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Abstract. A technique is presented for computing a finite over-approxi-
mation of a language of terms, modulo rewriting. The language is repre-
sented by an arbitrary term grammar. The approximation is a term gram-
mar as well, and it already embodies rewriting, i.e. its language includes
all the original terms and all their possible rewritings. We propose this
technique to statically verify cryptographic protocols, expressed in pro-
cess calculi involving non-free term algebras. As an example, we establish
the forward secrecy of a Diffie-Hellman–based protocol.

1 Introduction

In the last years, various process calculi have been used to specify cryptographic
protocols [15,3,5], making it possible to build automatic tools for reasoning on
them. Among these, we mention dynamic analysers [16,13] and static analysers
[7,6,8,5,11,1,18].

Each of the above calculi fixes once and for all a specific set of cryptographic
primitives, and relies on having a single representation for each value. So, de-
structing composed terms is only possible through pattern matching, which is a
feature of these calculi, and not of their term algebras which are free. Exploiting
the freeness of the term algebra, the control flow analysis (CFA) of calculi for
cryptographic protocols [17] succeeds in finitely representing (approximations
of) the set of terms that can be dynamically bound to variables occurring in the
protocol specification. This is done for the Spi–calculus [3], and related calculi
by using tree grammars. Roughly, the computed grammar has one non-terminal
for each “point” in the specification, and the productions follow the flow of data
from each point towards another one. The number of non-terminals is determined
by the protocol specification, only.

Unfortunately, not all cryptographic primitives admit a single representation,
e.g. XOR. When using these primitives, the term algebra is no longer free, so the
above calculi are not fully adequate. The applied pi calculus [2] instead has been
designed to allow for non-free term algebras: its users can define their own prim-
itives, and can specify an equivalence relation over terms. The resulting calculus
may be used for the specification of a broader class of protocols, more directly
than using, e.g. Spi. However, the presence of a non-free term algebra makes it
difficult to define a static analysis of the applied pi calculus. For instance, a CFA
for it has been defined in [19], but only for free algebras.



In this paper, we present a static analysis technique for approximating term
languages modulo a given equivalence, and making it easier to reason about
cryptographic protocols specified in the full applied pi calculus. The equivalence
defining the term algebra can be specified through any rewriting system R. In-
deed, we do not put any restrictions onR: for our purposes, it needs neither to be
confluent nor terminating. Also here, we use grammars for the finite representa-
tion of languages. Unlike the standard CFAs [17], the set of non-terminals is not
fixed: non-terminals are instead generated during the analysis on a need-by-need
basis. Actually, the number of generated non-terminals is a user-tunable param-
eter of our analysis. Increasing this number can produce a better approximation,
at the expense of a (polynomially) longer computation time.

More in detail, we assume to have a grammar G (and its derivation relation
→G). Here, we do not discuss how to derive G from a given specification. This
can be done following the standard CFA approach, with minor enhancements.
Our goal is over-approximating the reachability defined by →∗

G→
∗
R, where →R

denotes the rewriting relation. Indeed, the reachable terms form the languages
of G up to rewritings in R. It is convenient to approximate instead the larger
relation (→∗

G→
∗
R)∗ which allows for interleaving derivations with rewritings. To

do that, we look for a new grammar G′ such that

→∗
G′= (→∗

G′→∗
R)∗ ⊇ (→∗

G→
∗
R)∗ ⊇→∗

G→
∗
R

We call such a G′ fully-exposing because its language is already closed under
rewritings in R. We define a (polynomial-time) algorithm to compute such a G′.
We also have a running prototype, that has been used to validate our ideas. In
particular we established forward secrecy for a Diffie-Hellman–based protocol,
that uses exponentials.

To the best of our knowledge, the only approach similar to ours is [4]. How-
ever, they only consider certain equational theories, e.g. without associativ-
ity, and define a semi-algorithm to obtain rewriting rules with “partial normal
forms.” They then use ProVerif to check processes equivalent, thus establishing
security properties.

We plan to exploit the results presented here, and build a CFA for the full
applied pi calculus, with no constraints on the term algebras. Leaving this for
future research, in this work we instead focus on the foundational, calculus-
neutral issues.

