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Abstract. In the last few years, we have been witnessing an evergrowing need
for continuous observation and monitoring applications. This need isrdily
recent technological advances that have made streaming applicatissiblp,

and by the fact that analysts in various domains have realized the vatiseitie
applications can provide.

In this paper, we propose a general framework for computing effigi@n ap-
proximation of multi-dimensional distributions of streaming data. This frame
work enables the development of a wide variety of complex streaminkicapp
tions. In addition, we demonstrate how our framework can operate itréodied
fashion, thus, making better use of the available resources.

We motivate our techniques using two concrete problems, both in the challen
ing context of resource-constrained sensor networks. The fobtgm is outlier
detection, while the second is detection and tracking of homogeneousisegio
Experiments with synthetic and real data show that our method is effiaieht a
accurate, and compares favorably to other proposed techniqueastifathe prob-
lems that we studied.

1 Introduction

Advances in processor technologies and wireless comntiorisehave enabled the de-
ployment of small, low cost and power efficient sensor no8ash sensor deployments
enable the observation of physical phenomena at a time aw ganularity that was
never before possible. The same is also true for monitoHagperation of machinery,
and the structural integrity of buildings and vehicles.

In all these cases, the applications deal with several degarss and require the
ability to efficiently process this type of data in real-tiAgplications in several other
domains have the same requirements as well. For example, éAbaisiness scenatrio,
we are interested in continuously monitoring the executibthe various processes
and the corresponding services, and in network managemeritave to continuously
analyze traffic statistics coming from multiple sources.

The way that streaming applications are able to efficienthcpss continuous data
arriving at high rates is by computing succinct summarighefdata, and operating on
these summaries [8, 7]. In this paper, we describe a framefwoefficient, online ap-
proximation of multi-dimensional streaming data disttibos, based okernel density



estimatord18]. The proposed framework does not require a priori kealge about the
input distribution, and is adaptive, in the sense that ibauatically recognizes changes
in the streaming data distributions, and updates the appations accordingly. More-
over, the framework can operate in a distributed fashions,timaking use of all the
available resources, and reusing any processing that ieeglgltaken place.

The framework we propose is general, and enables the dewelupof a wide va-
riety of complex streaming applications. In this study, veendnstrate the usefulness
and versatility of the framework using two concrete appiaras from the area of sensor
networks. Sensor networks represent a challenging dorhagause they combine the
requirements of streaming algorithms (i.e., online precgs and efficient use of main
memory) with the restrictions of sensor network deployregnt., limited available
resources and processing power, and distributed opeyation

The first application that we examine is distributed dewiatiletection in a sensor
network. The goal is to identify, among all the sensor regslin a sliding window, those
values that have very few near neighbors. Note that this lllenging problem, even
for static datasets [14, 17]. This problem is especiallyangnt in the sensor network
setting because it can be used to identify faulty sensosi@filter spurious reports
from different sensors.

The second application is identification and trackincghomogeneous regiorig,
12], which are defined as spatial divisions of the field undeseovation that exhibit
similar measured values over time. For example, an oil gigilected in the ocean is
a homogeneous region (Figure 1). The sensors deployedditbarorigin of the spill
can organize themselves into a network and communicate éasunements, to detect
regions of varying oil concentrations. In this work, we asitdr the problems of de-
tecting and tracking such homogeneous regionsattimewhen the definition of the
phenomenon isot known in advance.
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Fig. 1. Spread of an oil spill detected in the ocean over time.

Below we summarize our main contributions.

e We describe a non-parametric, online technique for apprating unknown multi-
dimensional streaming data distributions. We then extbisdkéchnique in order to
efficiently model distributions that evolve over time, ancperate in a distributed
fashion.

e We demonstrate the versatility of our approach by desaibiow it facilitates the
implementation of two different applications, namely @rtidetection, and detec-
tion and tracking of homogeneous regions.



2 DataDistribution Approximation Framework

In this section, we describe a general framework for estigahe underlying distribu-
tion of a data stream. We discuss the case where we are teiinghe data that falls
within a sliding time windowlV (this is a more general case than unrestricted windows;
we omit the presentation of the latter for brevity).

