Streaming Time Series Summarization Using
User-Defined Amnesic Functions

Themis Palpanas, Michail Vlachos, Eamonn Keogh, Dimit@sopulos

Abstract— The past decade has seen a wealth of research onWe call this kind of time series approximati@mnesi¢ since the

time series representations, because the manipulation, stge,
and indexing of large volumes of raw time series data is impre-
tical. The vast majority of research has concentrated on repe-
sentations that are calculated in batch mode and representagh
value with approximately equal fidelity. However, the increasing
deployment of mobile devices and real time sensors has brohty
home the need for representations that can be incrementally
updated, and can approximate the data with fidelity proportional
to its age. The latter property allows us to answer queries atut
the recent past with greater precision, since in many domais
recent information is more useful than older information. We
call such representationsamnesic.

While there has been previous work on amnesic representa-
tions, the class of amnesic functions possible was dictateoly
the representation itself. In this work, we introduce a nové
representation of time series that can represent arbitrary user-
specified amnesic functions. For example, a meteorologist an
decide that data that is twice as old can tolerate twice as mic
error, and thus, specify a linear amnesic function. In contast, an
econometrist might opt for an exponential amnesic functionWe
propose online algorithms for our representation, and disass
their properties. Finally, we perform an extensive empirial
evaluation on 40 datasets, and show that our approach can

fidelity of approximation decreases with time, and it theref
requires less memory for the events further in the past.

The potential utility of such a representation has been doc-
umented in many domains. Consider the following motivating
examples.

« The Environmental Observation and Forecasting System [33]

is a large-scale distributed system designed to monitor,
model, and forecast wide-area physical processes such as
river systems. They note that in their current model, the
loss of a repeater station results in the loss of real time
information. Allowing the stations to record some data to a
buffer can mitigate this problem. However, since the statio
does not know how long it will be offline and has a finite
buffer, amnesic approximation is the only logical way to
record the data.

NASA is developing robots to be used in an urban setting
[18]. Typical applications include search and rescue, and
inspection of hazardous environments. In many situations,
information about the path traversed must be known if the

robot is to back up to a more promising avenue of exploration
after reaching a dead end. Power and size constraints rohib
the robot from storing all the data with perfect fidelity, so
the utility of an amnesic approximation has been noted for
this domain [18].

efficiently maintain a high quality amnesic approximation.

. INTRODUCTION

Time series are one of the most frequently encountered fofms
data. Many applications in diverse domains produce volomsn Although this work suggests that the usefulness of data can
amounts of time series [40], [33]. The sheer number and sidaminish with age, we note that the rate at which its utility
of the time series we need to manipulate in many of the realecays depends on the application. The function that detesm
world applications mentioned above dictates the need foomemthe amount of error we can tolerate at each point in the time
compact representation of time series than the raw daif &eel series is called ammnesicfunction. Ideally, we would like to
a plethora of representations have been proposed to thet effallow arbitrary amnesic functions, so that we can match the
[22]. requirements of a wide variety of applications. For example

The problem of approximating time series becomes moge meteorologist may decide that data that is twice as old can
interesting and challenging in the context of streamingetsaries, tolerate twice as much error, and thus, specify a linear amane
where data values are continuously generated, potenfatyer. function. In contrast, an econometrist using classic nodeght
Furthermore, most current time series representatioas énery well specify an exponential amnesic function. Figure 1 despi
point of the time series equally. This means that, when caimgu an amnesic approximation of a static time series, and theesimn
the approximation, the time position of a point does not maKenction that was used. Note that as we get to older points (to
a difference in the fidelity of its approximation. This may bdhe right) the approximation gets coarser.
desirable for some applications, such as archiving, horévere In this paper, we describe a framework for online amnesic
exist many real world situations where we would like to takepproximation of streaming time series. We characterize th
into account the time dimension in the approximation of theet different classes of amnesic functions, and present quoreing
series. The intuition behind this requirement may be stai®d algorithms for performing amnesic approximation. We study
follows. While we are willing to accept some margin of error i two distinct cases of the problem. First, the case when we are
the approximation, we would like the most recent data to haueterested in approximating the entire time series seemisoNe
low error, and we would be more forgiving of error in olderalat refer to this case as thenrestricted windowSecond, thesliding
window case, where at any point in time, we are only interested
in a fixed number of the last values of the time series. We ptese
efficient algorithms that solve the problem in both the abmges,
given a constraint on the amount of memory that can be used for

T. Palpanas is with the University of Trento.

M. Vlachos is with the IBM T.J. Watson Research Center.
E. Keogh is with the University of California at Riverside.
D. Gunopulos is with the Univesity of California at Riversid

Time-Series

some new terminology and formally define the problems weystud
'\ The algorithms we propose are presented in Sections IV and V.

. Section VI discusses the experimental evaluation. Secddbn

reviews related work, and Section VIII concludes the paper.

Il. TIME SERIESAPPROXIMATION

A time seriesT'[i], is a series of data points, each one arriving
at a distinct time instancg. T'[:..j] defines a range of data points.
_AmnesicFuncion When the total nhumber of data points in the time serigs,is

known in advance, we call the time serigsatic, and we say that
/ is has lengthv. When data points are arriving continuously, in a
e streaming fashion, the value of represents the number of data

0 10 20 30 40 50 60 70 80 90 100

points seen in the time series so far, and we call the timeseri
Fig. 1. ~ Depiction of an amnesic approximation, using the streaming The focus of our work is on streaming time series.
piecewise linear approximation technique. Several techniques have been proposed in the literature for
the approximation of time series, includinDiscrete Fourier
Transform (DFT)[30], [13], Discrete Cosine Transform (DCT)
the approximation. Furthermore, we also discuss a vanatidthe Piecewise Aggregate Approximation (PAB3], Discrete Wavelet
problem that allows the user to specify the maximum allo@abfTransform (DWT)[28], [9], Adaptive Piecewise Constant Ap-
error for the approximation of the time series. This forniola proximation (APCA)[8], [25], Piecewise Linear Approximation
is useful when the application requires quality guaranteeshe (PLA) [23], Piecewise Quadratic Approximation (PQR)7], and
approximation of the time series. The algorithms we progose others. Before we consider which of these representatobest
this variation operate for both the unrestricted and thdirei suited for the task at hand, it is natural to ask which is best,
window cases, but do not have a set bound for the amount gifnply in terms of reconstruction accuracy. In order to agrsw
memory they will need for the approximation. this question, we experimentally compare the above aphesac
While some recent work [10], [6] has proposed tools and techising many real-world datasets. We conducted such an exgei
niques for computing special cases of amnesic approximsitioon 40 diverse time series from the UCR Time Series Data Mining
of time series, as we discuss in Section VII, these solutames Archive [1].
specific and rather restrictive in the variety of applicasichey For our experiment, we randomly extracted a subsequence
can accommodate. In particular, the representation scheiserl of length 512 from each time series, and approximated it with
by these techniques dictate the form of the amnesic furgtiamd each of the representations under consideration, usitgta 1
restrict those to a very limited set. In contrast, our framewis compression ratio. This was a fair comparison, using theesam
general and able to operate with a wide class of amnesicifuis;t amount of memory for each representation. That is, we retuce
which are defined by thaser the 512 raw data points to 32 wavelet coefficients, 16 complex
Our contributions can be summarized as follows. DFT coefficients, 3DCT coefficients, 32PAAsegments, 1PLA
« We introduce the notion of general amnesic functions. Weegments, ®QAsegments and 18PCAsegments). Note that we
present a taxonomy of these functions, discuss their propéarefully used all possible optimizations for all represéions.
ties, and describe how they affect the solution of the prableFor example, we used the complex conjugate propertpietT
of online amnesic approximation. [30], and because the sequences were normalized to have zero
« We formulate the above problem as optimizations problem¥ean, we did not use the first coefficient for the wavelet and
where we wish to either minimize the reconstruction errd?FT approaches (they must be zero). However, for the piece-
given the available amount of memory for the approximavise polynomial approaches, the optimal representatignires
tion, or minimize the amount of memory required for théjuadratic time to produce, and we used a well known nearrtinea
approximation given the maximum allowable error for théime algorithm instead [20], [23]. We measured the qualityhe
reconstruction. We study important variations of the abowPproximation using the root mean squared error. We repeate
problems, namely, the unrestricted and the sliding windotis procedurel00 times, averaged the results, and normalized
cases. the performance of each representation by dividing by thst be
« We propose efficient algorithms for solving the above optPerforming approach. Finally we averaged4illscores as shown
mization problems. The time complexity of the algorithmé Table I.
we propose is independent of the size of the time series
The time to process each new point is essentially const&nP FT | DCT | PAA (?_'\gv;) (Dzl\L/JVleZ) APCA | PLA | PQA

(logarithmic on the number of segments used in the approxgos1 T 0.923 T 0,948 [0.948 0.902 0.893 10940 | 0.927
imation). These are the first algorithms proposed for sglvir

the general case of the problem. TABLE |
o We present an extensive experimental evaluation of our COMPARISONAMONG VARIOUS TECHNIQUES FOR TIME SERIES
techniques, using more than 40 synthetic and real datasets. APPROXIMATION.

