
Streaming Time Series Summarization Using
User-Defined Amnesic Functions

Themis Palpanas, Michail Vlachos, Eamonn Keogh, DimitriosGunopulos

Abstract— The past decade has seen a wealth of research on
time series representations, because the manipulation, storage,
and indexing of large volumes of raw time series data is imprac-
tical. The vast majority of research has concentrated on repre-
sentations that are calculated in batch mode and represent each
value with approximately equal fidelity. However, the increasing
deployment of mobile devices and real time sensors has brought
home the need for representations that can be incrementally
updated, and can approximate the data with fidelity proportional
to its age. The latter property allows us to answer queries about
the recent past with greater precision, since in many domains
recent information is more useful than older information. We
call such representationsamnesic.

While there has been previous work on amnesic representa-
tions, the class of amnesic functions possible was dictatedby
the representation itself. In this work, we introduce a novel
representation of time series that can represent arbitrary, user-
specified amnesic functions. For example, a meteorologist may
decide that data that is twice as old can tolerate twice as much
error, and thus, specify a linear amnesic function. In contrast, an
econometrist might opt for an exponential amnesic function. We
propose online algorithms for our representation, and discuss
their properties. Finally, we perform an extensive empirical
evaluation on 40 datasets, and show that our approach can
efficiently maintain a high quality amnesic approximation.

I. I NTRODUCTION

Time series are one of the most frequently encountered formsof
data. Many applications in diverse domains produce voluminous
amounts of time series [40], [33]. The sheer number and size
of the time series we need to manipulate in many of the real-
world applications mentioned above dictates the need for a more
compact representation of time series than the raw data itself, and
a plethora of representations have been proposed to that effect
[22].

The problem of approximating time series becomes more
interesting and challenging in the context of streaming time series,
where data values are continuously generated, potentiallyforever.
Furthermore, most current time series representations treat every
point of the time series equally. This means that, when computing
the approximation, the time position of a point does not make
a difference in the fidelity of its approximation. This may be
desirable for some applications, such as archiving, however, there
exist many real world situations where we would like to take
into account the time dimension in the approximation of the time
series. The intuition behind this requirement may be statedas
follows. While we are willing to accept some margin of error in
the approximation, we would like the most recent data to have
low error, and we would be more forgiving of error in older data.

T. Palpanas is with the University of Trento.
M. Vlachos is with the IBM T.J. Watson Research Center.
E. Keogh is with the University of California at Riverside.
D. Gunopulos is with the Univesity of California at Riverside.

We call this kind of time series approximationamnesic, since the
fidelity of approximation decreases with time, and it therefore
requires less memory for the events further in the past.

The potential utility of such a representation has been doc-
umented in many domains. Consider the following motivating
examples.

• The Environmental Observation and Forecasting System [33]
is a large-scale distributed system designed to monitor,
model, and forecast wide-area physical processes such as
river systems. They note that in their current model, the
loss of a repeater station results in the loss of real time
information. Allowing the stations to record some data to a
buffer can mitigate this problem. However, since the station
does not know how long it will be offline and has a finite
buffer, amnesic approximation is the only logical way to
record the data.

• NASA is developing robots to be used in an urban setting
[18]. Typical applications include search and rescue, and
inspection of hazardous environments. In many situations,
information about the path traversed must be known if the
robot is to back up to a more promising avenue of exploration
after reaching a dead end. Power and size constraints prohibit
the robot from storing all the data with perfect fidelity, so
the utility of an amnesic approximation has been noted for
this domain [18].

Although this work suggests that the usefulness of data can
diminish with age, we note that the rate at which its utility
decays depends on the application. The function that determines
the amount of error we can tolerate at each point in the time
series is called anamnesicfunction. Ideally, we would like to
allow arbitrary amnesic functions, so that we can match the
requirements of a wide variety of applications. For example,
a meteorologist may decide that data that is twice as old can
tolerate twice as much error, and thus, specify a linear amnesic
function. In contrast, an econometrist using classic models might
well specify an exponential amnesic function. Figure 1 depicts
an amnesic approximation of a static time series, and the amnesic
function that was used. Note that as we get to older points (to
the right) the approximation gets coarser.

In this paper, we describe a framework for online amnesic
approximation of streaming time series. We characterize the
different classes of amnesic functions, and present corresponding
algorithms for performing amnesic approximation. We study
two distinct cases of the problem. First, the case when we are
interested in approximating the entire time series seen so far. We
refer to this case as theunrestricted window. Second, thesliding
windowcase, where at any point in time, we are only interested
in a fixed number of the last values of the time series. We present
efficient algorithms that solve the problem in both the abovecases,
given a constraint on the amount of memory that can be used for

Time−Series

0 10 20 30 40 50 60 70 80 90 100

Amnesic Function

Fig. 1. Depiction of an amnesic approximation, using the
piecewise linear approximation technique.

the approximation. Furthermore, we also discuss a variation of the
problem that allows the user to specify the maximum allowable
error for the approximation of the time series. This formulation
is useful when the application requires quality guaranteesfor the
approximation of the time series. The algorithms we proposefor
this variation operate for both the unrestricted and the sliding
window cases, but do not have a set bound for the amount of
memory they will need for the approximation.

While some recent work [10], [6] has proposed tools and tech-
niques for computing special cases of amnesic approximations
of time series, as we discuss in Section VII, these solutionsare
specific and rather restrictive in the variety of applications they
can accommodate. In particular, the representation schemes used
by these techniques dictate the form of the amnesic functions, and
restrict those to a very limited set. In contrast, our framework is
general and able to operate with a wide class of amnesic functions,
which are defined by theuser.

Our contributions can be summarized as follows.

• We introduce the notion of general amnesic functions. We
present a taxonomy of these functions, discuss their proper-
ties, and describe how they affect the solution of the problem
of online amnesic approximation.

• We formulate the above problem as optimizations problems,
where we wish to either minimize the reconstruction error
given the available amount of memory for the approxima-
tion, or minimize the amount of memory required for the
approximation given the maximum allowable error for the
reconstruction. We study important variations of the above
problems, namely, the unrestricted and the sliding window
cases.

• We propose efficient algorithms for solving the above opti-
mization problems. The time complexity of the algorithms
we propose is independent of the size of the time series.
The time to process each new point is essentially constant
(logarithmic on the number of segments used in the approx-
imation). These are the first algorithms proposed for solving
the general case of the problem.

• We present an extensive experimental evaluation of our
techniques, using more than 40 synthetic and real datasets.
The experiments show the applicability of our approach, and
the quality of solutions of our algorithms.

The rest of the paper is organized as follows. In Section II
we give the necessary background. In Section III we introduce

some new terminology and formally define the problems we study.
The algorithms we propose are presented in Sections IV and V.
Section VI discusses the experimental evaluation. SectionVII
reviews related work, and Section VIII concludes the paper.

II. T IME SERIESAPPROXIMATION

A time series,T [i], is a series of data points, each one arriving
at a distinct time instanceti. T [i..j] defines a range of data points.
When the total number of data points in the time series,N , is
known in advance, we call the time seriesstatic, and we say that
is has lengthN . When data points are arriving continuously, in a
streaming fashion, the value ofN represents the number of data
points seen in the time series so far, and we call the time series
streaming. The focus of our work is on streaming time series.

Several techniques have been proposed in the literature for
the approximation of time series, includingDiscrete Fourier
Transform (DFT)[30], [13], Discrete Cosine Transform (DCT),
Piecewise Aggregate Approximation (PAA)[38], Discrete Wavelet
Transform (DWT)[28], [9], Adaptive Piecewise Constant Ap-
proximation (APCA)[8], [25], Piecewise Linear Approximation
(PLA) [23], Piecewise Quadratic Approximation (PQA)[17], and
others. Before we consider which of these representations is best
suited for the task at hand, it is natural to ask which is best,
simply in terms of reconstruction accuracy. In order to answer
this question, we experimentally compare the above approaches
using many real-world datasets. We conducted such an experiment
on 40 diverse time series from the UCR Time Series Data Mining
Archive [1].

For our experiment, we randomly extracted a subsequence
of length 512 from each time series, and approximated it with
each of the representations under consideration, using a16 to 1

compression ratio. This was a fair comparison, using the same
amount of memory for each representation. That is, we reduced
the 512 raw data points to 32 wavelet coefficients, 16 complex
DFT coefficients, 32DCT coefficients, 32PAAsegments, 12PLA
segments, 8PQAsegments and 16APCAsegments). Note that we
carefully used all possible optimizations for all representations.
For example, we used the complex conjugate property ofDFT
[30], and because the sequences were normalized to have zero
mean, we did not use the first coefficient for the wavelet and
DFT approaches (they must be zero). However, for the piece-
wise polynomial approaches, the optimal representation requires
quadratic time to produce, and we used a well known near linear-
time algorithm instead [20], [23]. We measured the quality of the
approximation using the root mean squared error. We repeated
this procedure100 times, averaged the results, and normalized
the performance of each representation by dividing by the best
performing approach. Finally we averaged all40 scores as shown
in Table I.

DFT DCT PAA DWT DWT APCA PLA PQA
(Haar) (Daub12)

0.951 0.923 0.948 0.948 0.902 0.893 0.940 0.927

TABLE I

COMPARISON AMONG VARIOUS TECHNIQUES FOR TIME SERIES

APPROXIMATION.