Background and notation are in Section 2. Section 3 establishes the semantic
properties we exploit throughout the paper. An algorithm for left-linear rewrit-
ings is defined and discussed in Section 4, while in Section 5 we relax the left-
linearity assumption, adapting our algorithm to any rewriting system. Finally,
Section 6 reports on our experiments with our tool.

2 Preliminaries

Throughout the paper, we use the following denumerable sets: the set L of labels
(@l, @a, @b, . . . ), the set X of variables (X , Y ,. . . ), the set F of function symbols
(f, g, +, 1, . . . ).



Definition 1 The set of terms T is inductively defined by

T ::= X variable
@l label
f(· · · , T, · · · ) application

By definition, we have L ∪ X ⊆ T . Moreover, we assume that each function
symbol f has a fixed associated arity. When the arity is zero (as for the function
symbol 1), we simply write f instead of f().

The size of a term is the number of the applications occurring in it. The
depth of a term is the maximum number of nested applications. For instance, g,
f(X), and f(@l) have depth and size 1, while f(g, h) has depth 2 and size 3, and
X and @l have depth and size zero. The variables occurring in a term T are
denoted by vars(T ).

Also, we adopt the following conventions:

– a ground term (∈ Tgr) is a term with no occurring variables;
– a simple term (∈ Tsm) is a term with no occurring labels;
– a pure term (∈ Tpr) is a term which is both ground and simple;
– a plain term (∈ Tpl) is a ground term of depth at most one.

Similarly, we shall use the sets Cgr, Csm, Cpr to denote the sets of ground, simple,
and pure contexts C[•], respectively. That is, C[•] ∈ Ctype iff C[T ] ∈ Ttype, where
T is an arbitrary pure term, and type ranges over gr, sm, pr. C is the set of all
contexts.

Below, we give the definitions for rewriting systems and grammars.

Definition 2 A term rewriting system R is a finite set of rewriting rules R
having the form L⇒ R, where L, R ∈ Tsm and vars(R) ⊆ vars(L).

Example The following rules model the usual rules for pairs.

R = {fst(cons(X, Y ))⇒ X, snd(cons(X, Y ))⇒ Y }

Definition 3 Given a term rewriting system R, we define the relation →R⊆
Tgr × Tgr to be the minimum relation closed under ground contexts such that for
each (L⇒ R) ∈ R, and for each substitution σ : X → Tgr, we have σL→R σR.

Example Using the above R, we have, for any Ti ∈ Tgr

fst(fst(cons(cons(T1, T2), T3)))→R fst(cons(T1, T2))→R T1

Definition 4 A term grammar G is a finite set of productions having the form
@l : T , where T ∈ Tpl. This is a context–free grammar where the non–terminals
are the labels. We write LG for the set of labels occurring in G. We sometimes
write several productions in the compact form @l : T1, T2, T3.

Note that we require T ∈ Tpl instead of T ∈ Tgr. This is not really a restriction,
since every term grammar having productions where T ∈ Tgr can be transformed
into its equivalent Chomsky normal form, which only uses plain terms, as the
following example shows.



Example The grammar

@a : f(@a), 1 @l : cons(cons(@a, @a), @a)

has the following Chomsky normal form, where @l1 is a fresh label:

@a : f(@a), 1 @l : cons(@l1, @a) @l1 : cons(@a, @a)

Definition 5 Given G we define the relation →G⊆ Tgr × Tgr as the minimum
relation closed under ground contexts such that, for each @l : T ∈ G, we have
@l→G T .

Definition 6 Let →R,G be →R ∪ →G. We write [[T ]]G ([[T ]]R,G) for the set of
pure terms reachable through →G (→R,G) from the term T ∈ Tgr:

[[T ]]G = {T ′ | T →∗
G T ′ ∈ Tpr} [[T ]]R,G = {T ′ | T →∗

R,G T ′ ∈ Tpr}

Of course, [[T ]]G is the language generated by T , and trivially [[T ]]G ⊆ [[T ]]R,G .
It might be interesting to note that, in general, the relations→∗

G and→∗
R do

not commute, even if the target term is restricted to be in Tpr. Formally:

∃R,G . →∗
R→

∗
G ∩(Tgr × Tpr) 6⊆→∗

G→
∗
R

∃R,G . →∗
G→

∗
R ∩(Tgr × Tpr) 6⊆→∗

R→
∗
G

A counterexample for the first statement is

R = {f(X)⇒ g(X, X)} G = {@l : a, b}
Tb = f(@l)→R g(@l, @l)→G g(a, @l)→G g(a, b) = Te

Indeed, we do not have Tb →∗
G→

∗
R Te. For the second statement, take

R = {f(X)⇒ a} G = {@l : f(@m) ; @m : b}
Tb = @l→G f(@m)→R a = Te

and note that we do not have Tb →∗
R→

∗
G Te. Therefore, the language up to

rewriting [[@a]]G/R may be smaller than the set [[@a]]R,G we focus on. We will
return to this point in Section 5.1.

