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1. Introduction

Multicarrier modulations [1] are regarded as emerging techredofpr new-generation networking
applications. In particular, Orthogonal Frequency Division MultipleXi@g§DM) can profit by full-digital
FFT-based implementation and is intrinsically resilientresidrequency-selective channel distortions [1].
At present, two open problems limit the efficiency of OFDa&dhniques when employed in real-world
application testbeds: non-linear distortions involved by power aemdif2] and channel estimation errors
occurring in time-varying multipath fading channels [3]. In tleiger, we are focusing on the problem of
the optimum OFDM symbol recovery in the presence of non-linear distortions

In wireless networks deployment, tight requirements in termgowofer efficiency generally impose the
utilization of saturating RF power amplifiers. It has been showa) &g., [2], [4], and [5]) that a saturating
non-linearity produces a sort of self-interference (namdlpping nois¢ depending on the transmitted
symbols and the in-out characteristics of nonlinear blocksowWsnmethodologies have been proposed in
literature in order to reduce the negative impact of clippiogse on OFDM performances. All such
methodologies are sub-optimum or quasi-optimum (in fact, the thedhgbptimum reception of
nonlinearly distorted OFDM symbols based on Maximum-Likelihood (Edt)mation is computationally
unsustainable). In [4] and [5], decision-directed iterative alyms have been adopted in order to sharply
reduce the computational burden of OFDM receivers to a polynardal with respect to the subcarrier
number. Such methodologies are very attractive from a computagomd of view, but they are not
designed for severe clipping. An alternative methodology f@pelli OFDM symbol recovery has been
proposed in [6] that is based on the recursive application oédBay inference. As compared with
decision-directed approaches, the algorithm of [6] is charaderlae a consistently increased
computational complexity, but results in terms of Symbol-Error-Ratam to be better in case of severe
clipping. A completely different approach aimed at reducing tfextsf of clipping on OFDM signals has
been proposed by Li and Cimini in [7] and Dinis and Gusmao irA[8liberate clipping is introduced in
order to obtain an OFDM signal characterized by an “almost auhstavelope. In such a way, linear
amplifiers might be still employed without decrease of powacieffcy. Unfortunately, the deliberate
clipping is itself a nonlinear distortion that may involve acté regrowth of the transmitted signal. For

this reason, it is hecessary to filter the OFDM signahafrequency domain. The impact of “clipping and



filtering” (C&F) operation is relevant on OFDM performances,shown in [7]. For this reason, efficient
symbol recovery techniques are also required when “clipping idadniy” is adopted. In this specific
context, iterative methodologies based on decision feedback have beesegdrop[9] for residual clipping
noise removal, and in [10] for sub-optimum iterative ML symbadhestton. Algorithms described in [9]
and [10] are rather general in their mathematical formulsti8o, they can be applied not only to the C&F
case, but also to recover OFDM symboils clipped by non-linear amplifiers.

In such a framework, the exploitation of Genetic Algorithms ¢$§5f1] may represent an interesting
alternative solution to OFDM symbol recovery in the presence of non-lineatidisso The exploitation of
GAs in telecommunications, electromagnetism and signal pingess dated since about ten years.
Applications are currently ranging (among the others) fromnaaterray optimization [12], DS/CDMA
multi-user detection (MUD) [13], allocation of power resouraescéllular DS/CDMA networks [14],
interference cancellation in MC-CDMA systems [15], etc. Miargeneral, GAs can provide reliable and
affordable solutions to optimization problems that cannot be sobyedull-space search due to
computational reasons. Recently, GAs have recently found somesiiigrapplications also in OFDM
transmissions. Alias, Chen and Hanzo proposed in [16] a GAttsgg®moach in order to find the optimal
weight vector of the Minimum-BER MUD receiver in the aaxitof a multiple-antenna aided multi-user
OFDM system. Hong, Dong and Yuan employed in [17] a GA in ordeetivedthe optimal distance
spectrum (i.e., the codeword difference matrix considering alliljessvent error paths) in space-time
trellis-coded OFDM. Finally, in [18], a GA-based approach is prapaseorder to search for low Peak
Average to Power Ratio (PAPR) near-optimum training sequences for GlyEibins.