The results may appear surprising, because there is little
difference between all the approaches. In fact, similar results have

been documented elsewhere as well [22], [8], [37]. The overall
conclusion from this experiment is the following. If we want
to choose a representation for the task of approximating time
series, then we should not choose the representation based on
approximation fidelity, but rather on other features.

When considering the alternative representations in the context
of amnesic approximation, it is not obvious how some of them
can accommodate the requirements of this new environment. The
DWT representation is intrinsically coupled with approximating
sequences whose length is a power of two, which severely restricts
the choices of amnesic functions. Using wavelets with sequences
that have other lengths requires ad-hoc measures that reduce the
fidelity of the approximation, and increase the complexity of the
implementation. WhileDFT has been successfully adapted to
incremental computation [40], it is not clear that it can be adapted
to perform amnesic approximation, since eachDFT coefficient
corresponds to a global contribution to the entire time series. The
same is true forDCT as well.

In contrast to the above, the piecewise polynomial methods
offer several desirable properties for the task at hand. Much is
already known about their incremental calculation, and because
each segment is independent of each other, we can reduce the
fidelity of ”older” segments simply by merging them with their
neighbors, without affecting ”newer” segments. The only question
remaining is which piecewise polynomial technique to use. We
decide onPLA for the following reasons. Piecewise linear approx-
imations are already widely used and accepted in the medicaland
financial domains [19], [24], [34]. There are many useful distance
measures defined onPLA, including weighed measures [23], time
warping [34], Markov model based measures [14] and lower
bounding approximations to the Euclidean distance. Moreover,
many applications, like anomaly detection algorithms [21]and
rule discovery algorithms [27], use thePLA representation.

A. Properties ofPLA Approximation

In PLA, we approximate the data points in a time series using
a number of linear segments whose ends need not be contiguous
[23]. The PLA approximation scheme has some desirable prop-
erties that allow incremental computation of the solution.These
properties are necessary in order for the algorithm to be able to
operate efficiently on large datasets. In the following paragraphs
we present these properties in the form of theorems, and we
discuss their applications in Section IV.

Assume we haveN data points of a time series,T [i], 1 ≤

i ≤ N , and we use them to fit two line segments (using least
squares). Let the first line,s1, approximate points1 to n, n < N ,
and the second line,s2, approximate pointsn + 1 to N (there
is no restriction onn). In addition, suppose we use a single line
segment to approximate all the points1 to N , call it s1,2. The
above three lines are depicted in the top graph of Figure 2. Related
to these three lines are the errorsE(s1), E(s2), and E(s1,2).
The error of a segments is computed according to the formula
E(s) =

∑
j∈s

(T [j] − s[j])2, wherej ranges over all the points
in segments, T [j] is the value of pointj in the time series, and
s[j] is the estimate for pointj given by segments.

Now imagine that we keeps1 and s2, and throw away the
original N points, and that we want to use a single line segment
to approximate all the original points. The construction ofthis
new line, s1,2, can be based only on the information ins1 and
s2, and we prove thats1,2 is the same ass1,2. Since we no

longer have the original points, we assume that allN points lie
on line segmentss1 and s2, and we builds1,2 based on this
assumption. This situation is depicted in the bottom graph of
Figure 2. The residual error of this new line iŝE(s1,2). Unlike
the previous cases, this is the error between the points on line
s1,2 and the points on liness1 ands2. (Remember that lines1,2

is not calculated based on the original points of the time series.)
It turns out that we can also calculateE(s1,2) without the need
to refer to the originalN points.

1 2 3 4 5 6 7

1 2 3 4 5 6 7

s
1

s
2

s
1 s

2

s
1,2

 =

y=−1.23x+553.2

s
1,2

 =

y=−1.23x+553.2

Fig. 2. Combining two regression lines.

We can now prove the following theorems regarding the process
of merging two line segments into one.

Theorem 1:[Computing the New Line Segment.]The line
segments1,2, built from the two line segmentss1 and s2, is the
same as the line segments1,2, built from the original points of
the time series1. That is,s1,2 = s1,2.

Theorem 2:[Computing the New Error.] The error of the
line segment approximating all the original data points canbe
computed as the sum of the errors of the two individual line
segments, and the error between those two line segments and the
line calculated based on those two. That is,E(s1,2) = E(s1) +

E(s2) + Ê(s1,2).
Another interesting property ofPLA is that for the computation

of the errorÊ(s1,2) we do not need to process individually all the
points corresponding to line segments1,2. We can instead avoid
the linear complexity of this procedure and compute the value of
Ê(s1,2) in constant time, according to the following lemma.

Lemma 1: [Computing the Error Between Two Segments.]
The error,Ê(s1,2), of a line segment,s1,2, which was constructed
from two line segments,s1 and s2, can be computed with a
closed-form formula in timeO(1), regardless of the length of
the line segments.

Proof: We want to prove that the error between two line
segments can be computed using a closed-form formula. Letl1
and l2 be the two line segments, corresponding to the same set
of M + 1 points,0, . . . , M . Let L = |l1[0] − l2[0]|, R = |l1[M]−

l2[M]|, c = min(L, R), and∆ = (max(L,R)−c)/M . In order to
compute the error,E, we need to sum the squares of the pairwise
distances for theM + 1 points of the line segments. The main
observation is that each one of those pairwise distances differs
from its neighbors by∆. The shortest distance isc, the next one

1A similar result has also appeared elsewhere [10].

is c+∆, etc., and the last one isc+M∆. Then, we can compute
E as follows.

E =

M+1∑

i=1

(c+(i−1)∆)2 = . . . = (M+1)(c2+cM∆+
∆2M(2M + 1)

6
)

The above analysis assumes that eitherl1 andl2 do not intersect,
or they intersect at one of their ends (point0 or point M). If the
two line segments intersect at any other point, then we consider
the parts of the segments on either side of the intersection point
separately, and apply the above formula twice.

The properties ofPLA, presented in Theorems 1 and 2 and
Lemma 1, form the basis for the design of the online algorithms
we propose. These properties enable our algorithms to mergetwo
line segments, and calculate exactly the resulting line segment
along with its residual error in constant time.

III. PROBLEM FORMULATION

In the following paragraphs we establish some additional
terminology necessary for the rest of the paper. Then, we formally
define the problems that we address with this work.

A. Amnesic Functions

As we mentioned earlier, we need a way to specify for each
point in time the amount of error allowed for the approximation of
the time series. In order to achieve this goal, we use theamnesic
function A(x), which returns the acceptable approximation error
for point x = tN − ti, wheretN is the current time, andti is the
time that pointT [i] arrived. The timetN refers to the time when
the last data point arrived, and corresponds to positionx = 0 of
the amnesic function. Note that the functionA(x) is only defined
for x ≥ 0, sinceti ≤ tN .

A key property that an amnesic function has to satisfy is the
monotonicityproperty.

Definition 1: [Monotonic Amnesic Functions.] A function,
A(x), is called monotonic ifA(x) ≤ A(x+1), for every value of
x in its domain.
The approximation of a time series is a lossy compression tech-
nique, which by definition is irreversible. Thus, the monotonicity
property poses a natural restriction in our setting. It ensures that
if at time t we can tolerate some error in the approximation of
point T [i], Et(T [i]), then we will not request an approximation
of the same pointT [i] with error Et′(T [i]) < Et(T [i]), at any
time t′ > t.

We now define a taxonomy of amnesic functions (refer to
Figure 3). The constant amnesic function represents a trivial case,
and we do not discuss it here. As we discuss in the next section,
each class in the taxonomy has its own special characteristics,
which have to be taken into account when designing an efficient
algorithm for the amnesic approximation of time series.
Piecewise Constant: The piecewise constant functionhas the
following general form.

A(x) =

{
c1 , 0 ≤ x < d1;
. . .
cL , dL−1 ≤ x,

where c1, . . . , cL are constants, such that0 < c1 < . . . < cL.
We refer to each step of the function as asection, to distinguish
it from the segments used in the approximation.
Linear: A linear functionhas the general form:A(x) = αx+β,
α, β > 0.

(d) continuous

(b) linear

(c) piecewise linear

(a) piecewise constant

c1

c

cL

2

1d d dL−12

1d d dL−12

Fig. 3. The different classes of amnesic functions.

Continuous Piecewise Linear: The general form of apiecewise
linear functionwith L sections is as follows.

A(x) =

{
α1x + β1 , 0 ≤ x < d1;
. . .
αLx + βL , dL−1 ≤ x,

where αj ≥ 0, 1 ≤ j ≤ L, β1 > 0, and β2 = α1d1 + β1 −

α2d1, . . . , βL = αL−1dL−1 + βL−1 − αLdL−1.
Continuous: The amnesic functions of this class can take any
form not subsumed by the previous classes. The only restriction
is that the function is monotonic (according to Definition 1). We
do not require that these functions have a closed form formula.

