
The Entity Name System:
Enabling the Web of Entities

Heiko Stoermer, Themis Palpanas, George Giannakopoulos

University of Trento
{stoermer, themis, ggianna}@disi.unitn.eu

Abstract— We are currently witnessing an increasing interest in
the use of the web as an information and knowledge source. Much
of the information sought after in the web is in this case relevant
to named entities (i.e., persons, locations, organizations, etc.). An
important observation is that the entity identification problem
lies at the core of many applications in this context. In order
to deal with this problem, we propose the Entity Name System
(ENS), a large scale, distributed infrastructure for assigningand
managing unique identifiers for entities in the web.

In this paper, we examine the special requirements for storage
and management of entities, in the context of theENS. We present
a conceptual model for the representation of entities, and discuss
problems related to data quality, as well as the management of
the entity lifecycle. Finally, we describe the architecture of the
current prototype of the system.

I. I NTRODUCTION

One of the major problems that have emerged through the
Semantic Web (SW) effort [20] is the problem of uniquely
identifying entities. The problem derives from the fact that dif-
ferent users, or systems, assign and use different identifiers for
the same real-world entity. As a result, we cannot effectively
reason about this entity, exactly because it is not consistently
being assigned the same identifier.

The same problem is also relevant to information and
knowledge management in the enterprise environment, where
its successful solution could help in two directions. First, by
enabling the efficient integration and management of entity-
centric information within an enterprise that is scatteredover
several data stores, and second, by allowing the effective
correlation of the owned information with relevant information
from external sources.

Even though in this work we do not formally define the no-
tion of entity, we will use the term entity to refer to individuals,
particulars, and instances. (We include a rigorous discussion
and definition in our previous work [5].) Our notion of entityis
quite liberal, and includes things like products, organizations,
associations, countries, events, publications, hotels, people,
etc. It may also include fictional objects (e.g., Pegasus), objects
from the past (e.g., Plato), or abstract objects (e.g., Gödel’s
Theorem).

Consider the following two motivating scenarios, which
demonstrate the added value that a web-based system for entity
identification can bring.

Enhancing Business Intelligence (BI): Often times in BI
applications the goal is to collect all relevant information about
a specific entity. For example, SAP is interested in gathering

information about each one of their products (differentiating
among versions) from their internal databases, knowledge
bases, and forums, as well as from external sources, such
as weblogs. It turns out that this is a difficult task (also
when considering only the internal sources), since the products
are not always referred to with their official, full names.
Tagging these references with global identifiers would alleviate
the above problem, even when integrating information from
external sources.

Connecting Physical Objects to the Web: Physical objects,
tagged with an identifier that is easily readable by a machine
(e.g., through RFID or 2-dimensional visual codes, such as
QR) can be scanned by a mobile device, and lead the user to
entity-centric information about this object gathered from the
Web (e.g., detailed specifications for a product, nutritioninfor-
mation for a food package, etc.). Evidently, this information
can be richer when these identifiers are global, enabling easy
access to entity-centric information from a huge variety of
data sources1. The city of Manor (in Texas, USA) has already
a pilot program that uses these technologies (which are also
available in a simpler form in Japan and South Korea).

Our thesis is that entity identification is at the core of
several applications that are becoming increasingly relevant
in a world of interconnected information. Along with the
problem of assigning global identifiers to entities also come
the problems of managing these identifiers throughout the
entire lifetime of the entities. Giving efficient solutionsto the
above issues is the goal of our Entity Name System (ENS)
[7], [3], [5]. The ENS aims to improve the linkage of data
about individual entities in the World Wide Web (WWW), by
handling the process of assigning and managing identifiers
for entities. These identifiers are global, with the purpose
of consistently identifying a specific entity across system
boundaries, regardless of the place in which references to this
entity may appear.

In this work, we present a high level overview of the
ENS system (which is being developed within the OKKAM
project), while focusing on the management of the entity
lifecycle, one of the crucial components of the system. We
describe our model for entity representation, and the data
quality issues that arise in this environment. We discuss the
need for evolution of the entity representations, and propose
specific directions for enabling and assisting in this evolution

1An example of a system that provides such functionality is SIGMA
(http://www.sig.ma)

process. Finally, we give an overview of our current prototype
implementation ofENS.