The experiments show the applicability of our approach, and
the quality of solutions of our algorithms.
The rest of the paper is organized as follows. In Section Il The results may appear surprising, because there is little
we give the necessary background. In Section Il we intredudlifference between all the approaches. In fact, similaultehave

been documented elsewhere as well [22], [8], [37]. The dverdonger have the original points, we assume thatMalpoints lie

conclusion from this experiment is the following. If we wanbn line segmentss; and s», and we buildsi; based on this

to choose a representation for the task of approximating tilmssumption. This situation is depicted in the bottom graph o

series, then we should not choose the representation based-igure 2. The residual error of this new line #373). Unlike

approximation fidelity, but rather on other features. the previous cases, this is the error between the pointsnen li
When considering the alternative representations in tikezd 577 and the points on lines; ands,. (Remember that ling1 2

of amnesic approximation, it is not obvious how some of theis not calculated based on the original points of the timésegr

can accommodate the requirements of this new environméet. Tt turns out that we can also calculais; 2) without the need

DWT representation is intrinsically coupled with approximgti to refer to the originalV points.

sequences whose length is a power of two, which severelyatsst

the choices of amnesic functions. Using wavelets with secge .

that have other lengths requires ad-hoc measures thater¢dec */ ' o 2
fidelity of the approximation, and increase the complexityhe r \“~e\e""o’%-o
implementation. WhileDFT has been successfully adapted to h N
incremental computation [40], it is not clear that it can degted | . Tl 323;2%5532
to perform amnesic approximation, since ed2RT coefficient ‘ ‘ ‘ ‘ ‘ ‘ ‘
corresponds to a global contribution to the entire timeeseiThe ! 2 8 4 5 6 7
same is true foDCT as well. _

In contrast to the above, the piecewise polynomial methods u s, .
offer several desirable properties for the task at hand.hvVisc “s\/ oo s
already known about their incremental calculation, andabse I = T STe-,
each segment is independent of each other, we can reduce th ““u\ \s— -
fidelity of "older” segments simply by merging them with thei - e yo1.230553.2
neighbors, without affecting "newer” segments. The onlgsfion 1 > 3 7 : 5 7

remaining is which piecewise polynomial technique to use. W
decide orPLAfor the following reasons. Piecewise linear approxrig. 2. Combining two regression lines.
imations are already widely used and accepted in the meainchl

financial domains [19], [24], [34]. There are many usefutatice . .
. - . . . We can now prove the following theorems regarding the pces
measures defined d?PLA, including weighed measures [23], time . . .
of merging two line segments into one.

bounding approsimatons t the Eucidean distance. Masgoy. THeoTem L{Computing the New Line Segment]The Iine
g app ’ segmentsy 2, built from the two line segments; and s», is the

many applications, like anomaly detection algorithms [2ahp . . - .
. . . same as the line segmesit o, built from the original points of
rule discovery algorithms [27], use tH&L_A representation. - - : ’
the time serie’s That is,s1 » = 57.5.

) o Theorem 2:[Computing the New Error] The error of the

A. Properties of PLA Approximation line segment approximating all the original data points tan

In PLA, we approximate the data points in a time series usir@mputed as the sum of the errors of the two individual line
a number of linear segments whose ends need not be contigusggments, and the error between those two line segmentfiand t
[23]. The PLA approximation scheme has some desirable profine calculated based on those two. Thati&s; o) = E(s1) +
erties that allow incremental computation of the solutihese F(sy) + E(373).
properties are necessary in order for the algorithm to be &bl Another interesting property ¢fLA is that for the computation
operate efficiently on large datasets. In the following geaphs of the error£(57z) we do not need to process individually all the
we present these properties in the form of theorems, and yeéints corresponding to line segmentz. We can instead avoid
discuss their applications in Section IV. the linear complexity of this procedure and compute theevali

Assume we haveV data points of a time serieq[i], 1 < £(s73) in constant time, according to the following lemma.
i < N, and we use them to fit two line segments (using least| emma 1:[Computing the Error Between Two Segments.]
squares). Let the first line,, approximate points ton, n < N, The error,E(s73), of a line segments; 3, which was constructed
and the second linesz, approximate points: + 1 to N (there from two line segmentss; and s, can be computed with a
is no restriction om). In addition, suppose we use a single linglosed-form formula in timeO(1), regardless of the length of
segment to approximate all the poiritsto IV, call it s; 2. The the line segments.
above three lines are depicted in the top graph of Figure [Atéwe Proof: We want to prove that the error between two line
to these three lines are the erra&s,), E(s2), and E(s1,2). segments can be computed using a closed-form formulai;Let
The error of a segment is computed according to the formulagnd i, be the two line segments, corresponding to the same set
E(s) = Y, (T[j] — s[j])?, where; ranges over all the points of A7 + 1 points,0, ..., M. Let L = [11[0] — 2[0]], R = |11 [M] —
in segments, T'[4] is the value of pointj in the time series, and Io[M]|, ¢ = min(L, R), andA = (maz(L, R)—c)/M. In order to
s[j] is the estimate for poini given by segment. compute the errotfZ, we need to sum the squares of the pairwise

Now imagine that we keep; and sz, and throw away the distances for the\/ + 1 points of the line segments. The main
original N points, and that we want to use a single line segmegpservation is that each one of those pairwise distancéesrglif

to approximate all the original points. The constructiontii from its neighbors by\. The shortest distance is the next one
new line,s1 2, can be based only on the information 4n and

so, and we prove thaki; is the same as; . Since we no A similar result has also appeared elsewhere [10].

iS c+ A, etc., and the last one is+ M A. Then, we can compute CL —
E as follows. vee /
M+1 9 €2 [
. 2 2 A M(QM =+ 1) Cqy
E ; (c+(i—1)A)? = ... = (M+1)(*+ecMA+ 5) A
The above analysis assumes that eitheandl, do not intersect, (a) piecewise constant (b) linear
or they intersect at one of their ends (poinbr point M). If the
two line segments intersect at any other point, then we densi —
the parts of the segments on either side of the intersectamt p oo
separately, and apply the above formula twice. []
The properties ofPLA, presented in Theorems 1 and 2 and 4 &V d,
Lemma 1, form the basis for the design of the online algorithm . T)
(c) piecewise linear (d) continuous

we propose. These properties enable our algorithms to nhexge

line seg.me'nts, ahd Calculatg exactly th? resulting linamseg Fig. 3. The different classes of amnesic functions.
along with its residual error in constant time.

[1l. PROBLEM FORMULATION _ _ _ _ _ _
In the following paragraphs we establish some addition{iont'nuous Piecewise Linear: The general form of piecewise

. Inear functionwith L ions i follows.
terminology necessary for the rest of the paper. Then, wedby ear functionwit sections Is as follows
define the problems that we address with this work. { aix+ 31 ,0<z<d;

Az) =

) . <
A. Amnesic Functions arr+fr ,dr-1 <,

As we mentioned earlier, we need a way to specify for eacwherea; > 0,1 < j < L, f1 > 0, and 32 = aidy + 51 —
point in time the amount of error allowed for the approxiratof —@2di,...,8r = ar—1dr—1 +Br—1 —ardr—1.
the time series. In order to achieve this goal, we useatheesic Continuous: The amnesic functions of this class can take any
function A(zx), which returns the acceptable approximation errdorm not subsumed by the previous classes. The only rasetrict
for point x = ¢t —t;, wheret is the current time, and; is the is that the function is monotonic (according to Definition Wje
time that point7'[i] arrived. The time i refers to the time when do not require that these functions have a closed form famul
the last data point arrived, and corresponds to positiea0 of We also define two forms of amnesic functions, namely, the
the amnesic function. Note that the functidriz) is only defined relative, RA(x), and theabsolute AA(x), amnesic functions.

for z > 0, sincet; < ty. Relative: A relative amnesic functioRA determines the relative
A key property that an amnesic function has to satisfy is thgpproximation error we can tolerate for every point in theeti
monotonicityproperty. series. When we use a relative amnesic function, we eshlgntia