The following definition characterizes those grammars the languages of which
include also the terms up to rewriting.

Definition 7 A grammar G is said to be fully-exposing (w.r.t R) iff for every
@l ∈ LG , we have [[@l]]G = [[@l]]R,G .

2.1 Matching

Beneficial to studying →R,G is understanding which terms T , with @l →∗
G T ,

can be rewritten by a rule L⇒ R, i.e. which such terms T match L. To this aim,
we define the result of a match of the label @l with the pattern L as the set of



the bindings σ : X → Tgr for which @l →∗
G σL. Note that the number of such

bindings may be infinite, in general.
A very interesting subset of the bindings resulting from a match is the one

formed by label bindings, i.e. those σ : X → L. Indeed, there are only a finite
number of label bindings, since the variables occurring in L are finite, and so
are the labels occurring in G. The set of the label bindings that match against
L can be computed in a natural way under the following assumption.

Left Linearity We assume each rule L⇒ R ∈ R be left–linear, i.e. each variable
occurs at most once in L.

Intuitively, the above assumption means that each variable in L can be
matched independently. To compute label bindings, just run a top–down parser,
expanding @l by applying all the productions in a non deterministic fashion,
and discarding the mismatching branches. Note that we only need to search as
deep as the size of the pattern L: for the most common rewriting rule sets this is
2 or 3. Therefore, even though we adopt an exponential-time parser for this, the
impact on the performance of our tool will still be acceptable. The number of
label bindings is at most (#LG)k where k is the number of variables in L. If we
consider a given R, then k = O(1), hence the number of bindings is polynomial
on the size of G.

Example Given the grammar G

@a : 1, 2, 3 @b : +(@a, @a)
@l : cons(@a, @l), fst(@m) @m : cons(@l, @b), @l

the match of @l with the pattern L = fst(cons(X, Y )) produces the bindings
σ1 = {X 7→ @l, Y 7→ @b}, σ2 = {X 7→ @a, Y 7→ @l}.

Assuming left linearity is rather convenient, but it prevents us from using
many well-known rewriting rules, such as xor(X, X)⇒ 0. We will return to this
hypothesis, and relax it, in Section 5.

3 Semantics

A nice direct consequence of having G in Chomsky normal form is that each sub-
term occurring in [[@l]]G also belongs to the language [[@m]]G for some @m ∈ LG ,
as established by the lemma below.

Lemma 1 (Label-in-the-middle). If @l →∗
G C[T ] for some @l ∈ LG , C[•] ∈

Cgr and T ∈ Tgr, then for some label @m ∈ LG we have @l →∗
G C[@m] and

@m→∗
G T .

Intuitively, the “label-in-the-middle” lemma implies that G provides us with
a convenient abstraction (namely, the label @m) for many terms that are affected
by rewriting. Indeed, whenever a rewriting σL→R σR occurs and σL ∈ [[@l]]G ,



we know that there is some label @mi in G that generates σXi, for each variable
Xi of L. This suggests us a way for proving some properties involving the whole,
potentially infinite, set of bindings σ : X → Tgr. Proving a property Φ for all σ
might reduce to checking Φ on the set B of label bindings σ : X → L. This turns
out to be convenient when only variables in R and labels in G are used, because
B is finite.

Quite interestingly, this is the case when proving that a grammar is fully-
exposing. The next lemma gives a convenient criterion for this, thus paving the
way towards an algorithmic treatment of grammars and rewritings.

Lemma 2 (Label Bindings Criterion). If G satisfies

∀(L⇒ R) ∈ R. ∀σ : X → L . ∀@l ∈ LG . @l→∗
G σL =⇒ @l→∗

G σR

then G is fully-exposing.

3.1 Grammar Transformations

We now define a way to modify G preserving its semantics, in the sense made
precise by the following preorder.

