
Online Distribution Estimation for Streaming Data:
Framework and Applications

Themis Palpanas1, Vana Kalogeraki2, and Dimitrios Gunopulos2

1 University of Trento
themis@dit.unitn.it

2 University of California, Riverside
{vana, dg}@cs.ucr.edu

Abstract. In the last few years, we have been witnessing an evergrowing need
for continuous observation and monitoring applications. This need is driven by
recent technological advances that have made streaming applications possible,
and by the fact that analysts in various domains have realized the value that such
applications can provide.
In this paper, we propose a general framework for computing efficiently an ap-
proximation of multi-dimensional distributions of streaming data. This frame-
work enables the development of a wide variety of complex streaming applica-
tions. In addition, we demonstrate how our framework can operate in a distributed
fashion, thus, making better use of the available resources.
We motivate our techniques using two concrete problems, both in the challen-
ing context of resource-constrained sensor networks. The first problem is outlier
detection, while the second is detection and tracking of homogeneous regions.
Experiments with synthetic and real data show that our method is efficient and
accurate, and compares favorably to other proposed techniques forboth the prob-
lems that we studied.

1 Introduction

Advances in processor technologies and wireless communications have enabled the de-
ployment of small, low cost and power efficient sensor nodes.Such sensor deployments
enable the observation of physical phenomena at a time and space granularity that was
never before possible. The same is also true for monitoring the operation of machinery,
and the structural integrity of buildings and vehicles.

In all these cases, the applications deal with several data streams and require the
ability to efficiently process this type of data in real-time. Applications in several other
domains have the same requirements as well. For example, in an e-business scenario,
we are interested in continuously monitoring the executionof the various processes
and the corresponding services, and in network management,we have to continuously
analyze traffic statistics coming from multiple sources.

The way that streaming applications are able to efficiently process continuous data
arriving at high rates is by computing succinct summaries ofthe data, and operating on
these summaries [8, 7]. In this paper, we describe a framework for efficient, online ap-
proximation of multi-dimensional streaming data distributions, based onkernel density

estimators[18]. The proposed framework does not require a priori knowledge about the
input distribution, and is adaptive, in the sense that it automatically recognizes changes
in the streaming data distributions, and updates the approximations accordingly. More-
over, the framework can operate in a distributed fashion, thus, making use of all the
available resources, and reusing any processing that has already taken place.

The framework we propose is general, and enables the development of a wide va-
riety of complex streaming applications. In this study, we demonstrate the usefulness
and versatility of the framework using two concrete applications from the area of sensor
networks. Sensor networks represent a challenging domain,because they combine the
requirements of streaming algorithms (i.e., online processing, and efficient use of main
memory) with the restrictions of sensor network deployments (i.e., limited available
resources and processing power, and distributed operation).

The first application that we examine is distributed deviation detection in a sensor
network. The goal is to identify, among all the sensor readings in a sliding window, those
values that have very few near neighbors. Note that this is a challenging problem, even
for static datasets [14, 17]. This problem is especially important in the sensor network
setting because it can be used to identify faulty sensors, and to filter spurious reports
from different sensors.

The second application is identification and tracking ofhomogeneous regions[1,
12], which are defined as spatial divisions of the field under observation that exhibit
similar measured values over time. For example, an oil spilldetected in the ocean is
a homogeneous region (Figure 1). The sensors deployed around the origin of the spill
can organize themselves into a network and communicate the measurements, to detect
regions of varying oil concentrations. In this work, we address the problems of de-
tecting and tracking such homogeneous regions inreal-timewhen the definition of the
phenomenon isnot known in advance.

0
at time t

Oil spill at
time t

2

Oil spill at
time t

1

Oil Spill
detected

Fig. 1. Spread of an oil spill detected in the ocean over time.

Below we summarize our main contributions.

• We describe a non-parametric, online technique for approximating unknown multi-
dimensional streaming data distributions. We then extend this technique in order to
efficiently model distributions that evolve over time, and to operate in a distributed
fashion.

• We demonstrate the versatility of our approach by describing how it facilitates the
implementation of two different applications, namely outlier detection, and detec-
tion and tracking of homogeneous regions.