Estimating the Probability Density Function: There are several model estimation
techniques that have been proposed in the literature, sublstgrams [10], wavelets
[8], kernel density estimators [18], and others. In our fearark, we choose to estimate
the unknown distribution using the kernel density estimsatbecause of the following
desirable properties: (i) they are efficient to compute aathtain in a streaming envi-
ronment; (ii) they can very accurately approximate an umkndata distribution, with
no a priori knowledge and (effectively) no parameters) {fiiey can easily be combined
and (iv) they scale well in multiple dimensions. In geneitalk computationally more
expensive to apply the above operations in histograms oeblets; and their perfor-
mance is not better than that of kernels [11].

Kernel Estimators. Thekernel estimatofl18] is a generalized form of sampling, whose
basic step is to produce a uniform random sample. In kerteghaton each point
distributes its weight in the space around itkérnel functiordescribes the form of this
weight distribution, generally distributing most of theigiet in the area near the point.
Summing up all the kernel functions we obtain a density finmctor the dataset.

More formally, assume that we have a static relatiorthat stores thé-dimensional
valuest, t = (¢1,...,tq), whose distribution we want to approximate. The recorded
values must fall in the interva0, 1]¢. This requirement is not restrictive, since we can
map the domain of the input values to the interigall|¢. Let R be a random sample of
T, andk(x) ad-dimensional function ok = (x1,...,z4), such tha’%o’l] k(x)dx =1,
for all tuples inR. We callk(x) thekernel functionWe can now approximate the un-
derlying distributionf(x), according to which the values ifi were generated, using
the following function

1
f(x):mﬁ;k(xlftil,...,xdftid). 1)

The choice of the kernel function is not significant for theulés of the approxima-
tion [18]. Hence, we choose the Epanechnikov kernel thadsy & integrate:

avd s
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whereB = (By,..., By) is the bandwidth of the kernel function. We use Scott's rule

to setB [18]: B; = \/Eai\Rrﬁ, wherego; is the standard deviation of the values in
T in dimensioni.

Online approximation in a sliding window: For the discussion that follows, and for
ease of presentation, we assume the case of a sensor netaaek(though, our frame-
work is applicable to any environment with multiple streashdata), consisting of a set
of sensors, each having a location o2+d plane and producing a stream of values. The



sensor network may be organized in a hierarchical way fdabd#y reasons. The idea
is to organize the network using several tiers of overlagpirtual grids with different
levels of granularity, ranging from small local areas atltiveest tier, to the entire net-
work area at the highest tier (see Figure 2). We assume tbhatoedl of the grid elects
a leader, oparentnode, that is responsible for processing the measuremgalistioe
sensors in the cell, and for collecting values from the leadées of all its sub-cells in
the lower level. In such an online setting, we require thahesensor maintains a model
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Fig. 2. (a) Sensor field organization (headernode

for the distribution of values it generates within a slidwidow W of size N (see
Figure 3). The first step in creating this model is to maintaitine a random sample
of size |R| of the set of the values in the most recent windid The other quantity
we need for the kernel estimator is the standard deviatiohthe values in the sliding
window WW. Both of these operations can be efficiently supported inta si@eaming
environment [2, 4, 13, 3].

Theorem 1. The memory requirement for a sensor to maintain an estinfate distri-
bution isO(| R|+ %log|W|), where|R| is the size of the sampleis the maximum error
for the estimation of the standard deviation, gfld| is the size of the sliding window.
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Fig. 3. Estimation of data distribution in sliding window for two timeinstances (1-d data).

Distributed Computation of Estimatorsin our framework, we define a mechanism for
model composition. This allows us to take the data distidiouiodels of two streams,
and construct a single model that describes the behaviatbidata streams. Our kernel
estimators can be easily combined, and thus are well swtedufr framework. There
are two quantities that we have to combine, the samplef§eind the bandwidth of
the kernel functionpB. We can combine the sample sets just by taking their union. We
may then reduce the size of the resulting set by re-samgfimgcessary. In order to



combine the bandwidths of two kernel functions, we only needombine the two
standard deviations upon which the bandwidths depend.iF hiscomplished using the
same techniques as the ones for computing the standardideviaa sliding window
of streaming data [20].
Propagating Estimator Updatesin the Network Hierarchy: An interesting question
is how often a node should send its model to the leader of thi¢loelongs to (assuming
a hierarchical organization).