Definition 1: [Monotonic Amnesic Functions.] A function, weigh the error of a data point by the inverse of the amnesic
A(z), is called monotonic ifA(z) < A(xz + 1), for every value of function corresponding to that point, so that the weightadre
x in its domain. for point X is E(z)/RA(x). For example, the relative amnesic
The approximation of a time series is a lossy compressidm-tedunction RA(z) = = + 1, specifies that when we approximate a
nique, which by definition is irreversible. Thus, the momatity point that is twice as old, we will accept twice as much error.
property poses a natural restriction in our setting. It eesuhat When we use relative amnesic functions, we fix the number of
if at time ¢ we can tolerate some error in the approximation dfinear segments that we are allowed to use for the approiomat
point T[i], E(Ti)), then we will not request an approximationof the data.
of the same poinfr'[i] with error E¥ (T[i]) < E'(T[i]), at any Absolute: An absolute amnesic function specifies, for every
time ¢’ > t. point in the time series, thenaximumallowable error for the
We now define a taxonomy of amnesic functions (refer tgpproximation. The erroZ(z), at pointz, should satisfy the
Figure 3). The constant amnesic function represents alase, inequality £(z) < AA(z). When we use absolute amnesic
and we do not discuss it here. As we discuss in the next sectifinctions, we allow the approximation to use as many linear
each class in the taxonomy has its own special characbsiistisegments as necessary in order to meet the error bounds.
which have to be taken into account when designing an efficien when we have to apply an amnesic function to a segment
algorithm for the amnesic approximation of time series. we pick a single point from the segment, on which we apply
Piecewise Constant: The piecewise constant functionas the e amnesic function. Nevertheless, this computatiorrsetethe
following general form. entire segment. The reason we do this is that we do not store
a ,0<x<d; the error of each individual point represented by each sagme
Az) = { and we only have available the error of the entire segment. Fo
the rest of this paper we assume that segmeist represented
wherecy,...,c;, are constants, such that< ¢; < ... < ¢r. by its most recent point/'[is]. Then, when we want to apply
We refer to each step of the function asexction to distinguish an amnesic function te, we simply consider the point of the
it from the segments used in the approximation. amnesic function corresponding to poifis]. We can also apply
Linear: A linear functionhas the general formd(z) = ax+ 38, more elaborate schemes. For example, we could considemgtaki
a, 8> 0. the average value of the amnesic function correspondindpdo t

c ,dr-1 <,

first, middle, and last points of. In any case, the algorithms wetotal approximation error. The minimum error for approxting
propose do not need to change. data points, ..., N with k¥ segments is given by the sum of the
approximation error of points, ..., j with one segment, and the
error of the optimal approximation of poings+ 1,..., N with

k — 1 segments. Finally, the algorithm picks the assignment of

Under the assumptions discussed above, we want to maintaifg ments that leads to the least overall approximatiorr. erro

PLA model @ with X' segments for a streaming time series With Ngte that in order to get the optimal solution in a streaming
an unrestricted window. More formally, we define the follogi environment, we have to run the dynamic programming algorit
two problems. _ _ _ _ _every time that a new data point arrives. The reason is that we
Problem 1:[Unrestricted Window with Relative Amnesic .annot reuse the computations made during the previouskstep
(URA)] Given the number of segments and a relative am- ;5,se the amnesic function causes the approximation dreach
nesic functionRA(z), find an approximationy using X' Seg- pqint, and their interrelationships, to change at evenetstep.
me}gts that minimizes the approximation error of the timeeser The time complexity for the dynamic programming algorithsn i
21 (E(s))/RA(tN — ts;))- _ ~ O(N?K), which renders this approach inapplicable for the online
Problem 2: [Unrestricted Window with Absolute Amnesic yersjon of the problem. Nevertheless, in the experimeretetian
(UAA)] Given an absolute amnesic functiohd(z), construct & yye show that our algorithms always find a solution that is very
model @ with the minimum number of segments, subject t0 ¢jose to optimal.
the constraints(s;) < AA(ty —ts;), 1 <j < K. 2) The GrAp-R Algorithm: In this section we present the
We are looking for online algorithms that, when a new poindkeleton of our algorithmGrAp-R for solving theURA problem.
arrives, they update the approximation model in sub-litieae on At each time step, the algorithm merges the consecutive pair
the number of segments. Note that in thRAandUAA problems of segments whose merge will result in the least approxanati
the optimization objective is different. In theRA problem we gror, among all possible merges. The pair of segments hioailc
seek to minimize the approximation error given the memoacsp pe mergeds., and s,,41, iS given by the heap structuré. We
used byPLA, while in the UAA problem we want to minimize merge those in one segmest, 1, according to Theorems 1
the space used in the approximation given the maximum erigiq 2. Then we compute the approximation error that wouldtres
allowed. by merging the new segment with each one of its two neighbors,
Following the definition of the problems for the unrestritte $m—1 and s, 2, according to Lemma 1. We use these values for
window, we now define the corresponding problems for the cagé errors to update the heah in order to reflect the new set of
where we consider the sliding window model. possible merges. This merge results in a spare segment; wiic
Problem 3: [Sliding window with Relative Amnesic (SRA)] assign to the newly arrived point of the time series. Oncénaga
Given a sliding window of lengthV, the number of seg- we have to compute the approximation error when merging this
ments K and a relative amnesic functioRA(z), find an ap- gegment with its neighbor, and update the héapA high-level
proximation @ using K segments that minimizes the approxyescription of the algorithm is depicted in Figure 4.
imation error of the time series within the sliding window

K
Do jo1 (E(sj)/RA(tN —ts;)), tN—w41 S ts; < EN.

B. Problems for Amnesic Approximation

Problem 4: [Sliding window with Absolute Amnesic (SAA)]
Given a sliding window of lengthV’, and an absolute amne
function AA(z), construct a model) with the minimum numbe
of segmentsK, subject to the constraints(s;) < AA(tn —ts,),
IN-w+1 <ts; <tny, 1 <j< K.

IV. ALGORITHMS FORRELATIVE AMNESIC FUNCTIONS

We now describe algorithms for thédRAandSRAproblems. In
the experimental evaluation we show that our algorithméopme
very close to optimal. At the end of the section, we brieflycdis
solutions forUAA and SAA

A. Unrestricted Window with Relative Amnesic

1 let H be a min-priority queue on the approximation errors
sic resulting from merging each pair of consecutive segments;
2 let EQ = () be a time-event queue;

3 procedureGrAp-R ()

1) Optimal Solution: The optimal solution for thé&JRA prob-
lem can be obtained using dynamic programming [5].
objective of the algorithm is to minimizelpErr(b, k), which

is the error resulting from the approximation of data points
b,..., N with & < K segments. The recursion for the dynamic

programming solution is described by the following formula

ApErr(b k) = bgiélN(E(T[b. L JD+ApErr(j+1,k—1)) (1)

4 when a new point][¢], of the time series arrives at tirme;

5 pick the minimum element froni/, and merge the
corresponding segments,, and s,,+1, into a new
segments,,, m+1;

6 updateH with the errors of merging,, m+1 With its two
neighboring segments;

7 assign a new segmenty;;, to the newly arrived
point, T'[];

8 updateH with the error of mergingrr; with its
neighboring segment;

9 ManageEvent$H, EQ, tn, Sm, Sm+1, Sm,m+1);

10 return;

The

Fig. 4. The skeleton of theGrAp-R algorithm

The GrAp-R algorithm also makes use of queugR. This
S

The algorithm starts by computing the approximation errgraragraphs.

E(Tb...5]), for1 <b < N andb < j < N. Then, at eac
iteration, it computes the optimal solution by minimizinge

h

tructure keeps track of the way that the dependencies among
the segments used for the approximation change as a reshk of
amnesic function. The procedure that manages these depresie

is ManageEvents()and we describe it in more detail in the next

In the following subsections we elaborate on the way the
t framework of the GrAp-R algorithm described above changes

when we consider the different classes of amnesic functidfes Proof: The algorithm need®)(K) space to store thé
discuss the specific details of each case, and present theatich segments used in the approximation. A heap structure is tased
space complexities of the solutions we propose. determine the pair of segments that will be merged at eaghoéte
3) Piecewise Constant Amnesic FunctioWghen the amnesic the algorithm. The heap requiré k) space to store th& — 1
E:%gcrflgogtg?ﬁ)en?eslatt(i)véhgrdctla?;sg ‘gf ?I‘II%CS;\;:’SC?]‘ ggg?rgaerr]]ttsﬂ:hr:;ﬂg adjacent pairs of segments. Finally, we must keep track f th
be merged during the next step of the algorithm only happejg‘es_ when segmen_ts cross a discontinuity of the amnesi ste
when a segment crosses a discontinuity between two sedfon _unct|on. At each point in time we only need to maintain in the
the amnesic function. time-event queue one such event for every segment. Therefor
Example 1:Assume we have the amnesic functidhA(z) = the queue has a worst space complexityOogi'), and O(K) is
1,0 <z < 10 and RA(z) = 4,z > 10. Let s1» andss 4 be two the overall space complexity of the algorithm as well.
pairs of segments, candidates for merging, that, at theeutime, At each time unit, the algorithm can pick from the heap the
are at positions = 7 andz = 2, and have errord(s,,2) = 4 and %air of segments to merge, and identify in the time-evenugue