In the present work, we propose the adoption of a GA-based approactier to find a near-optimum
solution to the ML estimation of OFDM symbols distorted in a maar way. We shall demonstrate that
the proposed GA-based approach clearly outperforms state-of-teekatibns even in the presence of
heavy nonlinear distortions. Moreover, such good results are aghigyespending an affordable
computational effort. The test case considered here igdefatan OFDM signal distorted by a nonlinear
power amplifier. Nevertheless, the proposed analysis might be extendedt withoeptual difficulties also
to the C&F case. The letter is structured as follows:i@e& is aimed at describing the system model.
Section 3 details the proposed GA-based symbol estimation methoddkmion 4 presents some selected

experimental results. Finally, in Section 5, the letter conclusions anendr



2. System model

The analytical expression for a generic multi-carrier ®FBymbol transmitted during the generic

signaling interval of durationT is given as follows [1]:
N-1
S® =AY s, explj27kt/T)n(t-iT) (1)
k=0

where A, is the carrier amplitudes; = {SKi ,k=0,..,N —1} is the vector of thé/-level complex symbols
transmitted over th&l subcarriers (in the present letter, we consider a 16-QAM mumlulaherefore,
M=16), and[l1(t)is the rectangular waveform of unit amplitude. As known frbm literature (see, e.g.,
[1]), the practical realization of OFDM modulation is feésiim the digital domain by applying an Inverse
Fast Fourier Transform (IFFT) to the symbol vecgprand, therefore, by passing the discrete-time signal
achieved to a Digital-to-Analog converter. The discrete sequpnoduced by the IFFT block (sample

duration equal t&/N ) can be expressed by the following equation:

N-1
w,; = A s, exp(j27kn/N) n=01,..,N -1 )
k=0

Let us now introduce a nonlinear memoriless block into theriggfon system. In particular, Solid State
Power Amplifier (SSPA) nonlinearity is considered that introduee amplitude distortion whose

mathematical expression is given below (the normalized Rapp model [19¢&@ashosen):

g(x):|x|/{1+0x|/a)2ﬁ}21ﬁ xOC a,p00 3)
The amount of distortion can be measured (in dB) in termsCbp Level (CL) defined
asCL= ZOloglo(a/UX) where g’ is the variance of the input signal. The precise matherhateding
of [4] allows us to express the baseband output of the memoriless nonjiiveasgeful compact form:

Wy, ig(wm):)lgwmi +Q (s,9) n=0,,N-1 (4)

where: g(-) is the nonlinear distortion function, antd is a constant chosen in order to minimize the MSE

between g(vvi (n)) and A°w, ;. Therefore, the discrete sequen@e (s, g) is the minimum distortion

energy sequence [4]. It has been shown in [20] that, in ¢a&88RA nonlinearitiesd® (11 for CL>7dB,

and 09< A% < 099 for25dB<CL<7dB. The exact calculation of the term® is theoretically



allowed (see e.g. [8]). Nevertheless, for a wide range ohimgfal CL values, the approximatioA® 1
holds well. This assumption, already considered in [4], allows us tateefq.4 in the conveniently

approximated form:

wy, Ow,; +Q (s;,9) n=0,.,N-1 (5)
The coherent OFDM demodulator performs an FFT over the recbasgband discrete-time sequence.
Such an operation, applied to the distorted input sequence of Eq.5, provide®tiadabutput:

ro 2FFT(wy) =5, +®,(s;,9) k=0,.,N-1 (6)
where®, (s,,9) = FFT(Qn(g,i ,0) ) is the k-th sample of theut-of-band distortiorsequence atlipping
noiseresulting at the output of the OFDM demodulator [4]. In thiskwave adopt the idea of estimating

the symbol vectoss, in the presence of clipping noise, as illustrated in the following section.