2 Data Distribution Approximation Framework

In this section, we describe a general framework for estimating the underlying distribu-
tion of a data stream. We discuss the case where we are interested in the data that falls
within a sliding time windowW (this is a more general case than unrestricted windows;
we omit the presentation of the latter for brevity).
Estimating the Probability Density Function: There are several model estimation
techniques that have been proposed in the literature, such as histograms [10], wavelets
[8], kernel density estimators [18], and others. In our framework, we choose to estimate
the unknown distribution using the kernel density estimators, because of the following
desirable properties: (i) they are efficient to compute and maintain in a streaming envi-
ronment; (ii) they can very accurately approximate an unknown data distribution, with
no a priori knowledge and (effectively) no parameters; (iii) they can easily be combined
and (iv) they scale well in multiple dimensions. In general,it is computationally more
expensive to apply the above operations in histograms or wavelets, and their perfor-
mance is not better than that of kernels [11].
Kernel Estimators: Thekernel estimator[18] is a generalized form of sampling, whose
basic step is to produce a uniform random sample. In kernel estimation each point
distributes its weight in the space around it. Akernel functiondescribes the form of this
weight distribution, generally distributing most of the weight in the area near the point.
Summing up all the kernel functions we obtain a density function for the dataset.

More formally, assume that we have a static relation,T , that stores thed-dimensional
valuest, t = (t1, . . . , td), whose distribution we want to approximate. The recorded
values must fall in the interval[0, 1]d. This requirement is not restrictive, since we can
map the domain of the input values to the interval[0, 1]d. Let R be a random sample of
T , andk(x) ad-dimensional function ofx = (x1, . . . , xd), such that

∫

[0,1]
k(x)dx = 1,

for all tuples inR. We callk(x) thekernel function. We can now approximate the un-
derlying distributionf(x), according to which the values inT were generated, using
the following function

f(x) =
1

|T |
∑

ti∈R

k(x1 − ti1 , . . . , xd − tid
). (1)

The choice of the kernel function is not significant for the results of the approxima-
tion [18]. Hence, we choose the Epanechnikov kernel that is easy to integrate:

k(x) =

{

(

3
4

)d 1
B1...Bd

∏

1≤i≤d

(

1 − (xi

Bi
)2

)

, if ∀i, 1 ≤ i ≤ d, | xi

Bi
| < 1

(2)

whereB = (B1, . . . , Bd) is the bandwidth of the kernel function. We use Scott’s rule
to setB [18]: Bi =

√
5σi|R|− 1

d+4 , whereσi is the standard deviation of the values in
T in dimensioni.
Online approximation in a sliding window: For the discussion that follows, and for
ease of presentation, we assume the case of a sensor network model (though, our frame-
work is applicable to any environment with multiple streamsof data), consisting of a set
of sensors, each having a location on a2-d plane and producing a stream of values. The

sensor network may be organized in a hierarchical way for scalability reasons. The idea
is to organize the network using several tiers of overlapping virtual grids with different
levels of granularity, ranging from small local areas at thelowest tier, to the entire net-
work area at the highest tier (see Figure 2). We assume that each cell of the grid elects
a leader, orparentnode, that is responsible for processing the measurements of all the
sensors in the cell, and for collecting values from the leader nodes of all its sub-cells in
the lower level. In such an online setting, we require that each sensor maintains a model

a

Leader

(a)

Cell Leader
Sink Node

Level

i

i−1

Level

(b)

Fig. 2. (a) Sensor field organization (b)Leadernode

for the distribution of values it generates within a slidingwindow W of sizeN (see
Figure 3). The first step in creating this model is to maintainonline a random sample
of size |R| of the set of the values in the most recent windowW . The other quantity
we need for the kernel estimator is the standard deviationσ of the values in the sliding
window W . Both of these operations can be efficiently supported in a data streaming
environment [2, 4, 13, 3].

Theorem 1. The memory requirement for a sensor to maintain an estimate of its distri-
bution isO(|R|+ 1

ǫ2 log|W |), where|R| is the size of the sample,ǫ is the maximum error
for the estimation of the standard deviation, and|W | is the size of the sliding window.

(b)(a)

past future time PDF

window

past future

window

time PDF

Fig. 3. Estimation of data distribution in sliding window for two time instances (1-d data).