E(s3,4) = 2, respectively (Figure 5(a)). Then, their relative error . o . .
arg 5E4(?91,2)/RA(7) — 4 and E(ss.4)/RA(2) = 2, which means 1€ segments that cross a discontinuity,d(l) time. The time

that s34 is the first candidate for merging. However, after three tim® Merge two segments is constant, because of the Theorems 1
instances, whea; first gets to the point: = 10, its error becomes and 2, and Lemma 1. The time to update the hea(isg K),
E(s1,2)/RA(10) = 1 < FE(s3,4)/RA(5) = 2 (Figure 5(b)). Thus, and, since the size of the time-event queu®i{%), the time to

s1,2 Is now the candidate pair for merging. insert or delete an event from the queuediflog K) (when the
queue is implemented using skiplists [29], or any otheredent
534 S12 Ss4 S12 data structure that offers logarithmic search times). Thhe
overall time complexity for each iteration, when there idyon
4 - 4 - one segment crossing a discontinuity,(glog K). In the worst
R 11— case, for a particular iteration, different segments magrbesing
02 7 10 X 0 5 10 X all L discontinuities of the amnesic function, so the worst case
(@) (b) time complexity isO(Llog K). []
Note that the time complexity mentioned in the above theorem
Fig. 5. Event example for piecewise constant. refers to the worst case, when segments cross all the disaent

ities of the amnesic function at the same time. In practice do
In order to keep track of these changes, we need to maintaigt expect this situation to arise often. Actually, it nevecurred
the heapH, and, in addition, a time-event qued). The heap in our experiments with an extensive set of real datasets.
H determines the next pair of segments that should be merged4) Linear Amnesic Functionsin the case of linear amnesic
The queueEQ flags the times at which the segments cross fanctions, each event ir£Q specifies the time at which the
discontinuity in the amnesic function (remember that dytinese relative ordering of the merging error of two pairs of segtaen

computations we assume that each segment is representési bghange& It turns out that, if we know the approximation rerro
f'each segment and the closed formula of the amnesic fumctio

most recent pomt). When this happens, we update the _ms'tWe can compute the times at which these changes will occur. We
of the segment in the heap, and we compute the next time thafer to those times as theosspoints

it will cross a discontinuity. Figure 6 shows tIMaanageEvents() Example 2: Assume we have the amnesic functiﬁ;ﬂ(x) =x+
procedure for the case of piecewise constant amnesic @nscti 1,z > 0. Let s1,2 andss 4 be two pairs of segments, candidates for

The GrAp-R algorithm remains as discussed earlier. merging, that were created at the current time, at positioas6 and
x = 2, and have error&(s1,2) = 24 and E(s3,4) = 12, respectively

(Figure 7(a)). Then, their relative errors al¥s;2)/RA(6) = 3.4
1 M Events H EO. time t t andE(53_,4)/RA(2) = 4, which means that, is the first candidate
pro;: e;nafle Sven fl)‘ queueE, time t, segments for merging. However, after four time instances, when first gets
S - to the pointz = 10, its error becomes?(s1,2)/RA(10) = 2.2 >
2 fromE t ding t .) .
rem:r;/gs r(ll. (2 any events corresponding to segmesits E(s3,4)/RA(6) = 1.7 (Figure 7(b)). Thusss 4 is now the candidate
3 if (next evente in EQ is scheduled for time < ¢t. <t+ 1) pair for merging.
4 removee, related to segments.;; and s 2, from EQ;
5 update inH the position of the pais.,1 and s 2; S3.4 S1.2 S34 S1.2
6 compute the new time when the pair; ands.,2 will - —
cross a discontinuity;
7 insert in EQ the new event (if any);
8 insert in EQ any new dependencies identified concerning 1 1
5777.,m+1; 02 6 X 0 6 10 X
9 return;
(a) (b)

_ . . Fig. 7. Event example for piecewise constant.
Fig. 6. The ManageEvents() procedure for piecewise constant

amnesic functions. . . .
Consider the general case, where we have a linear relative

The following theorem states the space and time complefity 3MNesic functionRA(z) = ax + 5, and we want to compute
the time when the relative ordering of segmestsand so will

the algorithm. change. (In fact, each one of and s, represents the merge of
Theorem 3:The space complexity dbrAp-Rwith a piecewise 4 pair of segments.) LeE(s1) and E(s>) be the approximation

constant amnesic function ©(K), and the time complexity to errors fors; and ss, respectively. Finally, assume that is the

process each new point (L log K). time whens; was created. This time is defined as the time when

the most recent point of; arrived. We define’s, in a similar of the algorithm, it is easy to determine the overall best péi
way. Then, their crosspoint, is given by the following equation. segments to merge, either by performing a linear scan ofape t

E(s1) E(s2) element of theL heaps, or by maintaining a heap of thoke
- (te—ts,) + ~a (te —tey) + 3’ or elements. For all practical purposds;is relatively small, in the
order of a few dozens. Therefore, a linear scan is suffigientl

te = (a-ts =) Bsy) = (- by = B) - B(sz). (2) fast, and avoids the need for maintaining the extra heaptste,

_ (E(S_l)_ - E(SQ)_) o _ _ which in the worst case has time complexi®fL log L). For the
We only consider the positive solutions of this equationteNorest of this work, we only consider the linear scan approach.
that it may be the case that their relative ordering nevengés, The following theorem gives the space and time complexity of
that is, there is no positive solution. Furthermore, we donmged the algorithm.
to compute the crosspoint of each segment with all the athers Theorem 5:The space complexity dBrAp-Rwith a piecewise
It suffices to consider only the segments stored in neighgorilinear amnesic function i¥)(K), and the time complexity to
nodes in the hea@/, and maintain these dependencies up to daggocess each new point (L + L log % + log K).
as the heap changes. All these computations can be perfoarmed Proof: We assume that an equal number of segments corre-

constant time according to Equation 2. sponds to each section of the amnesic funétidrhe algorithm
The ManageEvents(procedure for the case of linear amnesieequiresO(K) space for storing th& segments and the heaps
functions is depicted in Figure 8. (since all the heaps combined st@PéK) values). The time-event

gueue stores an event for every adjacent pair ofRhgegments,

) and also an event for the segments that will move from onéosect
1 proc ManageEventﬁqg, queueEQ, time ¢, segments to the next. Therefore, we need(K) space in total.

Smy Sm+1y Smym+1 . In terms of time, the algorithm at each iteration neédkg i)
2 remove fromE() any events corresponding to segmess time to update the time-event queu@(L log %) time to update

ands.,,11; - - .

3 if (next evgﬁte in EQ is scheduled for time¢ < t. <t +1) the L heaps, and (L) time to pick the best pair of segments to
4 removee, related to segments. ; and s, 2, from EQ); merge. u
5 swap inH the positions ofse,; and se 2; 6) Continuous Amnesic Functiong/hen the amnesic function
6 compute crosspoints between; ands. > and all their is continuous, we identify two cases. First, the amnesictfan

__new neighbors (i.e., parent and children nodesifin | has a closed form formula. In this case, we can compute the
7 insertinE(Q) events for any new crosspoints identified; | . qqnoints of the segments, and we proceed as with ther linea
8 insert inEQ any new crosspoints identified concerning

St 1] amnesic functions. Second, when the amnesic function does n
m,m ’ . .
9 return: have a closed form formula, we replace the continuous fancti
with a piecewise linear approximation usirig sections. Then,

we proceed as with the piecewise linear amnesic functiores. W
Fig. 8. The ManageEvents() procedure for linear amnesic func- construct L heaps, and search in those for the best pair of
tions. segment to merge. Since the resulting amnesic function is an

. S ...__approximation of the original function, instead of examunionly

The problgm of keeping _trac_k of the crosspoints is remlrrnScethe top element from each heap, we consider thejtefements.

of the work in the area oklnetlc_ data strL!cture$4]. However, \We calculate the exact error (i.e., based on the continuounesic
the above work examines only linear motion, and does rlmy"’lpl%nction) of those elements, and pick the best pair of se¢gnen

to our problem. - .
. . . among them. This technique proves to work very well, even for
The complexity of the algorithm is as follows. smallg que p y

Theqrem 4:'_I'he Space complexn)_/ OGrAp-R W.'th a linear The following theorem gives the space and time complexity of
amnesic function i9D(K), and the time complexity to process, algorithm
each new point i) (log K). Theorem 6:Assume we approximate a continuous amnesic

% Prquf:nt Thﬁ deﬂﬁor'ﬁhm r(?lfqhu'r?isrg (K)v sn?[ace to stlore rthe flrmction with L piecewise linear sections. Further, assume that
Segments a '€ heap. The ime-event queue aiso TequifisS. ,ngiger the tog-elements of each heap in order to identify
O(K) space, since it stores one event for every adjacent pair

tﬂe best pair of segments to merge. Then, the space conypbéxit
segments. P 9 9 P

. GrAp-Rwith a continuous amnesic functiond¥ K'), and the time
At each iteration, the time to find the pair of segments to merg P)

o complexity to process each new pointi$g L+ L log £ +log K).
and the segment that has reached a crosspoinl lis We need Proof: We assume that an equal number ofLsegments cor-
O(log K) time to update the heap after those changes. We alrse%p

. - onds to each section of the amnesic function. The #igori
need to upd_ate the queue, which tal@(ﬂ;og K) time. Therefore, requiresO(K') space for storing thé& segments and the heaps
the overall time complexity for each iteration @log K).

i) . . ; (since all the heaps combined staf¥ K') values). The space
arr?r)lez;scgjvxlcst?onuIinse?:rorﬁr?il?seezc cEFuS?Ctt'%zﬁsiuhrgﬁ t:vzt t:ZZt required by the time-event queue (¥ K), to store events for
. prt L T all adjacent pairs of segments and for the segments crossing
each section separately, as in the case of linear amnesitdngs

. . . ection. Therefore, we negdl(K) space in total.
discussed above. We maintainheaps, one for each section, ang (K) sp
a single time event queue. The time-event queue, in addiion 2This assumption is realistic because of the following oketésn. The

keeping track of all the crosspoints, also maintains thessirmat sections of the amnesic function that refer to the neweregalf the time

which a segment moves from one section to another. The abﬁges will tend to be of finer granularity and encompass dlsmgortion of

. . L . e time series than the sections referring to the olderegaliYet, they will
L heaps carry local information, as to which is the best pair @iquire a higher ratio of segments per data point, since dtairements for

segments to merge within each section. Then, at each @rrataccuracy in the newer data points is higher than that for termnes.