II. RELATED WORK

This is the first time that a system like theENS is being
developed. However, systems exist which have been developed
for other domains and are used to solve slightly different
problems that exhibit similar (to some extent) functionality
to theENS.

There exists lots of work, and a (renewed) recent interest, in
Master Data Management (MDM) systems [10]. The purpose
of MDM systems is to store and manage in a centralized
manner all the information relevant to the core objects of
some business (e.g., customers, suppliers, and products for a
retail store). A crucial difference is that in theENSwe are not
interested in handling all the information (knowledge) about
an entity. The aim is rather to have a minimal amount of
information based on which we are able to uniquely identify
each entity in the system.

Yahoo! GeoPlanet [2] is an open infrastructure for managing
unique identifiers for geographically-permanent named entities
(i.e., geographic locations, such as cities and landmarks). The
ENS has the ambitious goal of extending such a functionality
to any named entity (that is, to persons, organizations, etc.).
A similar vision was recently sketched by Yahoo! as well [8].
Though, it is not clear whether this approach will lead to an
open system like theENS, where users (and applications) can
add new entities.

OpenCalais [1] is a framework of tools that allows users
to automatically create semantic metadata for unstructured
documents. When given as input a document, OpenCalais
will identify the named entities mentioned in the document,
and will additionally generate tags with known facts about
these entities. Nevertheless, this framework does not allow
users to freely create and annotate new entities in the system.
Furthermore, for integration tasks we still have to do reasoning
in order to identify entities that are the same across processed
documents (since they may not be tagged with the same
identifiers).

The Digital Object Identifier (DOI) system, which is based
on the Handle system, has been developed for identifying
content objects (mainly documents) on the internet [14], [19].
The DOI system is specifically focused on digital content
objects, and given an identifier of such an object, it provides
resources relevant to that object. The DOI system does not
meet the requirements we have set forENS, since it is not
possible to search for the identifier of an object given any of
its attributes (or any relevant keywords).

The Consistent Reference Service has been proposed for
the problem of “URI synonymity” [13]. This service helps
detect the set of identifiers that have been issued by various
data sources for the same entity. This problem is orthogonal
to the one tackled byENS. In fact, such a service could
provide information for the entity representations in theENS
(see Section IV).

Even though theENS is not a knowledge base, with the
help of (the identifiers assigned by) theENS, information on

specific entities can be easily and promptly accumulated. For
example, in the context of the WWW such a service is already
being provided by Sindice2 and SIGMA3 [9].

III. T HE ENTITY NAME SYSTEM

A. Overview

In this section we give a brief overview of theENS (a
more detailed presentation can be found elsewhere [7], [18],
[3]), which we will use as the basis for our discussion. Note
however, that our discussion is relevant to any system for
entity identification management. The overall goal of theENS
is to handle the process of assigning and managing unique
identifiers for entities in the WWW. These identifiers are
global, with the purpose of consistently identifying a specific
entity across system boundaries, regardless of the place in
which references to this entity may appear (see Figure 1).

Fig. 1: Schematic of theENSand its interactions.

TheENShas a repository for storing entity identifiers (note
that this repository will be distributed and replicated) along
with some small amount of descriptive information for each
entity. The purpose of storing this information is to use it only
for discriminating among entities, not exhaustively describing
them. Entities are described by a number of attribute-value
pairs, where the attribute names and the potential values are
user-defined (arbitrary) strings, as we will discuss in more
detail in Section IV-A.

Clients can be both human users and applications, and may
inquire about the identifier of an entity by providing a set of
attributes that describes this entity. If the entity existsin the
repository, the system returns its identifier. Clients may also
modify the state of the repository, either by inserting a new
entity in the system, in which case theENSreturns the newly
assigned identifier, or by changing some of the attributes of
an existing entity.

As shown in Figure 1, the end result is that all instances
of the same entity (i.e., mentioned in different systems, on-
tologies, web pages, etc.) are assigned the same identifier.
Therefore, joining these data sources and merging their infor-
mation becomes a much simpler and more effective process
than before.