Definition 8 Given R and L′ ⊆ L, we define a preorder vL
′

R over the set of
grammars as follows:

G vL
′

R G
′ ⇐⇒ ∀@l ∈ L′ . [[@l]]R,G ⊆ [[@l]]R,G′

We also write G ≡L
′

R G
′ when G vL

′

R G
′ ∧ G′ vL

′

R G.

Using standard terminology of grammars, labels in L′ are the starting non-
terminals for a set of languages, while all other labels only serve as auxiliary
non-terminals. The preorder considers the languages of non-terminals in L′, and
disregards the other labels.

To modify G into a grammar G′ such that G ≡L
′

R G
′, each label in LG ∩ L′

needs to be in G′, as well. Also, we may rename or remove labels in LG \ L′, as
long as the languages generated by LG ∩ L′ in G′ are larger than (or equal to)
those generated in G. Below, we define three transformations that preserve our
preorder.

Augment
G vL′

R
G ∪ (@l : T )

Transitivity
(@l1 : @l2) ∈ G (@l2 : T ) ∈ G

G ≡L′

R
G ∪ (@l1 : T )

Join
∀T . (@l1 : T ) ∈ G ⇐⇒ (@l2 : T ) ∈ G

G ≡L′

R
G{@l2/@l1}

@l1 6∈ L′

Rule Augment simply adds a production to G, clearly preserving our preorder.
Rule Transitivity short-cuts two productions, yielding a completely equivalent
grammar. Note that both rules Augment and Transitivity increase the size of G.



Rule Join is more peculiar. It replaces one label @l1 with another label @l2,
under the assumption they have the same productions (and therefore generate
the same language). This rule may decrease the size of G, both because all
the productions having the form @l1 : T are removed, and because pairs of
productions such as @m : f(@l1), f(@l2) collapse into the single production @m :
f(@l2). The languages generated by the labels are unaffected, except for [[@l1]]R,G

that is not of interest, as @l1 6∈ L′.

4 Algorithm

Below, we give an algorithm that approximates a pair G,R with a fully-exposing
grammar G′. In other words, it computes a G′ such that G vLG

R
G′.

main algorithm Inputs: G,R, maxLabels, maxJoin

1. Start with G = {@li : Ti}, where 0 ≤ i < s and Ti ∈ Tpl.
2. nextLabel← s, numJoin← 0
3. Close G under Transitivity.
4. If numJoin < maxJoin:

Close G under Join. Increment numJoin for each joined label.
5. For each label @l ∈ LG :

For each rule (L⇒ R) ∈ R:
For each binding σ ∈ X → L such that @l→∗

G σL:
augment(@l, σR).

6. Repeat from step 3, until G reaches a fixed point.

subroutine augment(@l, T )

1. If T ∈ Tpl, then G ← G ∪ (@l : T ) and return.
2. We have T = f(T1, . . . , Tn).

For each i ∈ {1 . . . n}:
@resi ← place(Ti).

3. G ← G ∪ (@l : f(@res1, . . . , @resn)).

subroutine place(T ) Returns a label.

1. If T ∈ L, then return T .
2. We have T = f(T1, . . . , Tn).

For each i ∈ {1 . . . n}:
@resi ← place(Ti).

3. Let T ← f(@res1, . . . , @resn).
4. If (@l : T ) ∈ G for some @l, choose one such @l in any arbitrary way. Then

return @l.
5. If #LG < maxLabels, then @l ← @lnextLabel, and increment nextLabel. Other-

wise, choose arbitrarily any @l ∈ LG .
6. Let G ← G ∪ (@l : T ), and return @l.

Fig. 1. The main algorithm

At the beginning, we choose an arbitrary bound maxLabels on the number of
distinct labels that can be used in constructing G′. During the execution of our
algorithm this bound can be reached, and still a production for a ground term



T has to be added to G. If the term T is not plain, a Chomsky normalization
is in order, that requires a fresh, unavailable label. Rule Augment comes to our
rescue: we can safely reuse any of the labels already employed. Of course, this
causes a loss of precision in the language of the selected label, yet the result is
sound w.r.t. vLG

R
. This is done in step 5 of the subroutine place of the algorithm.