We also define two forms of amnesic functions, namely, the
relative, RA(x), and theabsolute, AA(x), amnesic functions.
Relative: A relative amnesic functionRAdetermines the relative
approximation error we can tolerate for every point in the time
series. When we use a relative amnesic function, we essentially
weigh the error of a data point by the inverse of the amnesic
function corresponding to that point, so that the weighted error
for point x is E(x)/RA(x). For example, the relative amnesic
function RA(x) = x + 1, specifies that when we approximate a
point that is twice as old, we will accept twice as much error.
When we use relative amnesic functions, we fix the number of
linear segments that we are allowed to use for the approximation
of the data.
Absolute: An absolute amnesic function specifies, for every
point in the time series, themaximumallowable error for the
approximation. The errorE(x), at point x, should satisfy the
inequality E(x) ≤ AA(x). When we use absolute amnesic
functions, we allow the approximation to use as many linear
segments as necessary in order to meet the error bounds.

When we have to apply an amnesic function to a segments,
we pick a single point from the segment, on which we apply
the amnesic function. Nevertheless, this computation refers to the
entire segment. The reason we do this is that we do not store
the error of each individual point represented by each segment,
and we only have available the error of the entire segment. For
the rest of this paper we assume that segments is represented
by its most recent point,T [is]. Then, when we want to apply
an amnesic function tos, we simply consider the point of the
amnesic function corresponding to pointT [is]. We can also apply
more elaborate schemes. For example, we could consider taking
the average value of the amnesic function corresponding to the

first, middle, and last points ofs. In any case, the algorithms we
propose do not need to change.

B. Problems for Amnesic Approximation

Under the assumptions discussed above, we want to maintain a
PLA modelQ with K segments for a streaming time series with
an unrestricted window. More formally, we define the following
two problems.

Problem 1: [Unrestricted Window with Relative Amnesic
(URA)] Given the number of segmentsK and a relative am-
nesic functionRA(x), find an approximationQ using K seg-
ments that minimizes the approximation error of the time series∑K

j=1
(E(sj)/RA(tN − tsj)).

Problem 2: [Unrestricted Window with Absolute Amnesic
(UAA)] Given an absolute amnesic functionAA(x), construct a
model Q with the minimum number of segmentsK, subject to
the constraintsE(sj) ≤ AA(tN − tsj), 1 ≤ j ≤ K.

We are looking for online algorithms that, when a new point
arrives, they update the approximation model in sub-lineartime on
the number of segments. Note that in theURAandUAA problems
the optimization objective is different. In theURA problem we
seek to minimize the approximation error given the memory space
used byPLA, while in the UAA problem we want to minimize
the space used in the approximation given the maximum error
allowed.

Following the definition of the problems for the unrestricted
window, we now define the corresponding problems for the case
where we consider the sliding window model.

Problem 3: [Sliding window with Relative Amnesic (SRA)]
Given a sliding window of lengthW , the number of seg-
ments K and a relative amnesic functionRA(x), find an ap-
proximation Q using K segments that minimizes the approx-
imation error of the time series within the sliding window∑K

j=1
(E(sj)/RA(tN − tsj)), tN−W+1 ≤ tsj ≤ tN .

Problem 4: [Sliding window with Absolute Amnesic (SAA)]
Given a sliding window of lengthW , and an absolute amnesic
function AA(x), construct a modelQ with the minimum number
of segmentsK, subject to the constraintsE(sj) ≤ AA(tN − tsj),
tN−W+1 ≤ tsj ≤ tN , 1 ≤ j ≤ K.

IV. A LGORITHMS FORRELATIVE AMNESIC FUNCTIONS

We now describe algorithms for theURAandSRAproblems. In
the experimental evaluation we show that our algorithms perform
very close to optimal. At the end of the section, we briefly discuss
solutions forUAA andSAA.

A. Unrestricted Window with Relative Amnesic

1) Optimal Solution:The optimal solution for theURA prob-
lem can be obtained using dynamic programming [5]. The
objective of the algorithm is to minimizeApErr(b, k), which
is the error resulting from the approximation of data points
b, . . . , N with k < K segments. The recursion for the dynamic
programming solution is described by the following formula.

ApErr(b, k) = min
b≤j≤N

(E(T [b . . . j]) + ApErr(j + 1, k− 1)) (1)

The algorithm starts by computing the approximation error
E(T [b . . . j]), for 1 ≤ b ≤ N and b ≤ j ≤ N . Then, at each
iteration, it computes the optimal solution by minimizing the

total approximation error. The minimum error for approximating
data pointsb, . . . , N with k segments is given by the sum of the
approximation error of pointsb, . . . , j with one segment, and the
error of the optimal approximation of pointsj + 1, . . . , N with
k − 1 segments. Finally, the algorithm picks the assignment of
segments that leads to the least overall approximation error.

Note that in order to get the optimal solution in a streaming
environment, we have to run the dynamic programming algorithm
every time that a new data point arrives. The reason is that we
cannot reuse the computations made during the previous step, be-
cause the amnesic function causes the approximation error of each
point, and their interrelationships, to change at every time step.
The time complexity for the dynamic programming algorithm is
O(N2K), which renders this approach inapplicable for the online
version of the problem. Nevertheless, in the experimental section
we show that our algorithms always find a solution that is very
close to optimal.

2) The GrAp-R Algorithm: In this section we present the
skeleton of our algorithm,GrAp-R, for solving theURAproblem.

At each time step, the algorithm merges the consecutive pair
of segments whose merge will result in the least approximation
error, among all possible merges. The pair of segments that should
be merged,sm and sm+1, is given by the heap structureH. We
merge those in one segment,sm,m+1, according to Theorems 1
and 2. Then we compute the approximation error that would result
by merging the new segment with each one of its two neighbors,
sm−1 andsm+2, according to Lemma 1. We use these values for
the errors to update the heapH, in order to reflect the new set of
possible merges. This merge results in a spare segment, which we
assign to the newly arrived point of the time series. Once again
we have to compute the approximation error when merging this
segment with its neighbor, and update the heapH. A high-level
description of the algorithm is depicted in Figure 4.

1 let H be a min-priority queue on the approximation errors
resulting from merging each pair of consecutive segments;

2 let EQ = ∅ be a time-event queue;
3 procedureGrAp-R ()
4 when a new point,T [i], of the time series arrives at timetN

5 pick the minimum element fromH , and merge the
corresponding segments,sm andsm+1, into a new
segmentsm,m+1;

6 updateH with the errors of mergingsm,m+1 with its two
neighboring segments;

7 assign a new segment,sT [i], to the newly arrived
point, T [i];

8 updateH with the error of mergingsT [i] with its
neighboring segment;

9 ManageEvents(H , EQ, tN , sm, sm+1, sm,m+1);
10 return;

Fig. 4. The skeleton of theGrAp-R algorithm

The GrAp-R algorithm also makes use of queueEQ. This
structure keeps track of the way that the dependencies among
the segments used for the approximation change as a result ofthe
amnesic function. The procedure that manages these dependencies
is ManageEvents(), and we describe it in more detail in the next
paragraphs.

In the following subsections we elaborate on the way the
framework of theGrAp-R algorithm described above changes

when we consider the different classes of amnesic functions. We
discuss the specific details of each case, and present the time and
space complexities of the solutions we propose.

3) Piecewise Constant Amnesic Functions:When the amnesic
function belongs to the class of piecewise constant functions, a
change to the relative ordering of the pair of segments that should
be merged during the next step of the algorithm only happens
when a segment crosses a discontinuity between two sectionsof
the amnesic function.

Example 1: Assume we have the amnesic functionRA(x) =
1, 0 ≤ x < 10 and RA(x) = 4, x ≥ 10. Let s1,2 and s3,4 be two
pairs of segments, candidates for merging, that, at the current time,
are at positionsx = 7 andx = 2, and have errorsE(s1,2) = 4 and
E(s3,4) = 2, respectively (Figure 5(a)). Then, their relative errors
are E(s1,2)/RA(7) = 4 and E(s3,4)/RA(2) = 2, which means
that s3,4 is the first candidate for merging. However, after three time
instances, whens1,2 first gets to the pointx = 10, its error becomes
E(s1,2)/RA(10) = 1 < E(s3,4)/RA(5) = 2 (Figure 5(b)). Thus,
s1,2 is now the candidate pair for merging.

(a) (b)

xx

s3,4

2 7 10

1

4

s1,2s3,4

10

1

4

50 0

s1,2

Fig. 5. Event example for piecewise constant.

In order to keep track of these changes, we need to maintain
the heapH, and, in addition, a time-event queueEQ. The heap
H determines the next pair of segments that should be merged.
The queueEQ flags the times at which the segments cross a
discontinuity in the amnesic function (remember that during these
computations we assume that each segment is represented by its
most recent point). When this happens, we update the position
of the segment in the heap, and we compute the next time that
it will cross a discontinuity. Figure 6 shows theManageEvents()
procedure for the case of piecewise constant amnesic functions.
The GrAp-R algorithm remains as discussed earlier.

1 procManageEvents(H , queueEQ, time t, segments
sm, sm+1, sm,m+1)

2 remove fromEQ any events corresponding to segmentssm

andsm+1;
3 if (next evente in EQ is scheduled for timet < te ≤ t + 1)
4 removee, related to segmentsse,1 andse,2, from EQ;
5 update inH the position of the pairse,1 andse,2;
6 compute the new time when the pairse,1 andse,2 will

cross a discontinuity;
7 insert inEQ the new event (if any);
8 insert inEQ any new dependencies identified concerning

sm,m+1;
9 return;

Fig. 6. The ManageEvents() procedure for piecewise constant
amnesic functions.