3. The proposed GA-assisted ML symbol estimation

The optimum symbol estimation in the presence of nonlinear dist@amidradditive Gaussian noise is the

Maximum Likelihood (ML) estimation. It consists in the computation tké symbol vectorSiOpt

minimizing the following metric:
~ ~ ~ 2
AE)=]y, -[8 +2.9)] (7)
where Y, i[iD +1 is the received signal sample vectt_yr,being the AWGN noise sample vector. The

nonlinear distortion is deterministic and completely known; tloeeethe ML-based computation @i?pt is

theoretically feasible. The price to be paid is a computatitoed exponentially growing with the
dimension of the symbol vect®t. The number of subcarrier employed in OFDM commercial systems
ranges from 64 (e.g. HYPERLAN 2 system [21]) to 256 (ADSL-DM$teyn shown in [4]), up to 2048
(VDSL-DMT standard [4]). For this reason, theoretical Métettion cannot be adopted in real-world

applications and sub-optimum detection strategies should be invedtigatfeasible solution has been

v)

proposed by Tellado, Loo and Cioffi in [4]: it is based on the itexastimation of the symbol vect@f

(v is the number of the iteration) obtained by the metric of Eq.&.t&m (S, g) is replaced by its

(v-1
[

iterative estimatio®” (S, g), computed on the basis of the symbol vector estimation obtairtbd at



previous iteration. The first iteration of the algorithm is tard decision made by the conventional OFDM
demodulation. Other sub-optimum algorithms have been proposed in Igerdtoe decision-aided
reconstruction (DAR) iterative approach shown in [5] assuilnas &t the first iteration, the frequency-

0) =~

domain sampleﬁmi W,'fi +N,; is an estimation of the clipped signw,'fi (being N; the additive

=)

Gaussian noise sample in the frequency domain). At generiéaterata symbol decisiors; ’ is taken in

the frequency domain on the basis of the estimation of the clippeal ﬁd’f by minimizing an absolute
error metric [5]. The clipped sequence is then reconstructed irirttee domain using the symbol

decisior'ﬁ;("). Finally, the IFFT-transformed sequenﬁéfi‘“) becomes the estimation of the clipped signal

at the successive iteration, ié,ﬁffiﬂ). The Bayesian inference has been proposed by Declercq and
Giannakis in [6] in order to iteratively recover clipped QFBymbols. At the generic iteratiar the full-

conditional posterior distribution function of the information sym@f&, is computed on the basis of the

estimated symbols at the previous iteratiéﬁ’_l)

, and of the received signal sampie;s The symbol

a)

estimation is made on the basis of a recursive MARrait. Practicallys,” is the symbol vector that

maximizes the full-conditional posterior distribution [6]. In [9]deacision feedback-based interference
cancellation procedure is shown for OFDM symbols affected Ippialj. The iterative symbol decision

5»('/_1)

is employed here to estimate the out-of-band distortion in theeinegdomainQ® ™2 (3", g)

and to remove it from the received signal. Finally, Ochiai [h@]ysed the performances of optimum and

sub-optimum detection for clipped OFDM signals. The sub-optimuratite ML detection proposed in

_— . : - . . ~(0)
[10] initially considers the vector of bit decision providedthg conventional OFDM demodulafgr . At

A(v-1)

the iterationv, a list of candidate bit vectors is generated by the XORatipa b, [J e, whereeis an
error pattern with Hamming weight ranging from 1tg. The candidate bit vectors are therefore turned on

candidate symbol vecto@,‘”) and the best one is selected by minimizing the metric of Eq.7.



Our solution is based on the useG@dnetic AlgorithmsGenetic Algorithms are robust, stochastic search

methods modelled on the principles of natural selection and enoljtl]. GAs differ from conventional

optimisation techniques in that:

a) They operate on a group (namepopulatior) of trial solutions (namelyindividualg in parallel. A
positive number, namelyitness is assigned to each individual representing a measure of goodness;

b) They normally operate on a coding of the function parameters (narhetynosomgrather than on the
parameter themselves;

c) They use stochastic operatassléction crossoverandmutatior) to explore the solution domain.