We stress that the result is sound for any maxLabels bound. In fact, having
just one label is enough to produce a sound approximation: the language con-
sisting of all pure terms is generated by all the productions @o : f(. . . , @o, . . .)
which only involve one label. Of course, one wants a more precise result than
this, and therefore runs the algorithm with more resources.

We also put a bound maxJoin on the number of Join operations we allow
during the algorithm run. The bounds maxJoin and maxLabels help in ensuring
termination of the algorithm; its correctness is established below.

Theorem 1. The algorithm is correct, i.e. given R,G, it always computes a
fully-exposing G′ such that G vLG

R
G′. Also, G′ is closed by Transitivity.

5 Relaxing the Left Linearity Assumption

Unfortunately, many useful rewriting rules are not left–linear, e.g.

R =
{

xor(X, X)⇒ 0 dec(enc(M, K), K)⇒M
}

In order to apply our technique to the above rules, we could start by approx-
imating the rule set R with another left–linear rule set Rl for which→R⊆ →Rl.
Such a Rl could be

Rl =
{

xor(X1, X2)⇒ 0 dec(enc(M, K1), K2)⇒M
}

While this would lead to a correct approximation of→∗
R,G , the precision of result

would be very scarce. In the example aboveRl allows us to decrypt any message,
even if garbage is used instead of the proper key. Such an approximation of R
will unlikely lead to the proof of any interesting security property.

Instead, we extend rewriting rules to have a set of equalities (which we write

as X̃ = Ỹ ) between variables as a side condition. We thus rewrite R as

R′ =

{
xor(X1, X2) X1=X2

⇒ 0
dec(enc(M, K1), K2) K1=K2

⇒M

}

Now the →R′ rewritings are only allowed when the side condition is met; for
instance, in R′, X1 and X2 must actually match the same ground terms, as
well as K1 and K2. With this extension, we can reuse our technique with minor
changes, only: indeed, a revised version of Lemma 2 still holds:

Lemma 3 (Label Bindings Criterion). Given G,R, let

' = {〈@l1, @l2〉 | ∃T ∈ Tgr. @l1 →
∗
G T ∧@l2 →

∗
G T } (1)



If G satisfies

∀(L eX=eY
⇒ R) ∈ R
∀σ : X → L
∀@l ∈ LG



@l→∗

G σL ∧ ∀i. σX̃i ' σỸi =⇒ @l→∗
G σR (2)

then G is fully-exposing.

Note that properties (1) and (2) depend on both G and '. Thus, we must
adapt our algorithm to reach a dual fixed point, for G and '.

To give an intuition of the new algorithm, consider the above R′, and in par-
ticular L = xor(X1, X2). During the execution of step 5 of the (old) algorithm, as-
sume to have a ' satisfying (1) for the current G. We look for some label binding
σ such that @l→∗

G σL. Now, before calling the subroutine augment(@l, σR = 0)
that would add the rewritten term to G, we check σX1 ' σX2, i.e. whether the
side condition holds. If the check succeeds, then we call augment(@l, 0); other-
wise, we do nothing. When G changes, we must ensure that the relation ' still
satisfies (1). This forces us to update the relation ' at each main loop iteration.
The algorithm then becomes:

revised algorithm Inputs: G,R, maxLabels, maxJoin

1. Start with G = {@li : Ti}, where 0 ≤ i < s and Ti ∈ Tpl.
2. nextLabel← s, numJoin← 0
3. Close G under Transitivity.
4. If numJoin < maxJoin:

Close G under Join. Increment numJoin for each joined label.
5. ' ← approxIntersection(G).
6. For each label @l ∈ LG :

For each rule (L eX=eY
⇒ R) ∈ R:

For each binding σ ∈ X → L such that @l→∗
G σL:

If ∀i. σX̃i ' σỸi:
augment(@l, σR).

7. Repeat from step 3, until G reaches a fixed point.
subroutine approxIntersection(G) Returns '.
1. ' ← {〈@l, @l〉|@l ∈ LG}
2. If (@a : f(@a1, . . . , @an)), (@b : f(@b1, . . . , @bn)) ∈ G,

and ∀i. @ai ' @bi:
3. ' ← ' ∪{〈@a, @b〉}
4. Repeat from step 2 until ' reaches a fixed point.
5. return '.

The correctness of the revised algorithm is established below.