Distributed Computation of Estimators In our framework, we define a mechanism for
model composition. This allows us to take the data distribution models of two streams,
and construct a single model that describes the behavior of both data streams. Our kernel
estimators can be easily combined, and thus are well suited for our framework. There
are two quantities that we have to combine, the sample set,R, and the bandwidth of
the kernel function,B. We can combine the sample sets just by taking their union. We
may then reduce the size of the resulting set by re-sampling,if necessary. In order to

combine the bandwidths of two kernel functions, we only needto combine the two
standard deviations upon which the bandwidths depend. Thisis accomplished using the
same techniques as the ones for computing the standard deviation in a sliding window
of streaming data [20].
Propagating Estimator Updates in the Network Hierarchy: An interesting question
is how often a node should send its model to the leader of the cell it belongs to (assuming
a hierarchical organization).

The simplest approach is to have the children transmit updates to the parent as these
updates take place in their own estimators. Assume that the parent hasl children, each
having a kernel estimator of size|R|, and that the kernel estimator of the parent has
size |Rp|. Then, with probabilityf =

|Rp|
l|R| , when a child updates its kernel estimator

by adding a new kernel, it also propagates this update to its parent (i.e., it transmits
the new kernel and the new standard deviation(s)). This simple approach can be used to
efficiently maintain a sample with expected size|Rp| at the parent, and has the important
advantage that the parent’s distribution quickly adjusts to changes in the distribution of
the observed data.
Comparing Distributions We now discuss a method for computing the difference be-
tween two distributions, which will be useful for the algorithms we describe. Several
methods have been proposed to quantify the difference between probability density dis-
tributions [15]. One widely used measure is theKullback-Liebler divergenceD(p ‖ q)
[6], which is defined as

D(p ‖ q) =

∫

y

p(y)(log p(y) − log q(y)), (3)

wherep(y) andq(y) are probability distribution functions overy, andy is drawn from
a finite setY. However, the measure is undefined whenp(y) > 0 but q(y) = 0 for
somey ∈ Y. TheKL − divergence is therefore not applicable to the density distri-
butions derived by kernel density estimation method, because this method may assign
probability of zero for regions in the domain of the values. We use a variation of the
KL-divergence, called theJensen-Shannon divergence[16] which is defined as follows

JS(p, q) =
1

2
[D(p ‖ avg(p, q)) + D(q ‖ avg(p, q))] (4)

whereavg(p, q) is the average distribution(p(y) + q(y))/2.
We estimate the JS-distance between two kernel estimator modelsp(x) andq(x)

as follows. We approximate the estimated distribution withthe values of the function
with a finite set of grid pointsb1,b2, . . . ,bk. Thus, we approximate the termD(p ‖
avg(p, q)) in Equation 4 as

D(p ‖ avg(p, q)) =
∑

i=1...k

Pp(bi, bs/2)×
[

log(Pp(bi, bs/2)) − log(
Pp(bi,bs/2)+Pq(bi,bs/2)

2)
]

(5)

wherebs is the grid interval andPp andPq are the probabilities estimated with respect
to the estimator modelsp(x) andq(x) respectively. We approximate the termD(q ‖
avg(p, q)) in Equation 4 in a similar way, and estimate the JS-divergence between the
kernel estimator models. The time complexity for the above procedure isO(dk|R|).

3 Applications of Framework

3.1 Outlier Detection

There exist several formal definitions of an outlier. In our work, we follow two of the
commonly-used definitions.
Distance-based outliers [14]: A point p in a datasetT is a(D, r)-outlier if at mostD
of the points inT lie within distancer fromp. The approach to detect such outliers does
not require any prior knowledge of the underlying data distribution, but rather uses the
intuitive explanation that an outlier is an observation that is sufficiently far from most
other observations in the dataset.
Local metrics-based outliers [17]: This method detects outliers based on the metric
Multi Granularity Deviation Factor (MDEF). For any given value p, MDEF is a mea-
sure of how the neighborhood count ofp (in its countingneighborhood) compares with
that of the values in itssamplingneighborhood. A value is flagged as outlier, if its
MDEF is (statistically) significantly different from that of the local averages. The pa-
rametersr, thesamplingneighborhood andαr, thecountingneighborhood, determine
the range over which the neighborhood counts are estimated.This method takes into
consideration the local density variations in the feature space, and provides an auto-
matic cut-off for the outliers, based on the characteristics of the data.