The simplest approach is to have the children transmit @sdatthe parent as these
updates take place in their own estimators. Assume thatatenphag children, each
having a kernel estimator of siz&|, and that the kernel estimator of the parent has

size|R,|. Then, with probabilityf = T2, when a child updates its kernel estimator
by adding a new kernel, it also propagates this update toaitsrp (i.e., it transmits
the new kernel and the new standard deviation(s)). Thislsiaggproach can be used to
efficiently maintain a sample with expected si#g | at the parent, and has the important
advantage that the parent’s distribution quickly adjustshtanges in the distribution of
the observed data.

Comparing Distributions We now discuss a method for computing the difference be-
tween two distributions, which will be useful for the algbrns we describe. Several
methods have been proposed to quantify the difference ketp@bability density dis-
tributions [15]. One widely used measure is #dlback-Liebler divergenc®(p || q)

[6], which is defined as

Dyl q) = / p(y)(log p(y) — log a(y)), 3)

wherep(y) andq(y) are probability distribution functions over, andy is drawn from

a finite setY. However, the measure is undefined wheg) > 0 but ¢(y) = 0 for
somey € Y. The KL — divergence is therefore not applicable to the density distri-
butions derived by kernel density estimation method, beedhis method may assign
probability of zero for regions in the domain of the values Wée a variation of the
KL-divergence, called thdensen-Shannon diverger{@®] which is defined as follows

T8(p.0) = 3 [D(p || avg(p. ) + Dl | avg(p. ) @

whereavg(p, q) is the average distributio(y) + ¢(y))/2.

We estimate the JS-distance between two kernel estimatdelsyo(x) and g(x)
as follows. We approximate the estimated distribution i values of the function
with a finite set of grid pointdq, ba, ..., bx. Thus, we approximate the term(p ||
avg(p, q)) in Equation 4 as

D(p | avg(p.a)) = > Pp(bi,bs/2)x

Lk
10g (P, (bs, bs/2)) — log(LelBube/2) Pa(bibs/2)) ()

wherebs is the grid interval and®, and P, are the probabilities estimated with respect
to the estimator models(x) and¢(x) respectively. We approximate the tetthq ||
avg(p,q)) in Equation 4 in a similar way, and estimate the JS-divergdretween the
kernel estimator models. The time complexity for the abawegdure iO(dk|R|).



3 Applications of Framework

3.1 Outlier Detection

There exist several formal definitions of an outlier. In owrky we follow two of the
commonly-used definitions.

Distance-based outliers[14]: A point p in a datasef is a(D, r)-outlier if at mostD

of the points inT” lie within distance- from p. The approach to detect such outliers does
not require any prior knowledge of the underlying data distion, but rather uses the
intuitive explanation that an outlier is an observation ikasufficiently far from most
other observations in the dataset.

Local metrics-based outliers [17]: This method detects outliers based on the metric
Multi Granularity Deviation Factor (MDEF). For any givenlua p, MDEF is a mea-
sure of how the neighborhood countmwf{in its countingneighborhood) compares with
that of the values in itsamplingneighborhood. A value is flagged as outlier, if its
MDEF is (statistically) significantly different from thaf the local averages. The pa-
rameters-, thesamplingneighborhood andr, thecountingneighborhood, determine
the range over which the neighborhood counts are estim@itésd.method takes into
consideration the local density variations in the featyrace, and provides an auto-
matic cut-off for the outliers, based on the charactesspicthe data.

We make two observations. The first observation is that betimitions of outliers
require the estimation of the number of points within spedifiegions of the data space.
As we discussed in Section 2, our framework for estimatirey frobability density
function of streaming data can efficiently provide the arrswe such questions.

The second observation (summarized by the following thapiie specific to the
density-based outliers, and leads to an even more efficigsiementation.

Theorem 2. Assume nodes, ..., n; children of nodey,, data streams,, . .., S; re-
ferring to thel children nodes, and corresponding sliding windows, ..., W;. The
sliding window of node:, is defined asV,, = Uﬁzl W;. Let, at some point in time,
O1,...,0; be the sets of distance-based outliers corresponding t@ #fiding win-
dows. Then, for the s€,, of outliers inW,, it holds thatO,, C Ué:l 0;.