Theorem 2. Given R,G, the revised algorithm always outputs a fully-exposing
G′ such that G vLG

R
G′. Also, G′ is closed under Transitivity.

Time Complexity From the complexity point of view, the revised algorithm is
quite näıve, and would benefit from the use of more adequate data structures



and more efficient subroutines. Yet, the time complexity is polynomial on the
size of G. However, we believe there is still room for improvement.

Theorem 3. Let n be maxLabels + maxJoin, maxArity be the maximum arity of
the function symbols occurring in R,G, and maxLSize = max{size(L)|(LX=Y ⇒
R) ∈ R}. The revised algorithm runs in worst–case time complexity O(nk log n ·
f(R)), where k = max(5 +3 ·maxArity, 2 +maxArity · (1 +maxLSize)), and f(R)
only depends on R.

5.1 Improving Precision

In order to compute a sound approximation of a language up to rewriting
[[@a]]G/R, our algorithm approximates the set [[@a]]R,G ⊇ [[@a]]G/R. This may
lead to a loss of precision. For instance, consider R = {f(X) ⇒ 1} and G =
{@a : f(@a)}. Here @a generates an empty language, thus the language up-to-
rewriting [[@a]]G/R is also empty. However, 1 ∈ [[@a]]R,G since we have @a →G

f(@a) →R 1. Therefore, a correct (w.r.t. vLG

R
) fully-exposing approximation G′

must satisfy @a→∗
G′ 1.

We can compute a more precise result (i.e. closer to [[@a]]G/R) by restricting
rewriting so that it is only applicable to inhabited terms T , i.e. such that [[T ]]G 6=
∅. Our revised algorithm can be easily adapted to exploit this restriction. For
instance, the rewriting of T1 = g(@a, @b, @c) with g(X, Y, Z)Y =Z ⇒ 1 only
happens if T1 →∗

G T2 = g(@a, T ′, T ′)→R 1 for some ground T ′. When rewriting
is restricted, we have that T2 is inhabited, and so are @a and T ′. This also implies
that rewriting occurs only if for some pure T ′′ we have T1 →∗

G g(@a, T ′′, T ′′)→R

1. Therefore, we modify our algorithm so that it rewrites T1 only when (i) [[@b]]G∩
[[@c]]G 6= ∅ and (ii) [[@a]]G 6= ∅. More generally, we can require (i) above for each
side condition and (ii) for each label matching a variable. Checking (i) is tackled
by changing the definition of the ' relation so that we have @l1 ' @l2 iff
[[@l1]]G ∩ [[@l2]]G 6= ∅ : step 1 of the subroutine approxIntersection is rewritten as
“' ← ∅”. Checking (ii) is reduced to checking (i) by adding trivial equations
X = X for all variables in each rule, thus requiring [[σX ]]G 6= ∅.

The modified algorithm is correct. Technically, correctness follows from the
obvious adaptation of Lemma 3, where the new definition of ' uses pure terms
T ∈ Tpr and the notion of “fully-exposing” involves the restricted rewriting.

6 Implementation

We implemented the revised algorithm, with the improvements discussed in Sec-
tion 5.1. Our implementation follows the presented algorithm rather faithfully,
and therefore we do not discuss its details here: we only mention that we use
some simple heuristics for subroutine place, when we have to choose among many
suitable labels.

We applied our tool to several rewriting systems, including those for pairs
(cons, fst, snd), encryptions (enc, dec), and also those for xor and exponentials



(exp, ∗, inv, 1) that do not admit normal forms. These experiments often produced
approximations precise enough to show the security properties we were looking
for. For instance, we successfully checked a one-time pad example and the wide-
mouthed frog [10] protocol. A flawed version of the WEP protocol [9] did not pass
the test, as expected. The tool showed its limitations when applied to an exotic
definition of even and odd naturals: in that case the tool over-approximated the
sets yielding the larger N.

Below, we report on applying our tool to the following protocol, based on
the Diffie-Hellman key exchange.

1. A→ all : g 4. A→ B : {M}gab

2. A→ B : {ga}k1 5. . . .
3. B → A : {gb}k2 6. A→ all : k1, k2

Initially, the principals A and B share two long term secret keys k1, k2, and agree
on a public finite field GF[p] (where p is a large prime), and public generator g
of GF[p]∗. In the second step, principal A generates a nonce a and sends B the
result of ga(mod p), encrypted with the k1 key. In the third step, B does the
same, with its own nonce b and key k2. Since both principals know the long
term keys, they can compute (gb)a = gab = (ga)b (mod p) and use this value as
a session key to exchange the message M in the fourth step.