2http://sindice.com
3http://www.sig.ma

B. Identity and Identifiers

The landscape of the SW contains systems that provide
identifiers for semantic entities, in the form of RDF URIs.
Among them are identifiers for geographic entities (e.g. in
the Geonames ontology4), for encyclopedic entities (in the
DBPedia system5 or the Yago ontology6) or even Genes
(in the Uniprot Gene Ontology7). The current practice is to
use RDF URIs for several different goals: (i) redirecting to
a set of assertions about a non-web resource; (ii) linking
from one set of assertions to another; (iii) providing a surro-
gate/substitute/proxy for non-web resources. It is evident that
there is a certain ambiguity in this approach, which has been
partly resolved by an architectural mechanism which helps
distinguishing which of the three roles an RDF URI is playing.

We note the following important distinction between the
RDF URI identifiers, and the identifiers produced and used
by the ENS (for a more detailed, theoretical discussion refer
to [5]): theENSidentifiers arerigid designators8 for any kind
of concrete and particular entity. In simplified terms, the above
statement says that while the interpretation of an RDF URI
is a set of RDF triples (about an entity), the interpretation
of an ENS identifier is the entity itself. The important point
being that even though theENS identifier can be used to
access information about the entity it denotes (in theENS),
the sole purpose of this information is to support the process
of reaching consensus about the identity of the entity, i.e.,
to fix the referent. The use of the RDF URI should thus be
limited to the first two goals mentioned above, while theENS
identifier covers the third one.

IV. ENTITY MANAGEMENT

We now discuss issues relevant to the lifecycle management
of the entities, which represents an important component of
the system with several new challenges. More specifically,
we present our approach to entity representation, data quality,
repository evolution, and online monitoring of the use of the
repository.

A. Entity Representation

In the ENS, we represent an entityE as a tupleE =<

eid, Aid, prid, D, M > [3]. An entity is identified by an
entity identifier,eid, assigned by the system. Along with this
identifier, we store a set of alternative ids,Aid that other
systems have assigned to the same entity, which can also
be used to access the entity or producesame-asstatements.
The preferred id,prid, is one of the above identifiers that
we use when displaying the entity9. The descriptive part of
the entity representation,D, contains the attribute name value
pairs that describe the entity, and a set of references (external

4http://www.geonames.org/ontology/
5http://www.dbpedia.org
6http://www.mpi-inf.mpg.de/yago-naga/yago/
7http://www.uniprot.org/manual/gene_ontology
8An identifier is called arigid designatorif in all possible worlds it denotes

the same object [15].
9The only guaranteed, unique identifier is still theeid, which is always used

internally in theENS.

to the system) that are about this entity. Finally, we store aset
of metadata for each entity,M , that include usage statistics,
and provenance and access control metadata. All the above
information is individually indexed to allow fast access toit,
and then stored as a single XML file on disk.

Note that our goal inENSis to keep the entity representation
as simple and general as possible, without imposing a fixed
schema of entity types or attributes [18]. This approach is
similar to the dataspace paradigm [12], and can benefit from
the techniques developed in that area.

However, we acknowledge the benefit that such a schema
would bring in. In order to reach a compromise between the
generality of the description and the precision in the function-
ality of the system, we propose the (optional) classification
of all entities in seven broad, top-level categories, namely,
person, organization, location, event, artifact, and other. For
each one of these entity types, we have identified a set of
default attributes that are most commonly used to describe
them [3]. These default attributes are suggested to users during
entity creation, but are of course optional. Nevertheless,we
expect that most of the created entities will use (at least some
of) the default attributes, which in turn will have positive
influence on the performance of the system.

When describing entities using attribute name value pairs,
we face the following two problems. First, the same attribute
name may appear in several different variations that are all
semantically equivalent (e.g., “last name” and “surname”).
Second, the same attribute name may appear in several dif-
ferent languages (e.g., “last name” in english and “cognome”
in italian). In order to solve these problems, we use a canonical
representation for attribute names, which is one of the forms
that a particular attribute name may take. The name entered by
the user at creation time is stored in the entity representation,
and if its mapping to one of the canonical names that the
system knows can be inferred, then this canonical name is
the one used internally by the system in order to improve
the quality of results of query answering. These mappings are
managed separately from the entity descriptions, and can be
enriched and extended over time, by adding new vocabularies
or standardized ontologies, in order to better match the way
that the system is being used.