In terms of time, the algorithm at each iteration neédkg K) time series with absolute amnesic functions. First, we udisc
time to update the time-event queu@(L log %) time to update the algorithms for the unrestricted window, and then extdral
the L heaps, and(qL) time to pick the best pair of segments tadiscussion for the sliding window case.
merge. [|

A. Unrestricted Window

1) The GrAp-A Algorithm: When we use absolute amnesic
functions, we do not know in advance the number of segments

time series. Assume a sliding window of sidé, and that we use that will be negded for the approxmaﬂon._ Furthermore, an C
calculate the time when a neighboring pair of segments veill b

PLA to build an approximation mode&) with K segments. We ~ I
refer to the side of the sliding window from which new points?“g'bIe to merge. Hence, in this case we do not have to ke tr

enter the window as thstart of the sliding window. We calend of the segments whose merge V.Vi" result in the Iea_15t gddition
of the sliding window the side from where points exit, dadt error, and subsequently, there is no need to maintain a heap

segment, the segment af that approximates the points of thestructure on the_ adjacent pairs o_f segments, as we did for the
case of the relative amnesic functions.

series at the end of the sliding window.) . e
The skeleton of the algorithms for the sliding windows case Figure 9 shows a high level descnp_Uon of tAp-A algo-
m, which we propose for the solution of théAA problem.

is the same as the one presented in the previous section, er}_ h i the algorith . th d .
the amnesic approximation of time series in an unrestrict&i]”r']ng eac tlme step, the algorithm zss_lgan l_e niw Tﬁm pol
window. The only difference is that we now have to adjust th@ t_ e time series to_ ahew s_egmemzt, y ltse _(me). Then,
approximation such that there is no segment that refers t@ g} tries to merges; W'th its adjacent segment (line 6). _Note that
points beyond the end of the sliding window. In order to aahie at this t|r;neﬂ:he|re tISd otnly O.”T segmentf adjatc?t:\kitos(;nc]?r;;e i
this goal, we simply discard the last segment as soon as st ggp_resen s the Tast data point seen so far, at the end o '
entirely out of the sliding window, and we reuse it at the tstéir series. If the Seg’.“.e”‘ that results from the merge h_as eeat |
the window. Observe though, that the amnesic function isemotlhan what IS f_peg'f'ﬁd b¥ thle at_)iolute amnisu: fur:ctlton,l ?’”e“
tolerable to the approximation error towards the end of lickng merge is realized (line 7). In either case, the next stephieeo

window. Then, a question that arises naturally is whethes it the tl:pdate of the time-event queti®) (line T(l).f h
possible for the last segment to continue growing by merging '€ ProcedureManageEvents(keeps track of the merges we

with the second to last segment, and consequently nevepdall KNOW in advance that should happen, and upd&@scorrespond-

of the boundaries of the sliding window. The following lemma"dY- First, in line 14, it schedules i@ an event specifying

addresses this question when the segment that was formed with the arrival of the newa da

Lemma 2:The last segment of moded will not grow to point will be able to merge with its adjacent segment. Then, i

represent the entire set of points beyond the end of thenglidiin€S 15-19, it processes any merges that are schedulegpeha
window. at the current time, and updates the quéi@. In the following

Proof: We will prove this statement by contradiction Paragraphs we elaborate on the above issue for the diffleirgaft

Assume that the last segmes, never falls out of the sliding °f @mnesic functions.
window. This necessarily means that the errors@f, E(sg),
is not al_vv_ays the largest among the errors of all the segm_enlis,Iet EQ = § be a time-event queue;

in the sliding window (so that it gets picked to be merged with2 procedureGrap-A ()

the second to last segmenty_;). If sx never completely falls | 3 when a new point]’[i], of the time series arrives at tingy

B. Sliding Windows With Relative Amnesic

In this section we discuss algorithms that solve the onlime a
nesic approximation problem for a sliding window of a stréagn

out of the window, then it represents all the points of theetim g f‘estSig” ;e”ae"r‘]’ Z%?&?g{i]sé%r:‘:n:‘z\’s pl‘gir:‘é? from the mergd of
. - . . Sm Y | ult
series beyond the end _of the sI|d|_ng window. As the windgw s7() and its neighboring segment;
moves forward more points are being added to it (or otherwisg if (E(spp)) < AA(tn))
sx would fall outside the sliding window). As more points arg 7 accept segment,,, in the approximation model;
added tosg, E(si) keeps increasing. If we assume an infinite8 else
data stream, thefim E(sg) = +oco. The above equation 9 18t sm = s
' t—too BASK) — :) a 10 let s, +1 be the one segment adjacentstq;
holds even when we take into account the amnesic functioms,TH 11 ManageEvent$EQ, tx, Sm, Smi1):

for a sufficiently large time pointi;,: E(sx) > E(s;),1 <i < 12 return;
K,vt > tr, since all the other segments represent a bounde)

’ b> de . d theref gh b P ded % procManageEventgqueue EQ, time ¢, segmentSn,, Sm+1)
number o ata_p0|r_1ts, and therefore a_V€ abounde e”a”#_*‘m 14 insert inEQ an event for the time whes,,, ands;, 1 will be
than E(sk). This violates our assumption above, thats) is able to merge;
not always the largest among all the segments in the windew.| 15 if (next evente in EQ is scheduled for time) '

The above lemma guarantees that a sliding window amnesﬁ removee, related to segments..; ands,», from EGQ;

18

. . . . X merge segments. 1 and se 2 iNto segments;
approximation will never degenerate to an unrestricteddain lets._1 ands.;1 be the segments adjacent 4g;

approximation of the time series, but does not give us a boyntd insert inEQ events for the times wheg. 1 andss., and
on the size of the last segment. In Section VI we experimgntal = ¢ andsc1 will be able to merge;

show that the size of the last segment is always relativelgllsm

V. ALGORITHMS FORABSOLUTEAMNESIC FUNCTIONS Fig. 9. The skeleton of theGrAp-A algorithm

In this section we present algorithms for tRAA and SAA 2) Piecewise Constant Amnesic Functionsd®e observe that,
problems, that is, the online amnesic approximation ofastieg given two segments, we can precompute at which point in tifme (

any) we will be able to merge them. Moreover, we can simplifireat each section separately, and for each section praeéd
the problem by considering, as viable time points for magginthe case of linear amnesic functions. We still need to meinta
two segments, only the exact times at which both segmemtssingle time-event queué;Q, to handle the events from all
have crossed a discontinuity of the amnesic function. Relmeem sections. The processing in this case is as follows.

that the discontinuity pointsdy,...,dy_1, are specified in the For sectioni;, which is specified by the discontinuity points
definition of the amnesic function, and, therefore, are km¢see d;_; and d;, we compute for each pair of segments the time
Section 1lI-A). Because of the form of the piecewise coristaat which they could merge. If this time falls inside the intr
functions, we are certain that if two segments cannot menge o [d;_1,d;], then we insert inEQ a merge event with this time.
they change sections in the amnesic function, they will defin Otherwise, we simply insert ilv@Q an event specifying that the

not be able to merge before they change sections again. corresponding pair of segments should be re-examined when i
For each adjacent pair of segments in our approximatign, crosses over to the next sectidfy ;. We do the same for the
ands; 41, it suffices to take the following three steps. pairs of segments that span across two sections of the amnesi
1) Assume segments ands; ; are merged inta; ;4 , and function. In this case, the relevant computations are pextd as

calculate the error of; ; 1, E(s;it1)- if they both belong to the section where their most recenntpoi

2) Compute the earliest point in time wheigs; ;1) becomes Pelongs té_. _ _ _ _
less than the specified amnesic absolute error, and call thi®®) Continuous Amnesic FunctionsVhen the amnesic function

time tmerge. This computation is fast, because we onlys continuous, we can only calculate the times of the possibl
need to consider the discontinuity points that_, has Segment merges if the function has a closed form formulahén t

not crossed yet. That is, in order to determing.ge, we general case, where there is no closed form formula availai
have to make the computatidn- 1 times in the worst case. approximate the continuous amnesic function with a piesewi
It turns out that if we use the monotonicity property of thdinear function withZ sections. Then, we proceed by treating the
absolute amnesic functions, then we can reduce the cofftnesic function as a piecewise linear one, as describedein t
putation effort. The monotonicity property says that as wrévious section.

move towards the past, the approximation error allowable Note however, that we still have to compensate for the error
by the amnesic function is increasing monotonically. Thidue to the piecewise linear approximation of the continuous
means that instead of a linear scan on the discontinuiynction. Consider a pair of segments, corresponding tticsec
points, we can employ binary search, which will result it of the piecewise linear function, that are candidates togmer
faster computation ofne,qe. However, for the purposes ofinto segments. Assume we have computed the merging time

this paper, we only use the linear scan approach. for s, tmerge, according to the piecewise linear approximation,
3) Schedule an event in qued), regarding segments and AA(z), of the amnesic functiomd A(z). This means thati(s) <
Sit1, for time tmerge. AA(tmerge —ts), Wheret, is the time when the most recent point

3) Linear Amnesic Functionsin the case of linear absoluteOf 5 ar.”"ed- We then check whethei(s) < AA(tm”ge._ ts), .
hich is what we really want to hold. If the above inequality

amnesic functions, we can compute the time during which tvxl% true. then w dat&o with an event concerning at tim
neighboring segments will be eligible to merge based on sedo s true, the el ugtr? rw? W a ﬁ Z | (E) cen vg r?t g re
form formula. This is the time when the resulting segment wifmerge, @S usual. erwise, we schedule an event to re

have approximation error equal to or below the error spetHie zzitr:)'geomﬁemﬁ;gég\?vigg‘ﬁnf;;"’]:;nct'it cross\m/avse c:(\;]eofv\';ot:;? tEiXt
the absolute amnesic function. p Ohy 1.

