Design and Assessment of a CE-OFDM-based mm-Wave 5G Communication System
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INTRODUCTION

The evolution of cellular networking from 1G to 4G evidences some non-
equivocal trends concerning available services and devices:
A

1G 2G 3G 4G
The evolution of waveform design has been consequential:
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5G considers all-spectrum access, including mm-wave bandwidths:

80 Gb/s

E-Band Link 100 Th/s

Tera-Cell

10 Gb/s

Device

100 Billion Things

E-band (71-76 GHz, 81-86 GHz) licensed for 5G applications is
characterized by higher pathloss, as compare to sub 6GHz bandwidths, in
particular in case of NLOS. Power resources should be exploited at
maximum by means of power-efficient nonlinear amplifiers. Despite this,
OFDM and “OFDM inspired” waveforms (SC-OFDM, SC-FDMA,
FBMC, etc.) are still in pole-position for supporting SG applications [ 1]
[4], because they are flexible, intrinsically smart and allow broadband
transmission over frequency-selective channels.

OUR PROPOSAL:

o A novel mm-wave 5G transmission system, working at 73 GHz,
characterized by power efficiency and robustness;

o The system is based on CONSTANT-ENVELOPE ORTHOGONAL
FREQUENCY DIVISION MULTIPLEXING (CE-OFDM) [5] and the
use of a SUBSTRATE INTEGRATED WAVEFORM (SIW)
SLOTTED ANTENNA ARRAY with a squared cosecant pattern;

o Application scenarios: small-cell downlink, information shower.
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Fig. 9: Small cell coverage analysis: SNR.

CONSTANT-ENVELOPE OFDM RADIO INTERFACE

Constant-Envelope OFDM is based on the non-linear phase modulation of a real-
valued OFDM signal [5]:
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PROS: CONS:

[ Fixed 0dB PAPR: the signal can be
transmitted with saturating
amplifiers without amplitude
distortion and spectral regrowth;

O At least 50% throughput (b/s/Hz)
reduction w.r.t. OFDM (due to the
two-sided real-valued OFDM RF
spectrum [8]):

J Advantages of OFDM are still
maintained, but with augmented
diversity due to FDE applied to the
tx single-carrier signal [7];

B (2m— 1)
Nre-ceorpm = z[maX(zﬂhﬂl)]

n__=(2m-1) (b/s/Hz)

U Augmented robustness against fe-orbtt ( )
phase noise with respect to
conventional OFDM (phase noise

1s additive and not multiplicative)

[8];

L Adaptive subcarrier allocation to
OFDMA users 1s possible only in
the downlink;

 Sidelobe power level higher than
OFDM one (spectral precoding [10]
provides a reliable solution to this
1Ssue).

) Trellis coding and interleaving
improves a lot performance of CE-
OFDM when low modulation

indexes are used [9].
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ANTENNA SYSTEM

The transmission system considered in the model makes use of a surface integrated waveguide
(SIW) slot array antenna. This solution 1s realized, at low cost, with two rows of metallic via-
holes in a metal-clad dielectric substrate using standard print-circuit-board fabrication technique.
At 73GHz multi-layer fabrication techniques with LTCC (Low Temperature Co-fired Ceramics)
can be conveniently used for large mass production.

Why SIW? They combine most of the advantages of planar printed circuits (compactness, light
weight, easiness to fabricate, flexibility, and low cost) and of metallic waveguides (low losses,
complete shielding, power handling). Moreover, SIW structures allow the integration of active
circuits, passive components and radiating elements on the same substrate [13].

Antenna Requirements: the antenna has to generate a cosecant squared pattern in the
vertical plane that covers almost 30°, so it can provide a uniform incident power density for any
user position in the coverage area.

ideal lossless isotropic antenna

coverage

Two base station antennas have been designed with different half power beam width on the
horizontal plane, 60° and 33°, respectively.

For the array radiation pattern synthesis, an alternate projection method has been used forcing
that the coefficients of the Schelkunoff polynomial are symmetrical complex conjugate. Thus, it
allows applying the classical method 1n [14]. To take into account the mutual coupling between
the array elements, an iterative method, that makes use of a full wave analysis of the entire
structure, has been applied to determine the optimal length and position of each slot.

At the end of the iterative
process

At the beginning of the iterative
process

The length and
position of each
slot correspond to
the final values of
the normalized
conduptance and
susceptance

=

Slot Number 1 2 3 4 5 6 7 8 9 10 11 12 13

Length [mm] | 1.5947 | 1.5945 | 1.6250 | 1.6211 | 1.6301 | 1.6184 | 1.5875 | 1.5459 | 1.5051 | 1.5103 | 1.4874 | 1.5128 | 1.5306

Offset [mm] | 0.3305 | 0.5196 | 0.7889 | 1.0197 | 1.2519 | 1.6309 | 1.8702 | 1.8412 | 1.2405 | 1.0222 | 0.8231 | 0.4787 | 0.3150
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Simulation parameters:

Modulation | Modulation | Trellis coding
format index rate
1/2

Conf. #1 1 4-QAM 0.7 rad. 1024
Conf. #2 2 16-QAM 1.0 rad. 3/4 1024 4
Conf. #3 3 64-QAM 1.0 rad. 5/6 1024 4

Channel modelling and nonlinear distortions:

73 GHz LOS channel impulse response
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73 GHZ clustered multipath channel (LOS) [16] Nonlinear characteristic of GaN SSPA amplifier
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Simulation results:
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CONCLUSION AND FUTURE WORK

In this paper, an mm-Wave communication system based on the use of trellis-coded Constant-Envelope
OFDM (CE-OFDM) multicarrier technique is proposed for 5G communications. Its effectiveness for
very high data-rate applications is proved by computer simulations in the small cell downlink and in the
information shower scenarios. The trellis coded CE-OFDM can exploit frequency diversity more
effectively than trellis-coded OFDM and allows an increased coverage and rate in mm-wave LOS
multipath channels characterized by clustered fading and large shadow standard deviation.

Future works will deal with the adoption of the spectral pre-coding, that has been already proposed in
[10] to reduce side-lobe power and, definitely, increasing spectral efficiency. The effects of non-ideal
channel estimation and phase-noise should be also assessed in order to further prove the resilience of

the proposed multicarrier scheme.
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