B. Data Quality

Data quality issues are a major concern in theENS. In
the following paragraphs, we briefly describe our efforts in
assuring data quality at creation time, as well as over the
lifetime of the entity representation in the repository.

The aim of the data quality enforcement at entity creation
time is to ensure that the new entities satisfy a minimal set
of quality requirements. This assessment takes place not only
every time a new entity is about to be stored in the system,
but also when an existing entity is being modified. The results
of the assessment are of two kinds: a list of corrective actions
that the user has to follow before the entity can be stored
in the system; or a set of warnings that aim at focusing the
attention of the user at some particular areas of the entity
description that the system thinks may be problematic from
the data quality perspective.

The data quality assessment process at creation time that is
currently in place within ENS, consists of the following three
types of checks.

1) Attribute value quality, where we want to ensure that
the values entered for the various attributes in the entity
description are correct and valid.

2) Intra-entity description quality, where we check the
quality of the entity description as a whole.

3) Inter-entity description quality, where we make sure that
the changes about to happen in the repository will not
degrade the overall quality performance of the system.

Examples for the first type of checks include the existence
of attributes with no value specified, and the conformance to
some standard formats for special attributes like date and time.

In the second type of checks, we look for attribute name-
value pairs that are duplicated in the description of the entity,
attributes with the same name but different values (this issues
a warning), and for entity descriptions with too few or too
many attributes.

The third type of checks is particularly important, because
it gives us the unique opportunity to identify and remedy
problems that will affect the performance of the entire system
in a streaming fashion, right at the time when such problems
will first appear (i.e., when creating or modifying an entity
description). In this case, we perform a duplication check,
which looks for other entities in the repository that are very
similar to the entity under consideration. If such entitiesexist,
it means that either the same real world entity is already stored
in the ENS(therefore, it should not be stored a second time),
or the description provided for that entity cannot sufficiently
differentiate it from other entities in the repository (therefore,
its description has to be enhanced). Note that in a dynamic and
large scale system like theENS, the alternative of identifying
and correcting this type of problemsafter they appear is
extremely cumbersome and prohibitively expensive, since it
has to be an offline process, operating on the entire repository.

Apart from the above techniques for increasing the quality
of the data that enters the system, we are also working on
mechanisms that will ensure a high data quality over time.
In particular, we are interested in maintaining the freshness
of the data stored inENS. In our case, freshness translates to
how accurate the description of the entity is over time, or in
other words, how closely it follows the real world entity as
this changes over time. Evidently, we can only approximate
this process, since we do not have a complete knowledge
of the real world. The algorithms we propose can efficiently
monitor the change patterns of individual entities (based on the
history ofobservedchanges), and provide a prediction for the
timeframe of the next change. Therefore, we can take proactive
steps for ensuring the accuracy of the entity representation in
the repository (e.g., perform a targeted crawl of authoritative
sources for the particular entity).

C. Evolution of Identifiers

Even though the identifier of an entity should never change,
in some special circumstances this may happen. For exam-
ple, this happens when we realize that two different entity

representations refer to the same real world entity, or when
the same entity representation is already being used to refer
to two distinct real world entities. In these cases, we would
like to take corrective action, by performing amergeand a
split, respectively. Note that these operations may also become
necessary as a result of the update of an existing entity. As
such, they are closely related to the data quality problem
discussed earlier.

TheENSsupports the merge and split operations as follows.
In the case of a merge operation, we merge the distinct
attribute name-value pairs of the two entities, and select one
of the existing identifiers (i.e., the one that according to the
system statistics belongs to the most popular entity of the two)
to be the identifier of the merged entity. The other identifier
will still exist, so that users can refer to it, but only the
selected identifier will be returned as a result. When splitting
an entity representation into two new ones, we have no option
but creating two new identifiers, since the old identifier has
been used to refer to a non-existing (wrong) entity. In both
cases, a human user has to refine the final entity descriptions,
and the system keeps enough information to be able to undo
these operations. We also provide a service that makes the
information about these changes available for users (and/or
machines) to read. This service publishes the merge and split
operations along with their attached timestamps on a server
that ENSusers can access.