The following theorem states the space and time complexity of
the algorithm.

Theorem 3:The space complexity ofGrAp-Rwith a piecewise
constant amnesic function isO(K), and the time complexity to
process each new point isO(L log K).

Proof: The algorithm needsO(K) space to store theK
segments used in the approximation. A heap structure is usedto
determine the pair of segments that will be merged at each step of
the algorithm. The heap requiresO(K) space to store theK − 1

adjacent pairs of segments. Finally, we must keep track of the
times when segments cross a discontinuity of the amnesic step
function. At each point in time we only need to maintain in the
time-event queue one such event for every segment. Therefore,
the queue has a worst space complexity ofO(K), andO(K) is
the overall space complexity of the algorithm as well.

At each time unit, the algorithm can pick from the heap the
pair of segments to merge, and identify in the time-event queue
the segments that cross a discontinuity, inO(1) time. The time
to merge two segments is constant, because of the Theorems 1
and 2, and Lemma 1. The time to update the heap isO(log K),
and, since the size of the time-event queue isO(K), the time to
insert or delete an event from the queue isO(log K) (when the
queue is implemented using skiplists [29], or any other equivalent
data structure that offers logarithmic search times). Thus, the
overall time complexity for each iteration, when there is only
one segment crossing a discontinuity, isO(log K). In the worst
case, for a particular iteration, different segments may becrossing
all L discontinuities of the amnesic function, so the worst case
time complexity isO(L log K).

Note that the time complexity mentioned in the above theorem
refers to the worst case, when segments cross all the discontinu-
ities of the amnesic function at the same time. In practice, we do
not expect this situation to arise often. Actually, it neveroccurred
in our experiments with an extensive set of real datasets.

4) Linear Amnesic Functions:In the case of linear amnesic
functions, each event inEQ specifies the time at which the
relative ordering of the merging error of two pairs of segments
changes. It turns out that, if we know the approximation error
of each segment and the closed formula of the amnesic function,
we can compute the times at which these changes will occur. We
refer to those times as thecrosspoints.

Example 2: Assume we have the amnesic functionRA(x) = x+
1, x ≥ 0. Let s1,2 ands3,4 be two pairs of segments, candidates for
merging, that were created at the current time, at positionsx = 6 and
x = 2, and have errorsE(s1,2) = 24 andE(s3,4) = 12, respectively
(Figure 7(a)). Then, their relative errors areE(s1,2)/RA(6) = 3.4
andE(s3,4)/RA(2) = 4, which means thats1,2 is the first candidate
for merging. However, after four time instances, whens1,2 first gets
to the pointx = 10, its error becomesE(s1,2)/RA(10) = 2.2 >
E(s3,4)/RA(6) = 1.7 (Figure 7(b)). Thus,s3,4 is now the candidate
pair for merging.

(a)

xx

(b)

10

3,4s 1,2s

62

1

s3,4

1

1,2s

0 06

Fig. 7. Event example for piecewise constant.

Consider the general case, where we have a linear relative
amnesic function,RA(x) = αx + β, and we want to compute
the time when the relative ordering of segmentss1 and s2 will
change. (In fact, each one ofs1 and s2 represents the merge of
a pair of segments.) LetE(s1) and E(s2) be the approximation
errors fors1 and s2, respectively. Finally, assume thatts1

is the
time whens1 was created. This time is defined as the time when

the most recent point ofs1 arrived. We definets2
in a similar

way. Then, their crosspoint,tc, is given by the following equation.

E(s1)

α · (tc − ts1
) + β

=
E(s2)

α · (tc − ts2
) + β

, or

tc =
(α · ts2

− β) · E(s1) − (α · ts1
− β) · E(s2)

(E(s1) − E(s2)) · α
. (2)

We only consider the positive solutions of this equation. Note
that it may be the case that their relative ordering never changes,
that is, there is no positive solution. Furthermore, we do not need
to compute the crosspoint of each segment with all the others.
It suffices to consider only the segments stored in neighboring
nodes in the heapH, and maintain these dependencies up to date
as the heap changes. All these computations can be performedin
constant time according to Equation 2.

The ManageEvents()procedure for the case of linear amnesic
functions is depicted in Figure 8.

1 procManageEvents(H , queueEQ, time t, segments
sm, sm+1, sm,m+1)

2 remove fromEQ any events corresponding to segmentssm

andsm+1;
3 if (next evente in EQ is scheduled for timet < te ≤ t + 1)
4 removee, related to segmentsse,1 andse,2, from EQ;
5 swap inH the positions ofse,1 andse,2;
6 compute crosspoints betweense,1 andse,2 and all their

new neighbors (i.e., parent and children nodes) inH ;
7 insert inEQ events for any new crosspoints identified;
8 insert inEQ any new crosspoints identified concerning

sm,m+1;
9 return;

Fig. 8. The ManageEvents() procedure for linear amnesic func-
tions.

The problem of keeping track of the crosspoints is reminiscent
of the work in the area ofkinetic data structures[4]. However,
the above work examines only linear motion, and does not apply
to our problem.

The complexity of the algorithm is as follows.
Theorem 4:The space complexity ofGrAp-R with a linear

amnesic function isO(K), and the time complexity to process
each new point isO(log K).

Proof: The algorithm requiresO(K) space to store the
K segments and the heap. The time-event queue also requires
O(K) space, since it stores one event for every adjacent pair of
segments.

At each iteration, the time to find the pair of segments to merge,
and the segment that has reached a crosspoint, isO(1). We need
O(log K) time to update the heap after those changes. We also
need to update the queue, which takesO(log K) time. Therefore,
the overall time complexity for each iteration isO(log K).

5) Piecewise Linear Amnesic Functions:Assume that the
amnesic function is comprised ofL sections. Then, we treat
each section separately, as in the case of linear amnesic functions
discussed above. We maintainL heaps, one for each section, and
a single time event queue. The time-event queue, in additionto
keeping track of all the crosspoints, also maintains the times at
which a segment moves from one section to another. The above
L heaps carry local information, as to which is the best pair of
segments to merge within each section. Then, at each iteration

of the algorithm, it is easy to determine the overall best pair of
segments to merge, either by performing a linear scan of the top
element of theL heaps, or by maintaining a heap of thoseL

elements. For all practical purposes,L is relatively small, in the
order of a few dozens. Therefore, a linear scan is sufficiently
fast, and avoids the need for maintaining the extra heap structure,
which in the worst case has time complexityO(L log L). For the
rest of this work, we only consider the linear scan approach.

The following theorem gives the space and time complexity of
the algorithm.

Theorem 5:The space complexity ofGrAp-Rwith a piecewise
linear amnesic function isO(K), and the time complexity to
process each new point isO(L + L log K

L + log K).
Proof: We assume that an equal number of segments corre-

sponds to each section of the amnesic function2. The algorithm
requiresO(K) space for storing theK segments and theL heaps
(since all the heaps combined storeO(K) values). The time-event
queue stores an event for every adjacent pair of theK segments,
and also an event for the segments that will move from one section
to the next. Therefore, we needO(K) space in total.

In terms of time, the algorithm at each iteration needsO(log K)

time to update the time-event queue,O(L log K
L) time to update

the L heaps, andO(L) time to pick the best pair of segments to
merge.

6) Continuous Amnesic Functions:When the amnesic function
is continuous, we identify two cases. First, the amnesic function
has a closed form formula. In this case, we can compute the
crosspoints of the segments, and we proceed as with the linear
amnesic functions. Second, when the amnesic function does not
have a closed form formula, we replace the continuous function
with a piecewise linear approximation usingL sections. Then,
we proceed as with the piecewise linear amnesic functions. We
construct L heaps, and search in those for the best pair of
segment to merge. Since the resulting amnesic function is an
approximation of the original function, instead of examining only
the top element from each heap, we consider the top-q elements.
We calculate the exact error (i.e., based on the continuous amnesic
function) of those elements, and pick the best pair of segments
among them. This technique proves to work very well, even for
small q.

The following theorem gives the space and time complexity of
the algorithm.

Theorem 6:Assume we approximate a continuous amnesic
function with L piecewise linear sections. Further, assume that
we consider the top-q elements of each heap in order to identify
the best pair of segments to merge. Then, the space complexity of
GrAp-Rwith a continuous amnesic function isO(K), and the time
complexity to process each new point isO(qL+L log K

L +log K).
Proof: We assume that an equal number of segments cor-

responds to each section of the amnesic function. The algorithm
requiresO(K) space for storing theK segments and theL heaps
(since all the heaps combined storeO(K) values). The space
required by the time-event queue isO(K), to store events for
all adjacent pairs of segments and for the segments crossinga
section. Therefore, we needO(K) space in total.

2This assumption is realistic because of the following observation. The
sections of the amnesic function that refer to the newer values of the time
series will tend to be of finer granularity and encompass a smaller portion of
the time series than the sections referring to the older values. Yet, they will
require a higher ratio of segments per data point, since the requirements for
accuracy in the newer data points is higher than that for the older ones.

In terms of time, the algorithm at each iteration needsO(log K)

time to update the time-event queue,O(L log K
L) time to update

the L heaps, andO(qL) time to pick the best pair of segments to
merge.