The metric/\@i) is regarded as thfégness of the GA. A set of individuals is encoded with chromosome-
like bit strings (in our case the vec®). The cardinality of the sef individuals is callegopulation size

[11]. At each iteration, calledeneration the genetic operators of crossover and mutation are applied to
selected chromosomes with probabil®: and Py, respectively, in order to generate new solutions
belonging to the search space. The population generation processtesnvhen a satisfactory solution is
reached or when a fixed number of iterations (nanggyperation numbgrare completed.

Genetic algorithms have been successfully applied for a wadger of problems (see Section 1)
characterized by a large number of unknown parameters and highlineantehavior [11]. The major
advantages of the GAs with respect to the other optimizatiamitaigns, such as gradient conjugate-based
methods, are mainly related to their independence from thdikgtian and their ability to prevent local
minima. Moreover it is well known from the scientific litaseg that it is possible to enhance the
convergence ratio making a good choice of the algorithm paranietei22]. In particular a proper choice
of the population size and generation number is mandatory in order tbtawdiigh computational burden
and to keep performances good. These characteristics make thpa@édlarly attractive for the proposed
application with respect the other methods proposed in literdorethe sake of comparisons the method
proposed in [4], and other similar decision-aided recursive mefbp8s10], are strongly dependent from
the initial choice of the symbol vector that is based on the dacikion made by the conventional
demodulator. If the initial choice is considerably affected bysitat errors (this happens in case of severe
clipping), these errors propagate iteration after iterateaging to a nasty “floor” in the BER curve. The

only method for OFDM clipped symbol recovery, which seems toege $ensitive to the effects of the



initial hard decision, is the Bayesian inference proposed]inNévertheless, the computational burden
required by this algorithm is very high, as compared with raeiedgorithms (except than [10]), and also
with the GA-based receiver (issues concerning computational complexibevdetailed in next section).
The initialisation of the GA has been performed in random modatitgatticular, at each generation, the
population is initialised by individuals consisting of vectordeming complex random symbols. Such an
initialisation procedure is appropriate for the specific probdeltressed in this letter. In fact the symbol
source can be regarded, without losing generality, as a randmrespr generating equiprobable and
statistically independent complex numbers (i.e.: the 16-QAM symbols).

To conclude this section, it should be said that the proposed GheashL symbol recovery could be
applied, without any conceptual difficulty, also to the C&F casdadh a metric very similar to the one

shown in Eq.7 can be computed for “clipped and filtered” OFDM signals as proven.in [10]

4. Experimental results

In order to assess the performances of the proposed GA-basexstitation approach, some intensive
simulation trials have been performed. An OFDM transmissworiiguration has been considered with a
bit-rate of 4Mb/s and number of subcarriéfsequal to 32 and 64. The parameter setting of the SSPA
distortion has been done by fixing2 and choosing two different values @fin order to achieveCL

values equal to 5dB and 7dB respectively. As far as the pamamagion of the genetic algorithm is

concerned, we firstly selected crossover probabity and mutation probability?,, equal to 0.9 and
0.01, respectively. This setting is reasonable becBusis the index of the “evolutionary capability” of the
GA, whereas a high value @3, would turn the GA into a kind of random search [11]. In the absence of
specific analytical selection criteria [11] [22], thengration numbeaé'gen and the population sizE,, of

the GA optimizer have been chosen by means of preliminary imyqal trials explicitly devoted to.
Results have been summarized in Fig. 1. We have considereésim simulations the heuristic selection
criteria enunciated in [22]: a) the population size should be muiffig large in order to have a
conveniently- dimensioned space search, b) the number of generatoits Ise appropriately assigned in
dependence of the population size. In fact, in case of large populo strict limit for the search time

can force algorithm to stop without having enough time to re#bzeearch possibility [22]. The test was



performed in the case of the heavier nonlinear distortdib=%dB) and for the highest number of
subcarriers N=64), considering a per-symbol SNR equal to 15dB. On the basis ofERecBrves vs.
population size for fixed generation numbers reported in Fig. 1, @nasle choice considering the

=200. In

tradeoff between computational complexity and achieved perform@cégén=250 andl,,
Figs. 2-3-4, curves drawing BER results vs. per-symbol SNRstaoen for differentCL and N, and
compared with results yielded by:

» A conventional FFT-based OFDM demodulator in the presence of nonlineatidrs{1].