We study the robustness of this protocol against the active Dolev–Yao [12] ad-
versary (such an adversary has full control over the public network, can reroute,
discard or forge messages; further, he can apply any operation in the term al-
gebra to terms learnt before). In particular, we are interested in the forward
secrecy of the message M . That is, we want M to be kept secret even though
later on the long term keys k1, k2 are disclosed (last step). The rewriting rules
for encryption, multiplication, exponentiation, and inversion are taken from [14]:

R =






dec(enc(X, K), K)⇒ X
∗(1, X)⇒ X exp(inv(X), Y )⇒ inv(exp(X, Y ))
∗(X, Y )⇒ ∗(Y, X) ∗(X, ∗(Y, Z))⇒ ∗(∗(X, Y ), Z)
exp(X, 1)⇒ X exp(1, X)⇒ 1
inv(inv(X))⇒ X exp(exp(X, Y ), Z)⇒ exp(X, ∗(Y, Z))
inv(1)⇒ 1 exp(∗(Y, Z), X)⇒ ∗(exp(Y, X), exp(Z, X))
∗(X, inv(X))⇒ 1 inv(∗(X, Y ))⇒ ∗(inv(X), inv(Y ))






Note that the term algebraA defined by the above rewriting rules is not the same
algebra of GF[p]∗. In fact, A satisfies more equations than the ones that hold
in GF[p]∗. For instance, operations in A do not specify which modulus is being
used; e.g., inversion modulo n is simply written as inv(X) rather than inv(X, n).
Therefore, we have (a) ∗(X, inv(X)) = 1 and (b) exp(Y, ∗(X, inv(X))) = Y .
However, (a) holds in GF[p]∗ only if inv(X) is performed modulo p, while (b) holds
only if inv(X) is performed modulo ϕ(p) = p−1 (where ϕ is the Euler function).
In spite of A being not equal to the GF[p]∗ algebra, it soundly approximates it,
i.e. all the equations that hold in GF[p]∗ do hold in A.



We write a grammar G that approximates the adversary knowledge @k before
the disclosure of the long term keys k1, k2. Initially, the adversary knows 1 and
g and can generate an unlimited number of nonces.

@nonce : seed, next(@nonce) @k : 1, g, @nonce.

The adversary then learns the messages as they are sent through the network.
We thus add the following productions to G.

@k : enc(exp(g, a), k1), enc(exp(g, b), k2), enc(m, exp(dec(@k, k2), a))

The last term models the actual operations performed by A in order to compute
gab, i.e. taking some value from the network (@k), decrypting it with k2, and
raising it to the nonce a. Note that our adversary is active, and may provide A
with any term it knows as a basis for the further computations of A. Further,
we add the following productions to make @k closed under every operation the
adversary may do:

@k : enc(@k, @k), dec(@k, @k), inv(@k), ∗(@k, @k), exp(@k, @k)

We then proceed to define the adversary knowledge after the long term keys
k1, k2 have been disclosed: it is sufficient to add k1 and k2 to the language of @k
and to close it under the adversary operations to obtain the new language @l

@l : @k, k1, k2, enc(@l, @l), dec(@l, @l), inv(@l), ∗(@l, @l), exp(@l, @l)

Checking the forward secrecy property boils down to showing that m 6∈ [[@l]]R,G .
We ran our implementation on R,G: it took about one minute1 to generate G′,
having 185 productions. Within G′ there is no production @l : m, and therefore,
by Theorem 2, we have m 6∈ [[@l]]R,G , thus establishing forward secrecy.

Our tool was also applied to a variant of this protocol, closer to the original
Diffie-Hellman scenario. It uses instead digital signatures to carry the exponents
ga and gb. We modeled the adversary roughly as done above, and run the tool
on the usual rewriting rules for signatures. The tool succeeded in producing a
G′ (245 productions) proving the secrecy of message m.
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A Proofs

Proof for Lemma 1 (Label-in-the-middle)

If @l→∗
G C[T ] for some @l ∈ LG , C[•] ∈ Cgr and T ∈ Tgr, then for some label @m ∈ LG

we have @l→∗
G C[@m] and @m→∗

G T .