B. Sliding Windows With Relative Amnesic

In this section we discuss algorithms that solve the online am-
nesic approximation problem for a sliding window of a streaming
time series. Assume a sliding window of sizeW , and that we use
PLA to build an approximation modelQ with K segments. We
refer to the side of the sliding window from which new points
enter the window as thestart of the sliding window. We callend
of the sliding window the side from where points exit, andlast
segment, the segment ofQ that approximates the points of the
series at the end of the sliding window.

The skeleton of the algorithms for the sliding windows case
is the same as the one presented in the previous section, for
the amnesic approximation of time series in an unrestricted
window. The only difference is that we now have to adjust the
approximation such that there is no segment that refers to data
points beyond the end of the sliding window. In order to achieve
this goal, we simply discard the last segment as soon as it gets
entirely out of the sliding window, and we reuse it at the start of
the window. Observe though, that the amnesic function is more
tolerable to the approximation error towards the end of the sliding
window. Then, a question that arises naturally is whether itis
possible for the last segment to continue growing by merging
with the second to last segment, and consequently never fallout
of the boundaries of the sliding window. The following lemma
addresses this question.

Lemma 2:The last segment of modelQ will not grow to
represent the entire set of points beyond the end of the sliding
window.

Proof: We will prove this statement by contradiction.
Assume that the last segment,sK , never falls out of the sliding
window. This necessarily means that the error ofsK , E(sK),
is not always the largest among the errors of all the segments
in the sliding window (so that it gets picked to be merged with
the second to last segment,sK−1). If sK never completely falls
out of the window, then it represents all the points of the time
series beyond the end of the sliding window. As the window
moves forward more points are being added to it (or otherwise
sK would fall outside the sliding window). As more points are
added tosK , E(sK) keeps increasing. If we assume an infinite
data stream, thenlimt→+∞ E(sK) = +∞. The above equation
holds even when we take into account the amnesic function. Thus,
for a sufficiently large time point,tL: E(sK) > E(si), 1 ≤ i <

K,∀t > tL, since all the other segments represent a bounded
number of data points, and therefore have a bounded error, smaller
than E(sK). This violates our assumption above, thatE(sK) is
not always the largest among all the segments in the window.

The above lemma guarantees that a sliding window amnesic
approximation will never degenerate to an unrestricted window
approximation of the time series, but does not give us a bound
on the size of the last segment. In Section VI we experimentally
show that the size of the last segment is always relatively small.

V. A LGORITHMS FORABSOLUTE AMNESIC FUNCTIONS

In this section we present algorithms for theUAA and SAA
problems, that is, the online amnesic approximation of streaming

time series with absolute amnesic functions. First, we discuss
the algorithms for the unrestricted window, and then extendthe
discussion for the sliding window case.

A. Unrestricted Window

1) The GrAp-A Algorithm: When we use absolute amnesic
functions, we do not know in advance the number of segments
that will be needed for the approximation. Furthermore, we can
calculate the time when a neighboring pair of segments will be
eligible to merge. Hence, in this case we do not have to keep track
of the segments whose merge will result in the least additional
error, and subsequently, there is no need to maintain a heap
structure on the adjacent pairs of segments, as we did for the
case of the relative amnesic functions.

Figure 9 shows a high level description of theGrAp-A algo-
rithm, which we propose for the solution of theUAA problem.
During each time step, the algorithm assigns the new data point
of the time series to a new segment,si, by itself (line 4). Then,
it tries to mergesi with its adjacent segment (line 6). Note that
at this time there is only one segment adjacent tosi, since si

represents the last data point seen so far, at the end of the time
series. If the segment that results from the merge has error less
than what is specified by the absolute amnesic function, thenthe
merge is realized (line 7). In either case, the next step involves
the update of the time-event queueEQ (line 11).

The procedureManageEvents()keeps track of the merges we
know in advance that should happen, and updatesEQ correspond-
ingly. First, in line 14, it schedules inEQ an event specifying
when the segment that was formed with the arrival of the new data
point will be able to merge with its adjacent segment. Then, in
lines 15-19, it processes any merges that are scheduled to happen
at the current time, and updates the queueEQ. In the following
paragraphs we elaborate on the above issue for the differentkinds
of amnesic functions.

1 let EQ = ∅ be a time-event queue;
2 procedureGrAp-A ()
3 when a new point,T [i], of the time series arrives at timetN
4 assign a new segmentsT [i] to the new point;
5 let sm be a hypothetical segment resulting from the merge of

sT [i] and its neighboring segment;
6 if (E(sT [i]) < AA(tN))
7 accept segmentsm in the approximation model;
8 else
9 let sm = sT [i];
10 let sm+1 be the one segment adjacent tosm;
11 ManageEvents(EQ, tN , sm, sm+1);
12 return;

13 procManageEvents(queueEQ, time t, segmentssm, sm+1)
14 insert inEQ an event for the time whensm andsm+1 will be

able to merge;
15 if (next evente in EQ is scheduled for timet)
16 removee, related to segmentsse,1 andse,2, from EQ;
17 merge segmentsse,1 andse,2 into segmentse;
18 let se−1 andse+1 be the segments adjacent tose;
19 insert inEQ events for the times whense−1 andse, and

se andse+1 will be able to merge;
20 return;

Fig. 9. The skeleton of theGrAp-A algorithm
2) Piecewise Constant Amnesic Functions:We observe that,

given two segments, we can precompute at which point in time (if

any) we will be able to merge them. Moreover, we can simplify
the problem by considering, as viable time points for merging
two segments, only the exact times at which both segments
have crossed a discontinuity of the amnesic function. Remember
that the discontinuity points,d1, . . . , dL−1, are specified in the
definition of the amnesic function, and, therefore, are known (see
Section III-A). Because of the form of the piecewise constant
functions, we are certain that if two segments cannot merge once
they change sections in the amnesic function, they will definitely
not be able to merge before they change sections again.

For each adjacent pair of segments in our approximation,si

andsi+1, it suffices to take the following three steps.

1) Assume segmentssi and si+1 are merged intosi,i+1, and
calculate the error ofsi,i+1, E(si,i+1).

2) Compute the earliest point in time whenE(si,i+1) becomes
less than the specified amnesic absolute error, and call this
time tmerge. This computation is fast, because we only
need to consider the discontinuity points thatsi,i+1 has
not crossed yet. That is, in order to determinetmerge, we
have to make the computationL−1 times in the worst case.
It turns out that if we use the monotonicity property of the
absolute amnesic functions, then we can reduce the com-
putation effort. The monotonicity property says that as we
move towards the past, the approximation error allowable
by the amnesic function is increasing monotonically. This
means that instead of a linear scan on the discontinuity
points, we can employ binary search, which will result in
faster computation oftmerge. However, for the purposes of
this paper, we only use the linear scan approach.

3) Schedule an event in queueEQ, regarding segmentssi and
si+1, for time tmerge.

3) Linear Amnesic Functions:In the case of linear absolute
amnesic functions, we can compute the time during which two
neighboring segments will be eligible to merge based on a closed
form formula. This is the time when the resulting segment will
have approximation error equal to or below the error specified by
the absolute amnesic function.

Consider the case where we are trying to compute the time,
tmerge when two existing segments,s1 and s2, can be merged
into segments. Assume the linear amnesic function is described
by the equationAA(x) = αx+β, E(s) is the approximation error
for s, and letts be the time whens was created. This is defined
as the time when the most recent point ins arrived. Then, the
time tmerge is given by the following equation.

E(s) = α · (tmerge − ts) + β, or tmerge =
E(s1) − β

α
. (3)

We only consider the positive solutions of this equation. (In
this case, negative solutions mean that the merge should have
occurred in the past.) Also, note that since the amnesic function
is monotonic,tmerge indicates the earliest point in time when we
can realize the merge. The merge may also happen at any time
t > tmerge.

When we compute the timetmerge for a pair of segments, we
insert this time in the time-event queueEQ. After a merge has
occurred, we have to compute the times that the new segment will
be able to merge with its two neighbors, and update the time-event
queue.

4) Piecewise Linear Amnesic Functions:Assume that there are
L sections in the piecewise amnesic function. Then, we have to

treat each section separately, and for each section proceedas in
the case of linear amnesic functions. We still need to maintain
a single time-event queue,EQ, to handle the events from allL
sections. The processing in this case is as follows.

For sectionli, which is specified by the discontinuity points
di−1 and di, we compute for each pair of segments the time
at which they could merge. If this time falls inside the interval
[di−1, di], then we insert inEQ a merge event with this time.
Otherwise, we simply insert inEQ an event specifying that the
corresponding pair of segments should be re-examined when it
crosses over to the next section,li+1. We do the same for the
pairs of segments that span across two sections of the amnesic
function. In this case, the relevant computations are performed as
if they both belong to the section where their most recent point
belongs to3.

5) Continuous Amnesic Functions:When the amnesic function
is continuous, we can only calculate the times of the possible
segment merges if the function has a closed form formula. In the
general case, where there is no closed form formula available, we
approximate the continuous amnesic function with a piecewise
linear function withL sections. Then, we proceed by treating the
amnesic function as a piecewise linear one, as described in the
previous section.