D. Monitoring of Repository Usage

The way that users access the system and interact with it
may provide useful insight on what actions to take in order to
improve the performance of theENS. Consider the following
example. Assume that many users search for an entity with
attributesA1 and A2, and always select entityE1, which is
the only entity in the repository that contains attributeA1 in
its profile. If E1 does not containA2 as well, we may choose
to add it to the profile ofE1, because many users refer toE1

usingA2. Alternatively, assume that the query for entities with
attributesA1 and A2 returnsn entities,E1, E2, . . . , En, that
satisfy the search conditions, but the interested users always
select entityEk, 1 ≤ k ≤ n. In this case, we may choose to
increase the importance of entityEk, so that it ranks first for
the particular query.

In both the above situations, we are interested in monitoring
the data streams relevant to the usage patterns of the system.
We have extended and adapted algorithms that can operate in
an online fashion, and are flexible enough to allow effective
and efficient data analysis of the incoming data streams [21],
[17]. By monitoring and analyzing the way users interact with
the ENS we can, for example, determine which entities or
profile attributes are relevant to specific queries or to certain
contexts, and modify the rankings of the entities in the query
results, or update the representation of the entities, in order to
produce more relevant search results.

E. Exploiting User Feedback

The volume and volatility of the data contained within the
ENSoffer a challenge concerning both the maintenance and

accessibility of the information. The maintenance of the entity
data would be a rather expensive and cumbersome task, was it
not designed as a joined effort with theENSuser-community.
By relying on the collective wisdom and collaboration of users,
we aim to induce and use their feedback in order to achieve
high data quality. The premise is that users will be willing to
“adopt” some entities, and make sure that their descriptions in
the ENSare always accurate.

In support of this functionality, we are developing the
Adaptive Entity Subscription System (AESS)[11]. The AESS
allows a user tosubscribeto entities of interest (e.g., one’s
own entity, or entity of one’s home town) and get informed
aboutchangeson these entities. The subscription system helps
clients follow the changes of entities in theENS at the
time they occur through asynchronous messages (e.g., via e-
mail). The dissemination of change information allows users
to follow the evolution of the descriptions for the entitiesof
interest, and enables them to take corrective actions, without
having to periodically check for problems.

The personalized aspect of AESS takes into account what
kinds of change are interesting for a given subscription client.
The system ranks the information on changes in every sent
message, according to user preferences on what is important.
It is further able to adapt to the individual use-patterns of
each client. The ranking is based on a user model, which is
created through machine learning and a feedback-based user
modeling methodology [11]. The system further adapts to user
interest shifts, based on the information of the feedback, so
that the information flow to the user remains aligned to user
interest. This kind of personalization provides ease of useand
enhances the user’s experience and interaction with the system,
thus facilitating the update of and access toENSdata.

V. SYSTEM DESIGN

In this section we give an overview of our efforts in
implementing a publicly available prototype of theENS.

A. System Architecture

The ENSconsists of the following four main components:

1) Entity Store. This component is responsible for the low-
level tasks of storing and managing entity data, as well
as relevant metadata.

2) Index. Search operations for an identifier via an entity
description in theENSare accelerated via index struc-
tures over the data persisted in the entity store.

3) ENS Core. This component is implementing the ser-
vices that are exposed by theENS, namely, entity cre-
ation and update, matching, as well as processes relevant
to the entity lifecycle management.

4) Offline Processing. TheENSis a system that is designed
and optimized to achieve good performance in request-
response style online processing. Additionally, there is
the overall requirement to accommodate for components
that are not directly connected to answering online
identifier search requests, such as aspects of data quality
assurance or the AESS, mentioned in Section IV. For
this reason, the overall system architecture includes a

Storage API

Entity
Matching

Lifecycle
Management

Access Management

Web Service API

Fig. 2: TheENSCore Architecture

component for offline processing that is separate from
the online system, so as not to negatively influence its
performance.