We make two observations. The first observation is that both definitions of outliers
require the estimation of the number of points within specified regions of the data space.
As we discussed in Section 2, our framework for estimating the probability density
function of streaming data can efficiently provide the answers to such questions.

The second observation (summarized by the following theorem) is specific to the
density-based outliers, and leads to an even more efficient implementation.
Theorem 2. Assume nodesn1, . . . , nl children of nodenp, data streamsS1, . . . , Sl re-
ferring to thel children nodes, and corresponding sliding windowsW1, . . . ,Wl. The
sliding window of nodenp is defined asWp =

⋃l
i=1 Wi. Let, at some point in time,

O1, . . . , Ol be the sets of distance-based outliers corresponding to thel sliding win-
dows. Then, for the setOp of outliers inWp it holds thatOp ⊆ ⋃l

i=1 Oi.

This theorem is important for two reasons: (a) it results in significant computation sav-
ings for the parent node, because it only needs to examine a very small subset of the
streaming values, i.e., the outliers identified by its children; (b) it limits the necessary
communication messages from the children nodes to their parents.

The experimental results show that our approach can result in approximately95%
precision and recall for identifying outliers when compared to the offline, centralized
approach, while at the same time being orders of magnitude more efficient [20].

3.2 Detection and Tracking of Homogeneous Regions

The problems we are considering in this application are the following.

Problem 1. (Homogeneous Region Discovery)GivenL sensors monitoring an area of
interest, find a group of sensors (corresponding to a region in space) such that the obser-
vations of the sensors belonging to the same group aresimilar, and are different from
those of other sensors.

Problem 2. (Homogeneous Region Tracking)For a given regionR defined by a set of
similar sensors, track its movement over time.

In order to solve these problems, we need to address the following issues. First, to detect
homogeneous regions, we need an efficient technique to identify sensors with similar
readings. Second, we need to provide a formulation that allows us to define and discover
homogeneous regions that differ from the surrounding area.

Once again, the basis for our solution is the proposed framework that allows the
efficient estimation of data densities in a distributed manner. In our solution we first es-
timate the data distributions within each cell, and then cluster together cells with similar
distributions. During this process, we define the homogeneous regions, and approximate
their boundaries, which we subsequently track as they evolve over time.

The experimental evaluation shows that we can effectively detect and track homo-
geneous regions, with very small processing and communication costs [19].

3.3 Other Applications

An accurate online approximation of the probability density function allows us to solve
a number of problems in a sensor network.
Online Query Processing: One category of problems is to provide approximate an-

swers to range queries with both spatial and temporal constraints. These are queries
of the following form. “What is the average temperature in region (X,Y) during the
time interval[t1, t2]?”. In such cases, the sensors can estimate the density modelfor
the observations during the specified time interval and answer the queries based on the
estimated model.
Finding Faulty Sensors: Another important application is online detection of faulty

sensors. Examples include queries of the form: “Give a warning when the values of a
given sensor are significantly different from the values of its neighbors over the most re-
cent time windowW ”, or queries of the form: “Give a warning if the number of outliers
in a given region exceeds a given thresholdT over the most recent time windowW ”.
With our approach, a parent sensor can compute the difference between the estimator
models received from its children, to determine if any of them is faulty.

4 Related Work

A recent study [7] proposes a sensor data acquisition technique, based on models that
approximate the data with probabilistic confidences. However, any special character-
istics of the data distribution, such as periodic drifts, have to be explicitly encoded in
the space of models considered, which requires domain knowledge. In our work, we
describe a more general technique, which can efficiently overcome this limitation.

A framework for modeling sensor network data is proposed by Guestrin et al. [9].
The goal is that the nodes in the network collaborate in orderto fit a global function
to each of their local measurements. Being a parametric approximation technique, it
has more parameters to fit than our approach, where we only have to estimate a single
parameter. A new study proposes a methodology for approximate data collection that

also exploits spatial correlations [5]. This approach significantly reduces the communi-
cation costs, but it is not clear how it can support distributed, in-network processing, or
dynamically adapt to changes in the spatial correlations.

Ali et al. [1] propose an interesting approach to detect and track discrete phenomena
(PDT) in sensor networks. Detecting phenomena with PDT is a centralized approach,
and therefore, has high communication energy cost. In our work, we consider a more
general problem and we employ a distributed approach. Hellerstein et al. [12] propose
algorithms to partition the sensors intoisobars, i.e., groups of neighboring sensors with
approximately equal values during an epoch. In our case, we are partitioning the sensors
according to the summary of their values over a time intervalthat spans several epochs,
and make no a priori decisions as to how to group sensors basedon their value ranges.