Note however, that we still have to compensate for the error
due to the piecewise linear approximation of the continuous
function. Consider a pair of segments, corresponding to section
li of the piecewise linear function, that are candidates to merge
into segments. Assume we have computed the merging time
for s, tmerge, according to the piecewise linear approximation,
ÃA(x), of the amnesic functionAA(x). This means thatE(s) ≤

ÃA(tmerge−ts), wherets is the time when the most recent point
of s arrived. We then check whetherE(s) ≤ AA(tmerge − ts),
which is what we really want to hold. If the above inequality
is true, then we updateEQ with an event concernings at time
tmerge, as usual. Otherwise, we schedule inEQ an event to re-
examine the merging time fors when it crosses over to the next
section of the piecewise linear function,li+1. We know that the
merge is more likely to occur then, because of the monotonic
property of the amnesic function.

We considered other approaches for dealing with this problem,
as well. When the inequalityE(s) ≤ AA(tmerge − ts) does not
hold, we can test other possible time points for the merge, before
s moves to the next section. On the other extreme, we can choose
the piecewise linear approximation of the continuous amnesic
function in such a way that̃AA(x) ≤ AA(x), ∀x. In this case we
know that for anys E(s) ≤ ÃA(tmerge−ts) ≤ AA(tmerge−ts).
The approach that we propose is the middle-ground between those
two.

B. Sliding Window

We now turn our attention to algorithms that work on a sliding
window of the time series stream. These algorithms are based
on the corresponding ones for the unrestricted window with
only minor modifications. Consider the example illustratedin
Figure 10. The two figures depict the amnesic approximation of
the values of the time series that fall in the sliding window for two
time instances (the absolute amnesic function remains the same

3This choice was made in accordance to the way we apply an amnesic
function to a segment, described in Section III-A.

across time). In the first time instance (Figure 10(a)), two line
segments are enough in order to produce an approximation that
has less error than what is specified by the amnesic function.For
the second time instance (Figure 10(b)), we need five segments in
order to meet the same approximation error requirements (albeit,
for a different set of values). Note that as time advances, the
number of line segments used for the approximation may increase
or decrease.

In the sliding windows context, we only need to maintain a
representation of the values of the time series in the window.
Consequently, we do not insert in the time-event queueEQ any
events that refer to a time point past the end of the window. These
are events about merges that cannot occur, since the corresponding
segments will be dropped from the representationQ as soon as
they fall out of the sliding window (it is an easy exercise to prove
a lemma similar to Lemma 2).

C. On the Complexity of the Algorithms

The following theorem states the space and time complexity
for all the variations of theGrAp-A algorithm discussed above.

Theorem 7:Assume we employ a piecewise constant amnesic
function. Then, the space complexity isO(K), and the time
complexity to process each new point isO(log K).

Proof: The algorithm requiresO(K) space to store theK
segments used in the approximation. The queueEQ has space
complexity O(K), since at each point in time we only need to
maintain in the time-event queue only one event for every pair of
segments. Therefore, the overall space required isO(K).

At every time step, the algorithm has to insert an event for the
new segment, and process any events scheduled for the current
time. Both these operations translate to inserting new events in
EQ. The time to calculate the error of merging two segments
is constant, and the same is true for calculating the timetmerge

at which a merge becomes viable. (We can safely assume that
the number of discontinuities,L − 1, of the amnesic function
are far less than the number of segments, and treat them as a
constant. Therefore,tmerge can be computed in constant time.)
The insertion of new events inEQ takesO(log K) time. Thus,
the overall time complexity for each iteration isO(log K).

In this section we presented time and space complexity mea-
sures for the algorithms solving theUAA and SAA problems.
These measures depend on the number of segments,K, used
in the approximation. However, when using absolute amnesic
functions, it is not possible to calculate in advance the value of
K, or even a range of values forK. The values thatK is going to
assume are determined by the dataset and the amnesic function,
and can vary greatly. Nevertheless, we expect that in practice the
users will be able to make, for each application domain, judicious
decisions about the absolute amnesic functions. These decisions
will lead to reasonable values ofK, and, subsequently, to small
space and time complexity bounds.

VI. EXPERIMENTAL EVALUATION

We implemented our algorithms and conducted a series of
experiments to evaluate their efficiency. We also implemented the
optimal algorithm using dynamic programming and the traditional
BottomUpalgorithm forPLA [20], which is an offline algorithm,
to compare against our techniques. Briefly,BottomUpworks as
follows. It starts by assigning a segment to each point in the

time series. Then, at each consecutive step, it merges the two
neighboring segments that will result in the least increasefor the
overall approximation error. For our experiments, we also make
use of the amnesic functions, which are used to weigh the errors
of the segments. Then,BottomUpoperates on the weighted errors
and proceeds as normal.

In order to evaluate our algorithms, we used an extensive
set of real-world datasets. These are40 datasets coming from
diverse fields, including finance, medicine, biometrics, chemistry,
astronomy, robotics, networking and industry, and covering the
complete spectrum of stationary/non-stationary, noisy/smooth,
cyclical/non-cyclical, symmetric/asymmetric, etc. [1].All the
datasets have length of 10,000 points, and are studentized (i.e.,
they have zero mean and unit standard deviation). When not
explicitly mentioned, the results reported are averages over all
40 datasets. For all the experiments shown here, we employed a
piecewise linear amnesic function. The results for other amnesic
functions are similar. In the following paragraphs, we firstdiscuss
the results for the relative amnesic functions, and subsequently,
for the absolute amnesic functions.

A. Comparison toBottomUp

In the first set of experiments, we compare the performance of
GrAp to BottomUp, which is essentially a comparison between
an online and the corresponding offline algorithm.

Figure 11 depicts the approximation error and computation time
for GrAp-R and BottomUp, for a single dataset (Space Shuttle
STS-57). Similar trends are observed with all 40 datasets we
used in our experiments. We use the unrestricted window model
and10 segments, and we report the error and time as a function
of the window size. Our online algorithm consistently provides
approximations that are very close to those found by the offline
algorithm. At the same time our algorithm is much faster, requir-
ing only constant time for processing every new point (actually,
as we discussed in Section IV, the time is independent ofN). On
the other hand,BottomUphas time complexityO(N log N).

In the next set of experiments, we quantify the differences in
the performance of the two algorithms. We report the cumulative
relative error,CRE, which measures the relative increase in the
cumulative error when usingGrAp-R.

CRE = 100 ·

∑N

j=1
(EGrAp−R(T [1..j]) − EBottomUp(T [1..j]))

∑N

j=1
EBottomUp(T [1..j])

The second measure of interest is the speedup, which measures
hom many times fasterGrAp-Ror GrAp-A is when compared to
BottomUp.

Speedup =

∑N

j=1
T imeBottomUp(T [1..j])

∑N

j=1
T imeGrAp(T [1..j])

In Figure 13, we depictCRE as a function ofK and N , for
the unrestricted window model. Using50 segments, our algorithm
performs within3%−11% of the offline algorithm, for streams of
length1000− 3000 points (Figure 13(a)). Though, for increasing
N we observe a very slow build-up of the relative error. In the
experiment of Figure 13(b), the number of segments we use is
1%, 3%, and5% of N . In this case, where the ratioN/K remains
fixed, CRE remains relatively stable as we increaseN . In both
cases, our algorithm performs better as the number of segments
increases.

Present Past

(a) time t1

Present Past

(b) time t2 > t1

Fig. 10. Example of sliding window am-
nesic approximation with absolute am-
nesic functions (two time instances shown
for a random walk dataset).

0 200 400 600 800 1000
0

500

1000

1500

2000

E
rr

o
r

window size

Online
Static

(a) Error

0 200 400 600 800 1000
0

0.2

0.4

0.6

0.8

1

1.2

window size

R
u

n
n

in
g

 t
im

e
 (

se
c)

online
static

(b) Time

Fig. 11. Typical progression of error
(left) and time (right) for GrAp-R and
BottomUp (Space Shuttle STS-57 dataset,
unrestricted window).

(a) top-4 performers

(b) bottom-4 performers

Fig. 12. Illustration of the datasets
for which the quality of approximation
achieved byGrAp-R is the closest to (a)
and the furthest away from BottomUp
(b).

The graphs shown in Figure 13 also depict the95% confidence
intervals for the error values we report. These intervals indicate
that there is a small but noticeable variation in the performance of
the algorithm across the diverse collection of the 40 datasets we
used in our study. Indeed, a close inspection of the experimental
results reveals that for the relatively smooth datasets, like the ones
shown in Figure 12(a),GrAp-R performs extremely close (and
in some cases identically) toBottomUp resulting in similar (or
the same) approximation quality. Figure 12(a) depicts the four
datasets for which the performance ofGrAp-R and BottomUp
is the most similar to each other. In other words, these are
the examples whereGrAp-R performs the best. For the more
unstructured datasets, like the ones shown in Figure 12(b),the
difference in the performance betweenGrAp-RandBottomUpis
more pronounced. In Figure 12(b), we depict the four datasets
for which the performance ofGrAp-R and BottomUp is the
furthest away from each other. Note that these datasets are much
more challenging to approximate, since they exhibit many sudden
variations and unpredictable patterns. In these cases,BottomUp
has the opportunity to make better global decisions that affect the
overall approximation quality.