The ENS Core itself, as illustrated in Figure 2, consists
of several parts that we describe bottom-up. TheStorage
API abstracts from the complexities of accessing the Entity
Store and Index components mentioned above. In particular,
the underlying strategies for addressing the individual, load-
balanced clusters and retrieving all relevant data are hidden
from upper layers. TheMatching component is responsible
for ensuring a high top-k precision of entity identifier search
results. It has two main tasks: (i) parsing, analyzing and
– if necessary rewriting or expanding – the search request
coming from a client, and (ii) applying sophisticated ranking
mechanisms with the aim to establish the best match between
the search request and the candidate entities. TheLifecycle
Manager takes care of the entity creation- and update-related
tasks, and the important aspects of data quality and data
lifecycle management. Most of the functionalities of this
component have been outlined in Section IV. TheAccess
Manager ensures that the requirements of access control and
privacy are fulfilled. It performs, among other things, query
and result set filtering to avoid undesired use of the system.
All services that theENSoffers as its public API are exposed
through theWeb Servicescomponent, which constitutes the
uppermost layer of theENScomponent stack.

The ENS is conceived to be used as a background com-
ponent in a service-oriented architecture. The only way to
access the system is via a SOAP web service API. TheENS
also provides end-user frontends that are accessible via the
web, for identifier search, creation of identifiers, as well as
administrative tasks. Access control is realized via certificate-
based authentication which secures all web services.

B. Prototype Implementation

In the following, we give a brief description of theENS
prototype implementation (see Figure 3 for the concrete ar-
chitecture of the system).

In order to fulfill the scalability requirements, the main
components of the system support distributed processing. The
ENSCore has been developed from scratch, implementing the
architectural elements depicted in Figure 2 as a single compila-
tion unit. TheENSCore is a stateless in-memory component
which implements no persistence by itself and requires no
shared memory, and can thus be distributed in a simple fashion
behind a request-based load balancer. Both the entity store
and the index follow the concept of horizontal partitioning(or
“sharding”) to deal with large data sizes plus replication to

...s2c1s1c1

......s1c2

......s1c3

.........

+qps

+data

Distributed Entity Store (Cluster)

...s2c1s1c1

......s1c2

......s1c3

.........

+qps

+data

Distributed Index (Cluster)

User Load
Balancer

ENS Core
(Cluster)

Offline data
processing

Fig. 3: Architecture of theENSprototype implementation.

v1.1 v2.0 v3.0
(02/2009) (11/2009) (06/2010)

Repository capacity 1Mio 50Mio 500Mio
Repository population 1.03Mio 7.4Mio 50Mio
Avg. response time 800msec 750msec 400msec
Queries per second 5 7 50
Number of CPU Cores 4 32 32
Clustered components index all all

TABLE I: Quantitative and qualitative indicators describing
the ENS(data for v3.0 are estimates).

deal with large numbers of requests. After evaluating several
available technologies , Project Voldemort10 has been chosen
for implementing scalable and highly performing storage of
entity data, while Apache Solr11 has been the only viable open-
source solution of choice for maintaining very large retrieval
indexes.

All components and services performing background tasks
such as data cleansing etc. as mentioned before, are hosted
in a separate environment alongside theENS Core, labeled
“offline data processing” in Figure 3.

Table I presents some qualitative and quantitative data on
the evolution of the system. In the current release (i.e., v2.0),
the repository contains around7, 500, 000 entities, and can
support up to600, 000 queries per day. The next version of
the ENS (to be released in June of 2010) will contain more
than50, 000, 000 entities, and will be able to handle more than
4, 000, 000 queries per day.

In addition to theENSitself, several tools and plugins have
been developed for enabling the tagging of named entities
with ENS identifiers during the time of creation of the data
content. Such tools are available for use with knowledge
engineering tools (e.g., NeOn Toolkit and Protégé) [16],social
networking applications (e.g., foaf) [4], and word processors
(e.g., Microsoft Word) [6].

10http://project-voldemort.com/
11http://lucene.apache.org/solr/

VI. CONCLUSIONS

Several modern applications are moving towards the direc-
tion of adding semantics to the information, and using these
semantics for enabling a vastly richer range of data analytics.
In this paper, we argue for an entity naming system, where
unique identifiers for entities are assigned and managed, asthe
basis for enabling the vision mentioned above. We describe the
design principles and architecture of theENSsystem, which is
under development. We examine the special requirements of
representing entities within this context, and present relevant
research directions. Finally, we present preliminary results on
the performance of our implementation of theENS.