* lterative decision-directed algorithms: iterative decoding pregas [4], decision-aided reconstruction

of [5], decision-directed clipping removal of [9]. The number of iteratjprigas been limited to 3 for this

class of algorithms, because no significant performance impentehas been noted by increasing it.
These algorithms are characterized by quite analogous tlwabi@ncepts. Their computational burden
is almost the same.

* Clipped symbol recovery of [6] obtained by means of the Bayesiarente. We fixedy =5 as a

reasonable tradeoff between the heavy computational load requitied algorithm and the performance

improvement achievable by increasig
* Iterative sub-optimum ML detection of [10]. In this case, we fijed10 as a good compromise between

computational demand and reliability of the symbol estimation. Faliptéie suggestions of [10], we set
the maximum Hamming weight of the error pattiig=1.

» A conventional FFT-based demodulator of an undistorted OFDM sigamasniitted over a purely
additive Gaussian channel. This last curve actually drawsldher bound on the achievable
performances. In fact, the ML criterion becomes equivalent t@dhgentional detector in the case of
AWGN without any distortion. The clipping noise added by a nonlidesdortion substantially reduces
the average Euclidean distance between the OFDM signal gahbgathe correct bit sequence and other
ones generated by error patterns [10]. Therefore, we can sdkahairwise error probability computed
for the ML receiver in the presence of nonlinear distortioh b higher (or at least equal) to the error
probability computed for the distortionless conventional receiver.

The first series of simulation results, obtained Net32 andCL=5dB (see Fig. 2), prove that the GA-

assisted ML estimation provides a BER characteristicyfailbse to ideal one, whereas conventional



detection, iterative decoding [4], decision-aided reconstrufbiprand decision-feedback clipping removal
[9] are very far from optimal performances. Bayesian infexef8 and iterative sub-optimum ML
detection [10] works slightly better (their curves are alneoincident), but they both perform worse than
GA-assisted ML detection especially for high SNRs. Fig. 3 shamother series of simulation results
obtained by increasing the number of subcarriéis64 instead of 32) and keepim@L unaltered
(CL=5dB). The SNR range has been increased up to 30dB to clearly theoeeror-floor affecting the
BER performances both of the conventional OFDM demodulation and thiealierative decision-directed
procedures ([4], [5], and [9]). In this case, also the maFatub-optimum ML detection of [10] exhibits a
severe error-floor. On the other hand, Bayesian inference seepesform better than decision-directed
iterative approaches, thus confirming its improved robustnedswoCL values. But, the proposed GA-
assisted ML estimation provides much better results than até-sf-the-art algorithms used for
comparison, with a dramatic BER decrease for high SNRs.I\itla¢ results given in Fig. 4 have been
obtained by increasingL up to 7dB and keeping the valueMdiinaltered with respect to the simulation in
Fig. 3 (N=64). In this case, all receiver schemes can profit by the evdrad distortion reduction and
improve their performances. The BER curve of the GA-assMtedstimation is very close the ideal one.
All iterative detection algorithms work better (in partmulTellado’s iterative decoding [4]), though
remaining a bit far from ideal performances. One can note frgd Ehat Bayesian inference does not
provide any significant performance improvement with respedetative decision-directed approaches.
This confirms the considerations made in [6] about the opportunitysiofy highly complex Bayesian
inference when clipping effects are reduced.

Concerning computational issues, Tab.1 shows the order of computationplexity for each symbol-
detection algorithm assessed (second column), the number of elgmepéaations required by each
OFDM symbol during the signaling periddin the selected simulation scenarios (third column — this is
actually the number of elementary operations required to derbedution to the considered problem), and
finally the average number of elementary operations per datdasyobtained by dividing peN the
content of the third column). The fundamentals for deriving madkieat expressions in Tab.1 have been
taken by Hanzo’'s book about single carrier and multicarrier moogafl], by the referenced papers
dealing with the algorithms tested for comparison ([4], [5], [8], and [10]), and finally by Goldberg’s

book about Genetic Algorithms [11]. The reader can note thabthputational burden of the GA-assisted



