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Abstract – In this letter1, a novel multi-user detector, based on a Genetic Algorithm-assisted per-carrier 

MMSE criterion, is proposed for MC-CDMA systems transmitting over time-varying multipath fading channels. 

The analyzed multi-user detector outperforms state-of-the-art adaptive receivers based on deterministic 

gradient algorithms, particularly for an increasing number of users. 

Introduction – Despite their intrinsic sub-optimality, multi-user detection (MUD) algorithms based on 

Minimum-Mean-Squared Error (MMSE) criterion are often preferred in practical applications of Multi Carrier-

CDMA (MC-CDMA) due to their reduced computational load and because they can easily support adaptive 

implementations. In [1] and [2] different MMSE-MUD adaptive receivers for MC-CDMA systems are shown. 

They are based on Least-Mean-Square (LMS) [1], Recursive-Least-Squared (RLS) [1], and Normalized-Least-

Mean-Square (NLMS) [2] optimization algorithms. All these approaches rely on the concept of deterministic 

gradient [3]. They are very efficient from a computational point of view. On the other hand, their performances 

and convergence rates are strongly influenced by the choice of the LMS/RLS updating parameters. This 

drawback can hinder the employment of adaptive MMSE-MUD in time varying fading channels, making them 

more suitable for static channels (see, e.g., [1]). In the present letter, we are going to discuss a genetic 

algorithm (GA)-assisted approach for per-carrier MMSE-MUD applied to MC-CDMA communication systems 

working over time-varying mobile channels. The proposed GA-assisted MMSE-MUD works in two steps: a 

trained step and a decision-directed step. The trained step relies on the periodic transmission of a short, 

known training, sequence. The period is equal to the coherence time of the channel. During the decision-

directed step, the GA optimizer is re-parameterized and the receiver weights are dynamically updated on the 

                                                 

1 1 This work has been partially supported by the Italian Ministry of University and Scientific Research (MIUR) within the 

framework of the ICONA project activities. 
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basis of the estimated data symbols. The objective of the proposed analysis is to develop a multi-user 

receiver structure characterized by improved adaptation capability with respect to channel conditions, reduced 

sensitivity to parameterization, and reasonable computational load. 

2. GA-assisted MMSE receiver structure – Let us consider a per-carrier MMSE multi-user detector [1]. The 

optimization criterion is to find an M-element weight vector (M is the number of subcarriers) such that: 
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where: )(iym  is the signal received over the m-th subcarrier during the i-th signalling period of duration T, K is 

the number of active users, k
mc  is the m-th chip of the k-th spreading code, and k

ia is the complex symbol 

transmitted by the k-th user. The explicit solution of MMSE-MUD problem can be computed as a function of 

the per-carrier channel coefficients [1]. Full-adaptive MMSE implementations (based on LMS and RLS criteria) 

are considered in [1] and [2] in order to avoid explicit channel estimation. Such solutions are very attractive 

from a computational point of view. Nevertheless, their efficiency is strongly limited by the sensitivity to the 

updating parameters, i.e.: the step size for LMS and the forgetting factor for RLS. Moreover, when fast 

channel variations occur, deterministic gradient-based solutions suffer from effects of lag errors [3] that make 

very difficult an effective tracking of the optimal weight )(iqO
m . In this framework, we are proposing a semi-

adaptive genetic algorithm-assisted MMSE-MUD algorithm. Genetic algorithms are stochastic-gradient based 

optimization tools whose basic features are [4]: a) the convergence to the optimal solution is theoretically 

guaranteed (provided that a suitable parameterization of the GA procedure is adopted) avoiding that solution 

be trapped in local minima, b) the GA-based procedure can dynamically adapt itself to time-varying system 

conditions, because a new population of individuals is computed at each new generation. The expected 

outcome of the proposed approach is the implementation of an MMSE-MUD algorithm that is efficient in the 

presence of time-varying channels. In order to accomplish this goal, we studied a GA-assisted MMSE strategy 

articulated into two steps: 

1) Training-aided step. During this step, a B bit-length binary training sequence [ ]k
B

kk aaa ~,...,~~
1=  is transmitted 

for each user k. The training step is repeated with a period approximately equal to the coherence time of the 

channel. The GA works with a selected parameterisation in terms of generation number GTr, population size 

PTr, crossover and mutation probabilities αTr and γTr respectively. The task of GA is to compute the weight 

vector { }1,..,0,ˆ −= MmqTR
m

 that minimizes the following metric: 
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The GA-based computation of the optimal weights is performed after having buffered B samples of the 

received signal )(iym  (see fig.1). Note that the ensemble average of eq.1 has been replaced by the sample 

average of eq.2 (bracketed notation), made on the entire duration of the training sequence.  