Figure 14 shows the speedup that our algorithm achieves, which
translates to one or two orders of magnitude faster execution than
the offline algorithm (for the experiments we ran). We observe
that the speedup increases significantly for decreasingK. This is
because the amount of work thatGrAp-R does remains almost
constant (depends onlog K), while BottomUp requires lots of
extra effort for smaller values ofK. As expected, the speedup
gets larger when we increaseN .

We also run the same experiments for the sliding window
model. Figure 15(a) illustrates the results for the speedup, which
in this case is mainly a function of the window size (K does not
seem to affect the speedup in this case, because of the particular
choices ofK and the window size). TheGrAp-R algorithm is
10 − 30 times faster thanBottomUp. The results for the error
are similar to those for the unrestricted window model, and are

omitted for brevity.
The trends for the error and time remain the same as we

increaseK and N . All the above results show that the online
algorithm achieves considerable benefits in terms of speed while
losing little in approximation accuracy, when compared to the
offline algorithm.

With the next experiment, we address a question that was
raised in light of Lemma 2. In the sliding window model, we
temporarily allow the last segment of the approximation model
to grow beyond the end of the window, until it completely falls out
of the boundaries of the window and we discard it. Figure 15(b)
depicts the average number of points outside the sliding window
that are represented by the last segment, as a percentage of the
window size. In all the cases we tested, this number ranges
between10% − 15%, and therefore, is not a restricting factor
for our representation.

In the last set of experiments, we evaluate the performance
of GrAp-A, which is the algorithm we propose for the absolute
amnesic functions. We run the experiments with the unrestricted
window model and for three different stream sizes. In the case of
GrAp-A, we are interested in minimizing the number of segments,
K, used in the amnesic approximation. Therefore, when we
compare this algorithm toBottomUp, we measure the cumulative
relative increase in the required number of segments,CRIS.

CRIS = 100 ·

∑N

j=1
(KGrAp−A(T [1..j]) − KBottomUp(T [1..j]))

∑N

j=1
KBottomUp(T [1..j])

.

The results (refer to Figure 16) show thatGrAp-A is able to find
a representation with a minimal number of additional segments
when compared to the offline algorithm, that is1% − 3% more
segments for streams of length1000 − 10000. There is only a
slight increase inCRISas we move to longer streams. As in the
case of relative amnesic functions, the speedup is considerable,
with our algorithm running more than two orders of magnitude
faster thanBottomUp.

B. Comparison to Optimal

In this section we investigate how our techniques compares
to the optimal algorithm,Opt, implemented with dynamic pro-

10 30 50 10 30 50 10 30 50
0

10

20

30

40

50

60

70

80

90

100

A
vg

. %
 o

f R
el

at
iv

e
E

rr
or

Number of segments

|Stream| = 1000
|Stream| = 2000
|Stream| = 3000

(a) fixedK

10
 30
 50
 50
 150
 250
 100
 300
 500

0

10

20

30

40

50

60

70

80

90

100

A
vg

. %
 o

f R
el

at
iv

e
E

rr
or

Number of segments

|Stream| = 1000

|Stream| = 5000

|Stream| = 10000

(b) fixed N/K

Fig. 13. Comparison of the approxi-
mation error between GrAp-R and Bot-
tomUp (unrestricted window).

10 30 50 10 30 50 10 30 50
0

10

20

30

40

50

60

70

80

90

A
vg

. S
pe

ed
up

Number of segments

|Stream| = 1000
|Stream| = 2000
|Stream| = 3000

(a) fixedK

10 30 50 50 150 250 100 300 500
0

10

20

30

40

50

60

70

80

90

A
vg

. S
pe

ed
up

Number of segments

|Stream| = 1000
|Stream| = 5000
|Stream| = 10000

(b) fixed N/K

Fig. 14. Speedup of GrAp-R against
BottomUp (unrestricted window).

5 10 5 10 5 10 5 10
0

10

20

30

40

50

A
vg

. S
pe

ed
up

Number of segments

|Stream| = 5000
|Stream| = 10000

w = 200

w = 400

w = 200

w = 400

(a) Speedup

5 10 20 5 10 20
0

10

20

30

40

50

60

70

80

90

100

%
 |S

eg
. O

ut
si

de
 W

in
do

w
|/

|W
in

do
w

|

Number of segments

window = 200 window = 400

(b) Excess points

Fig. 15. Speedup of GrAp-R against
BottomUp (top), and number of excess
points represented byGrAp-R (bottom),
both for the sliding window model.

1000 5000 10000
0

100
200
300
400
500

A
ve

ra
ge

 S
pe

ed
up

Stream size
1000 5000 10000

0
20
40
60
80

100

A
vg

. %
 o

f a
dd

iti
on

al

se
gm

en
ts

Stream size

1.07 1.66 2.79

Fig. 16. Average increase in the number of required segments
(left) and speedup (right) for GrAp-A against BottomUp (unre-
stricted window).

gramming. Unfortunately, due to the high time complexity ofthe
optimal algorithm, this experiment is only possible for relatively
small datasets.

We use the same set of40 datasets and perform the experiment
as follows. From each dataset, we randomly extract a subsequence
of length512, and segment it into16, 32, and64 segments, using
BottomUp and Opt. In the case ofGrAp-R, we treat the data
subsequences as streams, have the algorithm operate on those, and
record the performance of the algorithm during the last iteration.
We measure the relative increase in error for theGrAp-R and
BottomUpalgorithms, defined as(EGrAp−R − EOpt)/EOpt and
(EBottomUp − EOpt)/EOpt, respectively. A zero value for the
relative error means that the algorithm under consideration has
found the optimal solution. For each dataset, and each number
of segments, we average the results over10 randomly extracted
subsequences, and then average the relative error over all40

datasets. The results are shown in Table II. In the same table
we also report how much slowerOpt executes when compared to
GrAp-RandBottomUp. The results suggest that we lose little by
using GrAp-R as opposed toBottomUp, since both algorithms
manage to find solutions close to the optimal. Note that this
excellent performance comes at tremendous savings in termsof
computational cost. The optimal algorithm is several orders of
magnitude slower thanGrAp-R, and is clearly inapplicable for an

online environment.

K (EGrAp−R − EOpt)/EOpt T imeOpt/T imeGrAp−R

16 0.102 1857
32 0.083 1886
64 0.064 1912
K (EBottomUp − EOpt)/EOpt T imeOpt/T imeBottomUp

16 0.058 112
32 0.051 137
64 0.042 173

TABLE II

Comparison amongGrAp-R, BottomUp, and optimal.

VII. R ELATED WORK

There exists an extensive literature in the area of time series
approximation [22]. Some of the representations that have been
proposed include the Fourier transform [13], [30], many different
wavelets [28], [9], piecewise polynomials [38], [8], singular value
decomposition [8] and symbolic approximations [2]. Many ofthe
above approximation techniques have been adapted to work inan
online fashion. For example, piecewise constant approximation
can be created online with little loss of accuracy [25], as well as
DFT [40]. Most of other time series representations have been, or
could trivially be, calculated in an incremental fashion [20]. There
has also appeared work on data stream summarization, using
wavelets [15] and histograms [16]. Cohen and Strauss [11] present
a framework for maintaining time-decaying stream aggregates,
such as sum and average.

Even though each year seems to produce new representations
for time series [7], [26], interest in using PLA has not waned. If
anything, the opposite is true. Recent years have seen an explosion
of interest in using PLA to support a wide variety of data mining
and indexing tasks. For example, in the previous year alone,PLA
has been used to support a finite state automaton to simulate
respiratory motion [36], to do forecasting of the stock market

[35], to support anomaly detection in space telemetry [31],and
to produce text based weather summaries [32]. This diverse list
merely hints at the broad applicability of PLA to real world
problems.

Chen et al. [10] describe a framework for multi-dimensional
regression analysis of time series with a tilt time frame. Yet, they
do not explicitly tailor their representations to match different
amnesic functions. Bulut and Singh proposed using wavelets
to represent ”data streams which are biased towards the more
recent values” [6], and successfully implemented their method.
Although the bias to more recent values can be seen as a
special case of an amnesic function, the particular function is
dictated by the hierarchical nature of the wavelet transform. A
subsequent study [39] generalizes on these ideas, by decoupling
the approximation of the time series from a particular dimension-
reduction algorithm, but requires the user to specify how the
available memory will be used for the approximation. Our work
removes all the restrictions inherent in the above approaches.
The framework we propose takes into account the form of the
amnesic function as an integral part of the problem, and provides
an effective and efficient solution for a much more general class
of amnesic functions.

There has also been relevant work in machine learning, and
more specifically, in the neural network community, where the
main goal is to model time-varying patterns in time series [3],
[12]. What is different in our approach is that we propose a
summarization technique using an arbitrary, user-defined,amnesic
function, that is compatible with several existing distance mea-
sures, and can be directly used by a multitude of indexing and
data mining algorithms.

VIII. C ONCLUSIONS

We have introduced the first method to allow the online
approximation of streaming time series, which allows arbitrary,
user-defined reduction of quality with time. This kind of approx-
imation is of increasing importance in many diverse application
domains, such as mobile and real-time devices. We justified our
choice of representation with extensive comparisons to competing
techniques, and described how we can adapt to allow arbitrary am-
nesic functions for streaming data. We empirically evaluated our
algorithms with extensive experiments on40 different datasets.
The results show that our algorithms offer significant performance
improvements over the direct computational approach, while
maintaining the quality of the approximation close to optimal.
Possible directions for future work include supporting indexed
similarity search and other queries on our representation.