ML detection increases only by one order of magnitude withemtsfo iterative decision-directed
algorithms ([4], [5], and [9]), while providing much better resutt terms of BER reduction. On the other
hand, the computational burden of GA-assisted ML detection is camysteduced with respect to
computationally demanding Bayesian inference [6] and iteratiNeoptimum ML detection [10]. In

addition, these last two algorithms perform worse than GArmg®f BER, as shown in Figs. 2-4. They
have also been reported in Tab.1 both the computationally unsustavialdgmbol recovery and the

conventional FFT-based OFDM receiver, regarded here as tindiagpper and lower bounds on the

computational complexity.

5. Conclusion

In this letter, a novel GA-assisted approach to ML symbol asitim of nonlinearly distorted OFDM
symbols has been proposed and discussed. The obtained simulation hragaltsroved a fair near-
optimum behavior of the proposed algorithm, clearly outperforming-sfahe-art methodologies for
multicarrier symbol estimation based on iterative decisioectitd reconstruction, iterative sub-optimum
ML estimation, and Bayesian inference. The computational loadireelgby the GA-based estimator
slightly increases with respect to the most computationdiigiexfit iterative algorithms; nevertheless, it is
still acceptable as compared with the unaffordable burddreofétically-optimum ML detection. It should
be said that other algorithms tested for comparison, like eagedtan inference and iterative ML
estimation are more computationally demanding than the proposed GA-assttedatogy.

Future work will consider other aspects, like the assessohémé proposed GA-based ML estimator in the
presence of both nonlinear and linear distortions (e.g. multipathghadior this last purpose, the impact of

channel estimation errors on the symbol estimation accuracy shoulcehdlgatudied.
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Figure captions

Figure 1. BER values provided by the proposed GA-assisted ML detection algorithm platiszbusation

) for a fixed per-symbol SNR (15dB) and different values of the generatimber @,

size gen)-

size.
Figure 2. BER results vs. SNR provided by the different symbol estonasilgorithms assessed (GA-

assisted ML detection, iterative algorithms, conventional ORd&tction, lower bound: ideal detection

without distortions)CL=5dB,N=32, Jgen=250 . .=200.

1 size
Figure 3. BER results vs. SNR provided by the different symbol esiimadlgorithms assessed (GA-

assisted ML detection, iterative algorithms, conventional ORitction, lower bound: ideal detection

without distortions)CL=5dB, N=64, Jgen=250 . .=200.

1 size
Figure 4. BER results vs. SNR provided by the different symbol esiimadlgorithms assessed (GA-

assisted ML detection, iterative algorithms, conventional OFd&tction, lower bound: ideal detection

=200.

size

without distortions)CL=7dB,N=64, J,,,=250, I

Table captions

Table 1. Analysis of computational complexity of the different OFDM symbohastiion algorithms.
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SyMBOL ESTIMATION
ALGORITHM

ORDER OF
COMPUTATIONAL COMPLEXITY

# OF ELEMENTARY OPERATIONS
PEROFDM sYMBOL

# OFELEMENTARY
OPERATIONS PER

DATA SYMBOL
GA-assisted ML (P + Py )0 el e 4.1x1d (N=64, J,, =250, 641
estimation (proposed _
[11] I_size_zoo)
Conventional OFDM Nlog, N 3.84x1G (N=64) 6
demodulator [1]
Iterative decoding [4] (N+2Nlog, N)x 2.5x10 (N=64, Y =3) 39
Decision-aided (2N +2Nlog, N)x 2.7x10 (N=64, Y =3) 56
reconstruction [5]
Bayesian inference [€] MN2y 3.27x10 (N=64, Y =5) 5109
Decision-directed (N +2Nlog, N)x 2.5x10 (N=64, Y =3) 39
clipping removal [9]
Sub-optimum iterative s (Nlog, M 2.95x10 (N=64, X =3, Imax=1) 4609
ML detection [10] 1+ x : Nlog, N
i=1
Theoretical ML 1.2x107 (M=16,N=64) 1.875x16°

estimation [10]

2('092 M)N

Tablel