Consider the case where we are trying to compute the tinf@€rge is more likely to occur then, because of the monotonic
tmerge When two existing segments; and s,, can be merged Property of the amnesic function.

into segment. Assume the linear amnesic function is described We considered other approaches for dealing with this prople

by the equatioM A(z) = ax+ 3, E(s) is the approximation error as well. When the inequalitf(s) < AA(tmerge — ts) does not

for s, and letts be the time whens was created. This is definedhold, we can test other possible time points for the mergirée

?S the time when tht? '][LOStf rltlace_nt pomtslt(arrlved. Then, the . moves to the next section. On the other extreme, we can choose

IME tmerge 1S given by the following equation. the piecewise linear approximation of the continuous afnes

E(s1)—p 3) function in such a way that A(z) < AA(z), V. In this case we

a ' know that for anys E(s) < AA(tmerge —ts) < AA(tmerge —ts).
The approach that we propose is the middle-ground betwese th
We only consider the positive solutions of this equatiom. (ItWO-
this case, negative solutions mean that the merge should hav
occurred in the past.) Also, note that since the amnesidibtme g sjiding Window

iS monotonictmerge indicates the earliest point in time when we

can realize the merge. The merge may also happen at any tim(\-.(ve now turn our atten_tlon to algorithms that wqu on a sliding
window of the time series stream. These algorithms are based

on the corresponding ones for the unrestricted window with
only minor modifications. Consider the example illustraied
Figure 10. The two figures depict the amnesic approximation o
e values of the time series that fall in the sliding windawtivo
time instances (the absolute amnesic function remains ahe's

E(S) = (tme'rge - ts) + /81 or tme'rge =

t > tmerge-
When we compute the timgy.-qe for a pair of segments, we
insert this time in the time-event queu&?. After a merge has

be able to merge with its two neighbors, and update the tiveete
queue.

4) Piecewise Linear Amnesic FunctionSssume that there are 3thjs choice was made in accordance to the way we apply an amnes
L sections in the piecewise amnesic function. Then, we haveftction to a segment, described in Section IlI-A.

across time). In the first time instance (Figure 10(a)), time | time series. Then, at each consecutive step, it merges the tw
segments are enough in order to produce an approximatian thaighboring segments that will result in the least incrdase¢he
has less error than what is specified by the amnesic fundiian. overall approximation error. For our experiments, we alsken
the second time instance (Figure 10(b)), we need five segnentuse of the amnesic functions, which are used to weigh theserro
order to meet the same approximation error requiremenigifal of the segments. TheBottomUpoperates on the weighted errors
for a different set of values). Note that as time advances, tand proceeds as normal.
number of line segments used for the approximation may &s&re In order to evaluate our algorithms, we used an extensive
or decrease. set of real-world datasets. These ali® datasets coming from

In the sliding windows context, we only need to maintain diverse fields, including finance, medicine, biometricemlstry,
representation of the values of the time series in the windoastronomy, robotics, networking and industry, and cowgtime
Consequently, we do not insert in the time-event queideany complete spectrum of stationary/non-stationary, nomgth,
events that refer to a time point past the end of the windows€&h cyclical/non-cyclical, symmetric/asymmetric, etc. [1All the
are events about merges that cannot occur, since the condieg datasets have length of 10,000 points, and are studentized (
segments will be dropped from the representatipmas soon as they have zero mean and unit standard deviation). When not
they fall out of the sliding window (it is an easy exercise toye explicitly mentioned, the results reported are averages all
a lemma similar to Lemma 2). 40 datasets. For all the experiments shown here, we employed a
piecewise linear amnesic function. The results for othenesit
functions are similar. In the following paragraphs, we fitstcuss

)) the results for the relative amnesic functions, and suleseity
The following theorem states the space and time complexify, ihe absolute amnesic functions.

for all the variations of th&srAp-A algorithm discussed above.
Theorem 7:Assume we employ a piecewise constant amnesic .
function. Then, the space complexity @(K), and the time A. Comparison taottomUp
complexity to process each new point@glog K). In the first set of experiments, we compare the performance of
Proof: The algorithm require®)(K) space to store th& GrAp to BottomUp which is essentially a comparison between
segments used in the approximation. The quéldg has space an online and the corresponding offline algorithm.
complexity O(K), since at each point in time we only need to Figure 11 depicts the approximation error and computatiog t
maintain in the time-event queue only one event for every gfai for GrAp-R and BottomUp for a single dataset (Space Shuttle
segments. Therefore, the overall space required(i5). STS-57). Similar trends are observed with all 40 datasets we
At every time step, the algorithm has to insert an event fer thused in our experiments. We use the unrestricted window mode
new segment, and process any events scheduled for the tcureatd 10 segments, and we report the error and time as a function
time. Both these operations translate to inserting newtevien of the window size. Our online algorithm consistently po®s
EQ. The time to calculate the error of merging two segmen@pproximations that are very close to those found by theneffli
is constant, and the same is true for calculating the timeg. algorithm. At the same time our algorithm is much fasteruneq
at which a merge becomes viable. (We can safely assume timgt only constant time for processing every new point (ditua
the number of discontinuities, — 1, of the amnesic function as we discussed in Section IV, the time is independem¥)fOn
are far less than the number of segments, and treat them afeaother handBottomUphas time complexityO(N log V).

constant. Therefore,c-g. can be computed in constant time.) In the next set of experiments, we quantify the differences i

The insertion of new events iFQ takesO(log K) time. Thus, the performance of the two algorithms. We report the curiuat
the overall time complexity for each iteration @(log K) - relative error,CRE, which measures the relative increase in the

. . . . cumulative error when usin@rAp-R
In this section we presented time and space complexity mea-

sures for the algorithms solving theAA and SAA problems. Zle(EGrAp,R(T[l..j]) — EBottomup(T[1..5]))
These measures depend on the number of segm&ntsised CRE =100 N ;
. Z i—1 EBottom.Up(T[ln,]])

in the approximation. However, when using absolute amnesic J

functions, it is not possible to calculate in advance theiwalf The second measure of interest is the speedup, which measure
K, or even a range of values féf. The values thak is going to hom many times fasteGrAp-Ror GrAp-Ais when compared to
assume are determined by the dataset and the amnesic fyncf?Pttomup

and can vary greatly. Nevertheless, we expect that in peatie > Timesottomup(T[1..5])

users will be able to make, for each application domain cjodis Speedup = N 1 T

decisions about the absolute amnesic functions. Thessioesi 2= Timecrap(T1L..])

will lead to reasonable values @&, and, subsequently, to small

space and time complexity bounds.

C. On the Complexity of the Algorithms

In Figure 13, we depicCREFE as a function ofK and N, for
the unrestricted window model. Usiisg segments, our algorithm
performs within3% —11% of the offline algorithm, for streams of
length 1000 — 3000 points (Figure 13(a)). Though, for increasing
We implemented our algorithms and conducted a series &f we observe a very slow build-up of the relative error. In the
experiments to evaluate their efficiency. We also impleeeithe experiment of Figure 13(b), the number of segments we use is
optimal algorithm using dynamic programming and the tiaddl 1%, 3%, and5% of N. In this case, where the rati¥/ K remains
BottomUpalgorithm for PLA [20], which is an offline algorithm, fixed, CRE remains relatively stable as we increase In both
to compare against our techniques. BrieBgttomUpworks as cases, our algorithm performs better as the number of segmen
follows. It starts by assigning a segment to each point in thecreases.

VI. EXPERIMENTAL EVALUATION

T
| [— onine
— Static

L L L L
0 200 400 600 800 1000 W

window size

(a) timety

(a) Error

— online
— static
1 4

Running time (sec)
s o o
2 o ®

j

Present Past

-—
(b) time ts > 11 . — " — g (b) bottom-4 performers
Fig. 10. Example of sliding window am- (b) Time Fig. 12. lllustration of the datasets

. LPTE . for which the quality of approximation
nesic functions (o fime instances showrg; 11 Typical progression of error achieved byGrAp-R Is the closest to (2)
for a random walk dataset). (left) and time (right) for GrAp-R and and the furthest away from BottomUp

BottomUp (Space Shuttle STS-57 dataset(P)-
unrestricted window).