REFERENCES

[1] The UCR Time Series Data Mining Archive. University of
California, Riverside, Computer Science and Engineering De-
partment. http://www.cs.ucr.edu/˜eamonn/TSDMA/, 2002.

[2] H. André-Jönsson and D. Badal. Using Signature Files for
Querying Time-Series Data. InPrinciples of Data Mining
and Knowledge Discovery, pages 211–220, Trondheim, Norway,
June 1997.

[3] A. Barreto, A. Araujo, and S. Kremer. A taxonomy for spa-
tiotemporal connectionist networks revisited: the unsupervised
case.Neural Computation, 15:1255–1320, 2003.

[4] Julien Basch. Kinetic Data Structures. Stanford University,
Department of Computer Science. PhD Thesis, 1999.

[5] Richard Bellman. On the Approximation of Curves by Line
Segments Using Dynamic Programming.Communications of
the ACM, 4(6):284, 1961.

[6] Ahmet Bulut and Ambuj K. Singh. SWAT: Hierarchical Stream
Summarization in Large Networks. InInternational Conference
on Data Engineering, pages 303–314, Bangalore, India, March
2003.

[7] Yuhan Cai and Raymond T. Ng. Indexing Spatio-Temporal
Trajectories with Chebyshev Polynomials. InACM SIGMOD
International Conference, pages 599–610, Paris, France, June
2004.

[8] Kaushik Chakrabarti, Eamonn J. Keogh, Sharad Mehrotra,and
Michael J. Pazzani. Locally Adaptive Dimensionality Reduction
for Indexing Large Time Series Databases.ACM Transactions
on Database Systems, 27(2):188–228, 2002.

[9] K. Chan and W. Fu. Efficient Time Series Matching by
Wavelets. InInternational Conference on Data Engineering,
pages 126–133, Sydney, Australia, March 1999.

[10] Yixin Chen, Guozhu Dong, Jiawei Han, Benjamin W. Wah,
and Jianyong Wang. Multi-Dimensional Regression Analysisof
Time-Series Data Streams. InVLDB International Conference,
pages 323–334, Hong Kong, China, August 2002.

[11] Edith Cohen and Martin Strauss. Maintaining Time-Decaying
Stream Aggregates. InACM PODS International Conference,
pages 223–233, San Diego, CA, USA, June 2003.

[12] B. de Vries and J. C. Principe. The gamma model — A new
neural model for temporal processing.Neural Networks, 5:565–
576, 1992.

[13] Christos Faloutsos, M. Ranganathan, and Yannis Manolopoulos.
Fast Subsequence Matching in Time-Series Databases. InACM
SIGMOD International Conference, pages 419–429, Minneapo-
lis, MI, USA, May 1994.

[14] Xianping Ge and Padhraic Smyth. Segmental Semi-Markov
Models for Endpoint Detection in Plasma Etching. InAEC/APC
Symposium, Lake Tahoe, NV, USA, September 2000.

[15] Anna C. Gilbert, Yannis Kotidis, S. Muthukrishnan, andMartin
Strauss. Surfing wavelets on streams: One-pass summaries for
approximate aggregate queries. InVLDB, pages 79–88, 2001.

[16] Sudipto Guha and Nick Koudas. Approximating a Data Stream
for Querying and Estimation: Algorithms and Performance
Evaluation. InInternational Conference on Data Engineering,
pages 567–576, San Jose, CA, USA, March 2002.

[17] Trevor Hastie, Robert Tibshirani, and Jerome Friedman. The
Elements of Statistical Learning. Springer-Verlag, 2001.

[18] R. Hogg, A. Rankin, M. McHenry, D. Helmick, C. Bergh,
S. Roumeliotis, and L. Matthies. Sensors and Algorithms for
Small Robot Leader/Follower Behavior. InSPIE AeroSense
Symposium, Orlando, FL, USA, April 2001.

[19] Jim Hunter and Neil McIntosh. Knowledge-Based Event De-
tection in Complex Time Series Data. InArtificial Intelligence
in Medicine and Medical Decision Making, pages 271–280,
Aalborg, Denmark, June 1999.

[20] E. Keogh, S. Chu, D. Hart, and M. Pazzani. An Online
Algorithm for Segmenting Time Series. InIEEE International
Conference on Data Mining, pages 289–296, San Jose, CA,
USA, November 2001.

[21] E. Keogh, S. Lonardi, and W. Chiu. Finding Surprising Patterns
in a Time Series Database In Linear Time and Space. In
International Conference on Knowledge Discovery and Data
Mining, pages 550–556, Edmonton, Canada, July 2002.

[22] Eamonn J. Keogh and Shruti Kasetty. On the Need for Time
Series Data Mining Benchmarks: A Survey and Empirical
Demonstration. InInternational Conference on Knowledge Dis-
covery and Data Mining, pages 102–111, Edmonton, Canada,
July 2002.

[23] Eamonn J. Keogh and Michael J. Pazzani. An Enhanced
Representation of Time Series Which Allows Fast and Accurate
Classification, Clustering and Relevance Feedback. InInterna-

tional Conference on Knowledge Discovery and Data Mining,
pages 239–243, New York, NY, USA, August 1998.

[24] A. Koski, M. Juhola, and M. Meriste. Syntactic Recognition of
ECG Signals By Attributed Finite Automata.Pattern Recogni-
tion, 28(12):1927–1940, 1995.

[25] Iosif Lazaridis and Sharad Mehrotra. Capturing Sensor-
Generated Time Series with Quality Guarantees. InInter-
national Conference on Data Engineering, pages 429–440,
Bangalore, India, March 2003.

[26] Jessica Lin, Eamonn Keogh, Stefano Lonardi, and Bill Chiu. A
Symbolic Representation of Time Series, with Implicationsfor
Streaming Algorithms. InSIGMOD Workshop on Reasearch
Issues on Data Mining and Knowledge Discovery, San Diego,
CA, USA, June 2003.

[27] Sanghyun Park and Wesley W. Chu. Discovering and Matching
Elastic Rules From Sequence Databases.Fundamenta Informat-
icae, 47(1-2):75–90, 2001.

[28] Ivan Popivanov and Renée J. Miller. Similarity SearchOver
Time Series Data Using Wavelets. InInternational Conference
on Data Engineering, pages 802–813, San Jose, CA, USA,
February 2002.

[29] William Pugh. Skiplists: A Probabilistic Alternativeto Balanced
Trees.Communications of the ACM, 33(6):668–676, 1990.

[30] Davood Rafiei. On Similarity-Based Queries for Time Series
Data. In International Conference on Data Engineering, Syd-
ney, Australia, March 1999.

[31] Stan Salvador, Philip Chan, and John Brodie. Learning States
and Rules for Time Series Anomaly Detection. InFLAIRS,
pages 300–305, Miami, FL, USA, May 2004.

[32] Sripada Somayajulu, Ehud Reiter, and Ian Davy. SumTime-
Mousam: Configurable Marine Weather Forecast Generator.
Expert Update, 6(3):4–10, 2004.

[33] David Steere, Antonio Baptista, Dylan McNamee, CaltonPu,
and Jonathan Walpole. Research Challenges in Environmental
Observation and Forecasting Systems. InMobile Computing
and Networking, Boston, MA, USA, August 2000.

[34] H. J. L. M. Vullings, M. H. G. Verhaegen, and H. B. Verbruggen.
ECG Segmentation Using Time-Warping. InInternational Sym-
posium on Intelligent Data Analysis, pages 275–285, London,
England, August 1997.

[35] Huanmei Wu, Betty Salzberg, and Donghui Zhang. On-
line Event-driven Subsequence Matching over Financial Data
Streams. InACM SIGMOD International Conference, pages
23–34, Paris, France, June 2004.

[36] Huanmei Wu, Gregory C. Sharp, Betty Salzberg, David Kaeli,
Hiroki Shirato, and Steve B. Jiang. A Finite State Model
for Respiratory Motion Analysis in Image Guided Radiation
Therapy.Physics in Medicine and Biology, 49(23):5357–5372,
2004.

[37] Yi-Leh Wu, Divyakant Agrawal, and Amr El Abbadi. A
Comparison of DFT and DWT based Similarity Search in Time-
Series Databases. InACM International Conference on Infor-
mation and Knowledge Management, pages 488–495, McLean,
VA, USA, November 2000.

[38] B. Yi and C. Faloutsos. Fast Time Sequence Indexing for
Arbitrary LP-Norms. InVLDB International Conference, pages
385–394, Cairo, Egypt, September 2000.

[39] Yanchang Zhao and Shichao Zhang. Generalized dimension-
reduction framework for recent-biased time series analysis.
IEEE Trans. Knowl. Data Eng., 18(2):231–244, 2006.

[40] Yunyue Zhu and Dennis Shasha. StatStream: StatisticalMoni-
toring of Thousands of Data Streams in Real Time. InVLDB
International Conference, pages 358–369, Hong Kong, China,
August 2002.