This theorem is important for two reasons: (a) it resultsgmiéicant computation sav-
ings for the parent node, because it only needs to examineyaswgll subset of the
streaming values, i.e., the outliers identified by its af@ifg (b) it limits the necessary
communication messages from the children nodes to theanpar

The experimental results show that our approach can resafiproximatelyd5%
precision and recall for identifying outliers when comphte the offline, centralized
approach, while at the same time being orders of magnitude afticient [20].

3.2 Detection and Tracking of Homogeneous Regions
The problems we are considering in this application aredheving.

Problem 1. (Homogeneous Region Discovéswen L sensors monitoring an area of
interest, find a group of sensors (corresponding to a regispace) such that the obser-
vations of the sensors belonging to the same grouiargar, and are different from
those of other sensors.



Problem 2. (Homogeneous Region Trackifigy a given regionk? defined by a set of
similar sensors, track its movement over time.

In order to solve these problems, we need to address thevfotiassues. First, to detect
homogeneous regions, we need an efficient technigue tofigephsors with similar
readings. Second, we need to provide a formulation thawvalics to define and discover
homogeneous regions that differ from the surrounding area.

Once again, the basis for our solution is the proposed fraiethat allows the
efficient estimation of data densities in a distributed neanim our solution we first es-
timate the data distributions within each cell, and thesteutogether cells with similar
distributions. During this process, we define the homogeseegions, and approximate
their boundaries, which we subsequently track as they evmrer time.

The experimental evaluation shows that we can effectiveteat and track homo-
geneous regions, with very small processing and commtuaiceosts [19].

3.3 Other Applications

An accurate online approximation of the probability densiinction allows us to solve

a number of problems in a sensor network.

Online Query Processing: One category of problems is to provide approximate an-
swers to range queries with both spatial and temporal c@ingir These are queries
of the following form. “What is the average temperature inioeg X,Y") during the
time interval[ty, ¢2]?". In such cases, the sensors can estimate the density ficodel
the observations during the specified time interval and anslve queries based on the
estimated model.

Finding Faulty Sensors: Another important application is online detection of fault
sensors. Examples include queries of the form: “Give a wagrmihen the values of a
given sensor are significantly different from the valued®oheighbors over the most re-
cent time windowl”, or queries of the form: “Give a warning if the number of oeits
in a given region exceeds a given threshdldver the most recent time windoi™.
With our approach, a parent sensor can compute the differeatwveen the estimator
models received from its children, to determine if any ohthis faulty.

4 Related Work

A recent study [7] proposes a sensor data acquisition tquenbased on models that
approximate the data with probabilistic confidences. H@xeany special character-
istics of the data distribution, such as periodic driftsyénéo be explicitly encoded in
the space of models considered, which requires domain lkaugel In our work, we
describe a more general technique, which can efficientlyoowee this limitation.

A framework for modeling sensor network data is proposed bgs®in et al. [9].
The goal is that the nodes in the network collaborate in orddit a global function
to each of their local measurements. Being a parametricogppation technique, it
has more parameters to fit than our approach, where we onégy/tbaestimate a single
parameter. A new study proposes a methodology for apprdgiaea collection that



also exploits spatial correlations [5]. This approach i§icemtly reduces the communi-
cation costs, but it is not clear how it can support distellin-network processing, or
dynamically adapt to changes in the spatial correlations.

Ali et al. [1] propose an interesting approach to detect aacktdiscrete phenomena
(PDT) in sensor networks. Detecting phenomena with PDT israralized approach,
and therefore, has high communication energy cost. In ouk,wee consider a more
general problem and we employ a distributed approach. idédi@ et al. [12] propose
algorithms to partition the sensors ingmbars i.e., groups of neighboring sensors with
approximately equal values during an epoch. In our casersveaatitioning the sensors
according to the summary of their values over a time intethat spans several epochs,
and make no a priori decisions as to how to group sensors loastbetir value ranges.

5 Conclusions

In this paper, we propose a general and flexible frameworlapproximating the dis-
tribution of streaming data. The techniques we describeadpefficiently in an online
fashion. Moreover, they distribute the computation effortong the nodes available in
the network, thus better exploiting the available resosigr®d cutting back on the pro-
cessing and communication costs. We evaluated our apmedhapplying them to
different problems, which demonstrates the versatilitthef proposed approach.
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