5 and by induction on the derivation of p -N q.

Theorem 5.8. For all weakly bound processes p and q:

• if p ≈ q, then wb(p) if and only if wb(q).

• if p ≈ q and wb(p), then bindify(p) = bindify(q).

• if p -N q and wb(q), then wb(p).

25


	Introduction
	Strongly bound processes
	Weakly bound processes
	Bindifying weakly bound processes
	Equational theories and trace inclusion
	Conclusions
	References
	Appendix: strongly bound processes
	Appendix: weakly bound processes
	Appendix: correctness of bindification
	Appendix: equational theories and trace inclusion