ACKNOWLEDGMENT

This work was partially supported by the FP7 EU Large-
scale Integrating Project OKKAM - Enabling a Web of
Entities (contract no. ICT-215032). For more details, visit
http://www.okkam.org.

REFERENCES

[1] Open Calais. http://www.opencalais.com/, Nov. 2009.
[2] Yahoo! GeoPlanet. http://developer.yahoo.com/geo/geoplanet/, Nov.

2009.
[3] B. Bazzanella, J. A. Chaudhry, T. Palpanas, and H. Stoermer. Towards

a General Entity Representation Model. InSWAP, 2008.
[4] S. Bortoli, H. Stoermer, and P. Bouquet. Foaf-O-Matic - Solving the

Identity Problem in the FOAF Network. InSWAP, December 2007.
[5] P. Bouquet, T. Palpanas, H. Stoermer, and M. Vignolo. A conceptual

model for a web-scale entity name system. InAsian Semantic Web
Conference (ASWC), Shanghai, China, 2009.

[6] P. Bouquet, H. Stoermer, W. Barczynski, and S. Bocconi. Entity-
centric semantic interoperability. In Y. Kalfoglou, editor, Cases on
Semantic Interoperability for Information Systems Integration: Practices
and Applications, chapter 1. IGI Global, October 2009.

[7] P. Bouquet, H. Stoermer, and B. Bazzanella. An entity name system
(ens) for the semantic web. InESWC, pages 258–272, 2008.

[8] N. N. Dalvi, R. Kumar, B. Pang, R. Ramakrishnan, A. Tomkins,
P. Bohannon, S. Keerthi, and S. Merugu. A web of concepts. InPODS,
pages 1–12, 2009.

[9] R. Delbru, A. Polleres, G. Tummarello, and S. Decker. Context
dependent reasoning for semantic documents in sindice. InScalable
Semantic Web Knowledge Base Systems (SSWS), October 2008.

[10] A. Dreibelbis, E. Hechler, I. Milman, M. Oberhofer, P. van Run, and
D. Wolfson. Enterprise Master Data Management: An SOA Approach
to Managing Core Information. Pearson/IBM Press, 2008.

[11] G. Giannakopoulos and T. Palpanas. Adaptivity in entity subscription
services. InProceedings of ADAPTIVE2009, Athens, Greece, 2009.

[12] A. Y. Halevy, M. J. Franklin, and D. Maier. Principles ofdataspace
systems. InPODS, pages 1–9, 2006.

[13] A. Jaffri, H. Glaser, and I. Millard. Uri identity management for semantic
web data integration and linkage. In3rd International Workshop On
Scalable Semantic Web Knowledge Base Systems. Springer, 2007.

[14] R. Kahn and R. Wilensky. A framework for distributed digital object
services.Int. J. on Digital Libraries, 6(2):115–123, 2006.

[15] S. Kripke. Naming and Necessity. Basil Blackwell, Boston, 1980.
[16] X. Liu, H. Stoermer, P. Bouquet, and S. Wang. Supportingthe Reuse

of Global Unique Identifiers for Individuals in OWL/RDF Knowledge
Bases. InThe Semantic Web: Research and Applications, ESWC, 2009.

[17] N. Manerikar and T. Palpanas. Frequent Items in Streaming Data An
Experimental Evaluation of the State-of-the-Art.Data Knowl. Eng.
(DKE), 68(4):415–430, 2009.

[18] T. Palpanas, J. A. Chaudhry, P. Andritsos, and Y. Velegrakis. Entity data
management in okkam. InDEXA Workshops, pages 729–733, 2008.

[19] N. Paskin. Digital object identifiers for scientific data. Data Science
Journal, 4:12–20, 2005.

[20] N. Shadbolt, T. Berners-Lee, and W. Hall. The semantic web revisited.
IEEE Intelligent Systems, 21(3):96–101, 2006.

[21] F. I. Tantono, N. Manerikar, and T. Palpanas. Efficiently discovering
recent frequent items in data streams. InSSDBM, pages 222–239, 2008.