2)  Decision-directed step. It is known that, during a coherence period, the stochastic values assumed by the 

channel coefficients acting over each subcarrier are correlated. This means that time variations of the channel 

impulse response are reasonably small and a decision-directed updating step can proceed. In the proposed 

algorithm, the decision-directed step is performed by the GA, working with a different parameterisation and a 

different fitness function. The GA-based updating procedure is carried on symbol after symbol and it is 

initialised by the solution computed during the training-aided step, i.e.: TRq̂ . During each symbol period, a 

single generation of individuals is produced. The new population is generated starting from the solution 

computed at the previous signalling period )1(ˆ −hq DD  and imposing to the Gaussian generator an updating 

standard deviation σup. Such a last parameter is conceptually linked to the Doppler spread and to the signal-

to-noise ratio. Among the new population, the individual )(ˆ hq DD  is chosen that minimizes the metric:    
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In such a step, crossover and mutation operators don’t work, because only a single GA generation runs. Note 

that the value k
hâ  is related here to the estimated data symbol. When the decision-directed step ends, the GA 

is re-initialised with the weights computed at the end of the coherence time-window, i.e.: )(ˆ coh
DD Wq  and re-

parameterised in order to start again with the training-aided step. 

 3. Experimental results – The semi-adaptive GA-assisted per-carrier MMSE-MUD algorithm has been 

tested by means of intensive simulations, considering the following fixed parameters: number of subcarriers 

M=32, symbol rate r =1024Kbaud/s, coherence bandwidth equal to 2MHz, Doppler spread equal to 100Hz. 

The following parameterization of the GA-based optimizer has been selected: a) training-aided step: 

generation number GTr=10 population size, PTr=10, crossover probability αTr =0.9, mutation probability 

γTr=0.01, training sequence length B=32; b) decision-directed step: generation number GDD=1, population size, 

PDD=10. Finally, in overall simulation, we have considered σup equal to 0.025. Such a choice was proven as 
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the most effective for the largest amount of simulation configurations adopted. Simulation results in terms of 

measured bit-error-rate are shown in fig.2 and fig.3. In fig.2, BER results are plotted versus signal-to-noise 

ratio (SNR) for a fixed number of users (K=9). One can note that the BER curve related to the proposed GA-

assisted MMSE-MUD algorithm is almost coincident with the curve related to ideal MMSE-MUD for all SNR 

values. On the other hand, BER performances of LMS MMSE are strongly influenced by the choice of the step 

size µ. In any case, LMS performs worse than GA when SNR is high and the impact on system performances 

of multi-user interference (MUI) is dominant. A similar behavior can be noted for RLS. The setting of λ 

parameter (equal to 0.75) has been performed on the basis of simulation results presented in [1]. Other 

settings of λ provide worse BER results, not reported here. In fig.3, BER results are drawn vs. user number for 

SNR=20dB. We can see that the BER curve provided by the GA-assisted MMSE-MUD is very close to the 

ideal MMSE curve, also for a number of users almost equal to the maximum allowable (K=30). On the other 

hand, LMS performances substantially degrade with respect to ideal MMSE as the number of user increases. 

RLS curve is quite closed to GA-assisted MMSE-MUD and ideal MMSE curve when the number of users is 

small, but it trends to fairly degrade for larger values of K. About computational complexity issues, we can 

briefly mention that, on the basis of considerations made in [1], [2] and [4], the computational burden of GA-

assisted MMSE-MUD in terms of elementary operations is about one order of magnitude higher than LMS-

based MUD and about of the same order of RLS-based MUD.  

4. Conclusion – In this paper we proposed a novel semi-adaptive GA-based approach for MMSE-MUD in 

MC-CDMA systems transmitting information over time-varying fading channels. The proposed algorithm 

evidenced some advantages with respect to best-known state-of-the-art solutions. Simulation results achieved 

in terms of BER evidenced a near-ideal behavior of the proposed algorithm, outperforming LMS and RLS-

based approaches especially when the impact of MUI becomes predominant in limiting transmission capacity. 
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FIGURE CAPTIONS 

Figure 1. Block diagram of the semi-adaptive MMSE-MUD receiver: training-aided step  

Figure 2.  BER performances vs. SNR for the simulated MC-CDMA receivers (K=9) 

Figure 3. BER performances vs. K for the simulated MC-CDMA receivers (SNR=20dB) 



Submitted to ELECTRONICS LETTERS 

 6  

 

 

 
GA-based Optimizer 

(GTR PTR) 
)(ˆ jqTR

m

[ ]k
B

kk aaa ~,...,~~
1=

Hadamard/Walsh 
Code Matrix  

(Buffer) 

)(tym

Shift register 

B 

i
my 1+i

my 2+i
my

Bi
my
+

Training sequences 
matrix  

(Buffer) 

KxM 
KxB 

 

Σ Decision 

from other subcarriers 

t = iT 

)(ˆ coh
DD
m Wq

INIT 

∆++= Bij

 

Figure 1 

 

 

Figure 2 



Submitted to ELECTRONICS LETTERS 

 7  

 

Figure 3 

  

 