The graphs shown in Figure 13 also depict $h&; confidence omitted for brevity.
intervals for the error values we report. These intervathicete The trends for the error and time remain the same as we
that there is a small but noticeable variation in the perfotoe of increasek and N. All the above results show that the online
the algorithm across the diverse collection of the 40 dédase algorithm achieves considerable benefits in terms of spdekd w
used in our study. Indeed, a close inspection of the expetahe losing little in approximation accuracy, when compared he t
results reveals that for the relatively smooth dataséds thie ones offline algorithm.
shown in Figure 12(a)GrAp-R performs extremely close (and With the next experiment, we address a question that was
in some cases identically) tBottomUpresulting in similar (or raised in light of Lemma 2. In the sliding window model, we
the same) approximation quality. Figure 12(a) depicts the f temporarily allow the last segment of the approximation etod
datasets for which the performance GfAp-R and BottomUp to grow beyond the end of the window, until it completely $asiut
is the most similar to each other. In other words, these aofthe boundaries of the window and we discard it. Figure 15(b
the examples wher&rAp-R performs the best. For the moredepicts the average number of points outside the slidinglovin
unstructured datasets, like the ones shown in Figure 12¢b), that are represented by the last segment, as a percentage of t
difference in the performance betwe@mnAp-R andBottomUpis window size. In all the cases we tested, this number ranges
more pronounced. In Figure 12(b), we depict the four dasasdretween10% — 15%, and therefore, is not a restricting factor
for which the performance of5rAp-R and BottomUp is the for our representation.

furth W : In the last set of experiments, we evaluate the performance
urthest away from each other. Note that these datasets ach Mt GrAp-A which is the algorithm we propose for the absolute

more challenging to approximate, since they exhibit marden amnesic functions. We run the experiments with the unestti
variations and unpredictable patterns. In these caefomUp window model and for three different stream sizes. In the cds

has the opportunity to make better global decisions thacathe GrAp-A we are interested in minimizing the number of segments,
overall approximation quality. K, used in the amnesic approximation. Therefore, when we

compare this algorithm tBottomUp we measure the cumulative

Figure 14 shows the speedup that our algorithm achievesfwhrelative increase Iivn the required number of segmeDRIS
translates to one or two orders of magnitude faster exactiian CRIS — 100 > im1(Kerap—a(T[L.4]) — Kpottomup(T[L..5]))
the offline algorithm (for the experiments we ran). We observ B SN Kpottomup(T[1-.5]) ’
that the speedup increases significantly for decreasinghis is . =t))
because the amount of work th&rAp-R does remains almost The results (refer to Figure 16) show tlf@tAp-Ais able to find

constant (depends ohg K), while BottomUprequires lots of & representation with a mi_nimal number of aqlditional segmen

extra effort for smaller values ok. As expected, the speedup’tnen compared to the offline algorithm, thatli% — 3% more

gets larger when we increagé. segments for streams of lengti®00 — 10000. There is only a
slight increase irCRISas we move to longer streams. As in the

We also run the same experiments for the sliding windo,ge of relative amnesic functions, the speedup is comditier
model. Figure 15(a) illustrates the results for the speeddiich it our algorithm running more than two orders of magnitude
in this case is mainly a function of the window siz& floes not ., tharBottomUp

seem to affect the speedup in this case, because of theyteartic

choices of K and the window size). Th&rAp-R algorithm is B- Comparison to Optimal

10 — 30 times faster tharBottomUp The results for the error In this section we investigate how our techniques compares
are similar to those for the unrestricted window model, arel ato the optimal algorithmOpt, implemented with dynamic pro-

Avg. % of Relative Error

Avg. % of Relative Error
8

Fig. 13.

T

50 10 30 50
Number of segments

(a) fixed K

T

50 50 150 250
Number of segments

(b) fixed N/K

Comparison of the approxi-

[Siream| = 5000
[[stream] = 10000

Avg. Speedup

10 30 50
Number of segments

(a) fixed K

9 [Seg. Outside Window]/ [Window]|
g

window = 200

W= 400

10 5
Number of segments

(a) Speedup

window = 400

50 150 250
Number of segments

(b) fixed N/K

100 300 500

Fig. 14.

Speedup of GrAp-R against Fig. 15.

100 300 500

I

0
Number of segments

(b) Excess points

Speedup of GrAp-R against

BottomUp (top), and number of excess
points represented byGrAp-R (bottom),
both for the sliding window model.

mation error between GrAp-R and Bot- BottomUp (unrestricted window).

tomUp (unrestricted window).

i o online environment.

& 100 5500

2 n

§ = 28 é)_ggg K (EGrap—r — Fopt)/Fopt Timeopt/Timecrap—Rr

5 g40 @ 200 16 0.102 1857

£ 850 € 100 32 0.083 1886

o o 107 1.66 2.79 g 64 0.064 1912

< 1000 5000 10000 1000 5000 10000 K || (EBottomp — Eopt)/Eopt | Timeopt/Timesottomtp
Stream size Stream size 16 0.058 112

Fig. 16. Average increase in the number of required segments 32 0.051 137

(left) and speedup (right) for GrAp-A against BottomUp (unre- 64 0.042 173

stricted window).

TABLE Il

Comparison amongGrAp-R, BottomUp, and optimal.

gramming. Unfortunately, due to the high time complexityttoé
optimal algorithm, this experiment is only possible foratetely
small datasets. VII. RELATED WORK

We use the same set ¢f datasets and perform the experiment There exists an extensive literature in the area of timeeseri
as follows. From each dataset, we randomly extract a subsegu approximation [22]. Some of the representations that haenb
of length512, and segment it inta6, 32, and64 segments, using proposed include the Fourier transform [13], [30], manyedént
BottomUp and Opt In the case ofGrAp-R we treat the data wavelets [28], [9], piecewise polynomials [38], [8], sifguvalue
subsequences as streams, have the algorithm operate endahds decomposition [8] and symbolic approximations [2]. Manytoé
record the performance of the algorithm during the lasatien. above approximation techniques have been adapted to weauk in
We measure the relative increase in error for @eAp-R and online fashion. For example, piecewise constant appraiima
BottomUpalgorithms, defined afq,a,—r — Eopt)/Eop: @nd can be created online with little loss of accuracy [25], a$l s
(EBottomup — Eopt)/Eopt, respectively. A zero value for the DFT [40]. Most of other time series representations have been, o
relative error means that the algorithm under consideratias could trivially be, calculated in an incremental fashiof][2There
found the optimal solution. For each dataset, and each numbas also appeared work on data stream summarization, using
of segments, we average the results oMerandomly extracted wavelets [15] and histograms [16]. Cohen and Strauss [E5gmt
subsequences, and then average the relative error ovel0 alla framework for maintaining time-decaying stream aggesgat
datasets. The results are shown in Table II. In the same tableeh as sum and average.
we also report how much slow@pt executes when compared to Even though each year seems to produce new representations
GrAp-RandBottomUp The results suggest that we lose little byfor time series [7], [26], interest in using PLA has not wankd
using GrAp-R as opposed t@BottomUp since both algorithms anything, the opposite is true. Recent years have seen &sexp
manage to find solutions close to the optimal. Note that thig interest in using PLA to support a wide variety of data m¢ni
excellent performance comes at tremendous savings in tefmsand indexing tasks. For example, in the previous year alBh8,
computational cost. The optimal algorithm is several sdeir has been used to support a finite state automaton to simulate
magnitude slower tha@rAp-R and is clearly inapplicable for an respiratory motion [36], to do forecasting of the stock nedrk

[35], to support anomaly detection in space telemetry [}l

to produce text based weather summaries [32]. This divésse |

merely hints at the broad applicability of PLA to real world
problems.

Chen et al. [10] describe a framework for multi-dimensional

regression analysis of time series with a tilt time framet, Yeey
do not explicitly tailor their representations to matchfeliént

amnesic functions. Bulut and Singh proposed using wavelets
to represent "data streams which are biased towards the more

recent values” [6], and successfully implemented theirhoet

Although the bias to more recent values can be seen as

special case of an amnesic function, the particular funci®
dictated by the hierarchical nature of the wavelet tramsfoA

subsequent study [39] generalizes on these ideas, by dewpup [9]

the approximation of the time series from a particular digiem

reduction algorithm, but requires the user to specify hoe t
available memory will be used for the approximation. Our kvor
removes all the restrictions inherent in the above appmsmch

The framework we propose takes into account the form of the
amnesic function as an integral part of the problem, andigesv [11]

an effective and efficient solution for a much more generas<l
of amnesic functions.

There has also been relevant work in machine learning, !

more specifically, in the neural network community, where th

main goal is to model time-varying patterns in time seriels [3[13]
[12]. What is different in our approach is that we propose a

summarization technique using an arbitrary, user-defiaguhesic
function, that is compatible with several existing dis&nuoea-
sures, and can be directly used by a multitude of indexing a
data mining algorithms.