Proof. Easy induction on the number of derivations in →∗
G . ut



Proof for Lemma 2

If G satisfies

∀(L⇒ R) ∈ R. ∀σ : X → L . ∀@l ∈ LG . @l→∗
G σL =⇒ @l →∗

G σR (3)

then G is fully-exposing.
Proof. First, property (3) suffices to ensure the following apparently stronger prop-

erty, which involves any binding σ:

∀(L⇒ R) ∈ R. ∀σ : X → Tgr . ∀@l ∈ LG . @l→∗
G σL =⇒ @l→∗

G σR (4)

This is because, whenever σX 6∈ L, we can apply the “label-in-the-middle” lemma,
and find a label which is responsible for σX, i.e. a label @m ∈ LG such that @l →∗

G

C[@m] →∗
G C[σX] = σL. Exploiting the left–linearity of R, we can then update the

binding to σ′ = σ[X 7→ @m] and still have @l →∗
G σ′L. We repeat this process for

any variable X1, . . . , Xn occurring in L. In this way we obtain σ′′ ∈ X → L such that
@l →∗

G C[@m1, . . . , @mn] = σ′′L and, for each i, @mi →
∗
G σXi. By hypothesis (3),

this implies

@l→∗
G σ

′′
R = C

′[. . . , @mik
, . . .]→∗

G C
′[. . . , σXik

, . . .] = σR.

and therefore @l→∗
G σR, completing the proof for (4).

We now proceed and show [[@l]]R,G = [[@l]]G , for each @l ∈ LG . Since [[T ]]G ⊆ [[T ]]R,G

for any T ∈ Tgr, we only need to show [[@l]]R,G ⊆ [[@l]]G .
This proof is by contradiction: assume that some T exists such that @l →∗

G→R T

but for which @l 6→∗
G T . This means that, for some rule (L⇒ R) ∈ R, we have

@l→∗
G C[σL]→R C[σR] = T

By the “label-in-the-middle” lemma, for some label @m ∈ LG , @l →∗
G C[@m] and

@m→∗
G σL, which by (4) implies @m→∗

G σR. This shows that

@l→∗
G C[@m]→∗

G C[σR] = T

which contradicts @l 6→∗
G T . ut

Proof for Theorem 1

The main algorithm is correct, i.e. given R,G, it always computes a fully-exposing G′

such that G v
LG

R
G′. Also, G′ is closed by Transitivity.

Proof. We start by showing the termination of the algorithm. First, we show that
the size of G is bounded because:

– the productions in G only carry plain terms, which have bounded depth;
– no new function symbols are introduced;
– the function symbols have fixed arity;
– the number of labels in G is bounded by maxLabels.

Termination is proved by contradiction, assuming our algorithm loops indefinitely
in steps 3 . . . 6. Since we never exit the loop, and the number of Join operations is
bounded by maxJoin, eventually only rules Augment and Transitivity have to be applied.
These rules make the size of G to indefinitely grow, so contradicting the first fact proved
above.

Having established termination, by Lemma 2 the resulting grammar G′ is fully-
exposing. Moreover, since the algorithm only applies the grammar transformations of
Section 3.1, we have G v

LG

R
G′. ut



Proof for Lemma 3

Given G,R, let

' = {〈@l1, @l2〉 | ∃T ∈ Tgr. @l1 →
∗
G T ∧@l2 →

∗
G T}

If G satisfies

∀(L eX= eY
⇒ R) ∈ R
∀σ : X → L
∀@l ∈ LG

9
=
; @l→∗

G σL ∧ ∀i. σ eXi ' σ eYi =⇒ @l→∗
G σR

then G is fully-exposing.
Proof. Analogous to Lemma 2. ut

Proof for Theorem 2

Given R,G, the revised algorithm always outputs a fully-exposing G′ such that G v
LG

R

G′. Also, G′ is closed under Transitivity.
Proof. Termination is established as for Theorem 1: we only note that '⊆ LG×LG

implies that subroutine approxIntersection terminates.
A simple inductive argument shows the last ' computed satisfies (1) w.r.t. G′. By

Lemma 3, G′ is thus fully-exposing. Finally, we have that G v
LG

R
G′ since the algorithm

only applies the v
LG

R
–preserving transformations of Section 3.1. ut