5 Conclusions

In this paper, we propose a general and flexible framework forapproximating the dis-
tribution of streaming data. The techniques we describe operate efficiently in an online
fashion. Moreover, they distribute the computation effortamong the nodes available in
the network, thus better exploiting the available resources and cutting back on the pro-
cessing and communication costs. We evaluated our approaches by applying them to
different problems, which demonstrates the versatility ofthe proposed approach.

References

1. M. H. Ali, M. F. Mokbel, W. G. Aref, and I. Kamel. Detection and tracking of discrete
phenomena in sensor-network databases. InSSDBM, pages 163–172, Santa Barbara, CA,
2005.

2. B. Babcock, M. Datar, and R. Motwani. Sampling From a Moving WindowOver Streaming
Data. InSODA, 2002.

3. B. Babcock, M. Datar, R. Motwani, and L. O’Callaghan. Maintaining Variance And k-
medians Over Data Stream Windows. InPODS, pages 234–243, San Diego, CA, USA,
2003.

4. B. Bash, J. Byers, and J. Considine. Approximately uniform random sampling in sensor
networks.DMSN, 2004.

5. D. Chu, A. Deshpande, J. Hellerstein, and W. Hong. Approximate data collection in sensor
networks using probabilistic models.ICDE, 2006.

6. T. M. Cover and J. A. Thomas.Elements of Information Theory. John Wiley & sons, 1991.
7. A. Deshpande, C. Guestrin, S. R. Madden, J. M. Hellerstein, and W.Hong. Model-Driven

Data Acquisition in Sensor Networks. InVLDB, Toronto, ON, Canada, 2004.
8. A. C. Gilbert, Y. Kotidis, S. Muthukrishnan, and M. Strauss. Surfing Wavelets on Streams:

One-Pass Summaries for Approximate Aggregate Queries. InVLDB, Rome, Italy, 2001.
9. C. Guestrin, P. Bodik, R. Thibaux, M. Paskin, and S. Madden. Distributed Regression: an

Efficient Framework for Modeling Sensor Network Data. InIPSN, Berkeley, CA, 2004.
10. S. Guha and N. Koudas. Approximating a Data Stream for Querying and Estimation: Algo-

rithms and Performance Evaluation. InICDE, pages 567–576, San Jose, CA, 2002.
11. D. Gunopulos, G. Kollios, V. J. Tsotras, and C. Domeniconi. Approximating Multi-

Dimensional Aggregate Range Queries over Real Attributes. InSIGMOD, Dallas, TX, USA,
2000.

12. J. M. Hellerstein, W. Hong, S. Madden, and K. Stanek. Beyond average: Toward sophisti-
cated sensing with queries. InIPSN, pages 63–79, 2003.

13. A. Jain and E. Chang. Adaptive sampling for sensor networks.DMSN, 2004.
14. E. M. Knorr and R. T. Ng. Algorithms for Mining Distance-Based Outliers in Large Datasets.

In VLDB, NY, NY, 1998.
15. L. Lee. On the effectiveness of the skew divergence for statistical language analysis. In

Artificial Intelligence and Statistics 2001, pages 65–72, 2001.
16. J. Lin. Divergence measures based on the shannon entropy.IEEE Trans. Infor. Theory,

37:145–151, 1991.
17. S. Papadimitriou, H. Kitagawa, P. Gibbons, and C. Faloutsos. Loci: Fast outlier detection

using the local correlation integral, 2003.
18. D. Scott. Multivariate Density Estimation: Theory, Practice and Visualization. Wiley &

Sons, 1992.
19. S. Subramaniam, V. Kalogeraki, and T. Palpanas. Distributed Real-Time Detection and

Tracking of Homogeneous Regions in Sensor Networks. InRTSS, Rio de Janeiro, Brazil,
2006.

20. S. Subramaniam, T. Palpanas, D. Papadopoulos, V. Kalogeraki,and D. Gunopulos. Online
Outlier Detection in Sensor Data Using Non-Parametric Models. InVLDB, Seoul, Korea,
2006.