[15]

VIIl. CONCLUSIONS

We have introduced the first method to allow the onlinEL6]

approximation of streaming time series, which allows aaiyt
user-defined reduction of quality with time. This kind of app
imation is of increasing importance in many diverse apfilica

domains, such as mobile and real-time devices. We justified o
choice of representation with extensive comparisons topetimg [18]

techniques, and described how we can adapt to allow anpérar
nesic functions for streaming data. We empirically evadabur
algorithms with extensive experiments dfa different datasets.
The results show that our algorithms offer significant pen@ance

improvements over the direct computational approach, ewhil

maintaining the quality of the approximation close to ogtim

Possible directions for future work include supportingexed [20]

similarity search and other queries on our representation.

REFERENCES [21]

[1] The UCR Time Series Data Mining Archive. University of
California, Riverside, Computer Science and Engineerirg D
partment. http://www.cs.ucr.edu/"eamonn/TSDMA/, 2002.

[2] H. André-Jonsson and D. Badal. Using Signature Files f
Querying Time-Series Data. IRrinciples of Data Mining
and Knowledge Discoverpages 211-220, Trondheim, Norway,
June 1997.

[3] A. Barreto, A. Araujo, and S. Kremer. A taxonomy for spa-
tiotemporal connectionist networks revisited: the unsuged
case.Neural Computation15:1255-1320, 2003.

[4] Julien Basch. Kinetic Data Structures. Stanford Ursitgr
Department of Computer Science. PhD Thesis, 1999.

[19]

[22]

(23]

[5] Richard Bellman. On the Approximation of Curves by Line

Segments Using Dynamic Programmin@ommunications of
the ACM 4(6):284, 1961.

[6] Ahmet Bulut and Ambuj K. Singh. SWAT: Hierarchical Strea

Summarization in Large Networks. International Conference
on Data Engineeringpages 303-314, Bangalore, India, March
2003.

Yuhan Cai and Raymond T. Ng. Indexing Spatio-Temporal
Trajectories with Chebyshev Polynomials. ACM SIGMOD
International Conferencepages 599-610, Paris, France, June
2004.

Kaushik Chakrabarti, Eamonn J. Keogh, Sharad Mehreatnal,
Michael J. Pazzani. Locally Adaptive Dimensionality Retitue

for Indexing Large Time Series Databasé#sCM Transactions
on Database System27(2):188-228, 2002.

K. Chan and W. Fu. Efficient Time Series Matching by
Wavelets. Ininternational Conference on Data Engineering
pages 126-133, Sydney, Australia, March 1999.

Yixin Chen, Guozhu Dong, Jiawei Han, Benjamin W. Wah,
and Jianyong Wang. Multi-Dimensional Regression Analgéis
Time-Series Data Streams. \ALDB International Conferenge
pages 323-334, Hong Kong, China, August 2002.

Edith Cohen and Martin Strauss. Maintaining Time-Dgcg
Stream Aggregates. IACM PODS International Conference
pages 223-233, San Diego, CA, USA, June 2003.

B. de Vries and J. C. Principe. The gamma model — A new
neural model for temporal processirgeural Networks5:565—
576, 1992.

Christos Faloutsos, M. Ranganathan, and Yannis Maoios.
Fast Subsequence Matching in Time-Series DatabasesCM
SIGMOD International Conferen¢cpages 419-429, Minneapo-
lis, MI, USA, May 1994.

Hcf'] Xianping Ge and Padhraic Smyth. Segmental Semi-Markov

Models for Endpoint Detection in Plasma Etching AEC/APC
SymposiumLake Tahoe, NV, USA, September 2000.

Anna C. Gilbert, Yannis Kotidis, S. Muthukrishnan, aMrtin
Strauss. Surfing wavelets on streams: One-pass summaries fo
approximate aggregate queries.VhDB, pages 79-88, 2001.
Sudipto Guha and Nick Koudas. Approximating a Data &tre
for Querying and Estimation: Algorithms and Performance
Evaluation. Ininternational Conference on Data Engineerjng
pages 567-576, San Jose, CA, USA, March 2002.

Trevor Hastie, Robert Tibshirani, and Jerome Friedmahe
Elements of Statistical Learningpringer-Verlag, 2001.

R. Hogg, A. Rankin, M. McHenry, D. Helmick, C. Bergh,
S. Roumeliotis, and L. Matthies. Sensors and Algorithms for
Small Robot Leader/Follower Behavior. BPIE AeroSense
SymposiumOrlando, FL, USA, April 2001.

Jim Hunter and Neil Mcintosh. Knowledge-Based Event De
tection in Complex Time Series Data. Attificial Intelligence

in Medicine and Medical Decision Makingpages 271-280,
Aalborg, Denmark, June 1999.

E. Keogh, S. Chu, D. Hart, and M. Pazzani. An Online
Algorithm for Segmenting Time Series. IEEE International
Conference on Data Miningpages 289-296, San Jose, CA,
USA, November 2001.

E. Keogh, S. Lonardi, and W. Chiu. Finding SurprisingtBans

in a Time Series Database In Linear Time and Space. In
International Conference on Knowledge Discovery and Data
Mining, pages 550-556, Edmonton, Canada, July 2002.
Eamonn J. Keogh and Shruti Kasetty. On the Need for Time
Series Data Mining Benchmarks: A Survey and Empirical
Demonstration. Innternational Conference on Knowledge Dis-
covery and Data Miningpages 102-111, Edmonton, Canada,
July 2002.

Eamonn J. Keogh and Michael J. Pazzani. An Enhanced
Representation of Time Series Which Allows Fast and Aceurat
Classification, Clustering and Relevance Feedbacknterna-

[24]

[25]

[26]

[27]

(28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

tional Conference on Knowledge Discovery and Data Mining
pages 239-243, New York, NY, USA, August 1998.

A. Koski, M. Juhola, and M. Meriste. Syntactic Recogprit of
ECG Signals By Attributed Finite Automat#®attern Recogni-
tion, 28(12):1927-1940, 1995.

losif Lazaridis and Sharad Mehrotra. Capturing Sensor
Generated Time Series with Quality Guarantees. Irter-
national Conference on Data Engineeringpages 429-440,
Bangalore, India, March 2003.

Jessica Lin, Eamonn Keogh, Stefano Lonardi, and BiluCihA
Symbolic Representation of Time Series, with Implicatiéos
Streaming Algorithms. InSIGMOD Workshop on Reasearch
Issues on Data Mining and Knowledge DiscoveBan Diego,
CA, USA, June 2003.

Sanghyun Park and Wesley W. Chu. Discovering and Matchi
Elastic Rules From Sequence Databasesidamenta Informat-
icae 47(1-2):75-90, 2001.

Ivan Popivanov and Renée J. Miller. Similarity Sea@ker
Time Series Data Using Wavelets. limernational Conference
on Data Engineering pages 802—-813, San Jose, CA, USA,
February 2002.

William Pugh. Skiplists: A Probabilistic Alternatiie Balanced
Trees.Communications of the ACM3(6):668—-676, 1990.
Davood Rafiei. On Similarity-Based Queries for Time i8gr
Data. InInternational Conference on Data Engineerjngyd-
ney, Australia, March 1999.

Stan Salvador, Philip Chan, and John Brodie. LearnitajeS
and Rules for Time Series Anomaly Detection. FhAIRS
pages 300-305, Miami, FL, USA, May 2004.

Sripada Somayajulu, Ehud Reiter, and lan Davy. SumTime
Mousam: Configurable Marine Weather Forecast Generator.
Expert Update 6(3):4-10, 2004.

David Steere, Antonio Baptista, Dylan McNamee, Caltem,
and Jonathan Walpole. Research Challenges in Environienta
Observation and Forecasting Systems. Mobile Computing
and Networking Boston, MA, USA, August 2000.

H.J. L. M. Wullings, M. H. G. Verhaegen, and H. B. Verbgen.
ECG Segmentation Using Time-Warping. Iternational Sym-
posium on Intelligent Data Analysipages 275-285, London,
England, August 1997.

Huanmei Wu, Betty Salzberg, and Donghui Zhang. On-
line Event-driven Subsequence Matching over FinancialaDat
Streams. INACM SIGMOD International Conferenceages
23-34, Paris, France, June 2004.

Huanmei Wu, Gregory C. Sharp, Betty Salzberg, DavidlKae
Hiroki Shirato, and Steve B. Jiang. A Finite State Model
for Respiratory Motion Analysis in Image Guided Radiation
Therapy. Physics in Medicine and Biology#9(23):5357-5372,
2004.

Yi-Leh Wu, Divyakant Agrawal, and Amr El Abbadi. A
Comparison of DFT and DWT based Similarity Search in Time-
Series Databases. WWCM International Conference on Infor-
mation and Knowledge Managemgeptages 488-495, McLean,
VA, USA, November 2000.

B. Yi and C. Faloutsos. Fast Time Sequence Indexing for
Arbitrary LP-Norms. InVLDB International Conferencgpages
385-394, Cairo, Egypt, September 2000.

Yanchang Zhao and Shichao Zhang. Generalized dimensio
reduction framework for recent-biased time series analysi
IEEE Trans. Knowl. Data Eng18(2):231-244, 2006.

Yunyue Zhu and Dennis Shasha. StatStream: Statisdoai-
toring of Thousands of Data Streams in Real Time.VIrtDB
International Conferencepages 358-369, Hong Kong, China,
August 2002.

