

De Bruijn Sequences for DS/CDMA Transmission: Efficient Generation, Statistical Analysis and Performance Evaluation

Susanna Spinsante(*), Madhyiar Sarayloo(*), Ennio Gambi(*), Chirag Warty(**), Claudio Sacchi(***)

(*) Dipartimento di Ingegneria dell'Informazione, Università Politecnica delle Marche, Ancona (Italy) (**) Intelligent Communication Lab, Mumbai (India) (***) Dept. of Information Engineering and Computer Science (DISI), University of Trento, Trento (Italy)

Outline

- Introduction and aims of the paper;
- Efficient generation of large sets of De Bruijn sequences;
- De Bruijn sequences properties;
- Statistical analysis of DS/CDMA system performance;
- Numerical results;
- Conclusion.

Introduction

- Random (or quasi-random) spreading sequences for DS/CDMA
 - Direct Sequence Code Division Multiple Access (DS/CDMA) <u>still represents a core</u> <u>technology</u> for the physical layer of commercially remunerative applications and standards (radiolocalization, automotive radar, 3G UMTS);
 - A very critical issue of Spread Spectrum and CDMA: <u>keeping the probability of</u> <u>intercept the lowest possible</u>;
 - Secure information hiding <u>must be guaranteed at the physical layer level</u>: random spreading sequences should be applied;
 - Due to complexity of generating truly random sequences, deterministic sequences (i.e. pseudorandom) are used in real applications;
 - <u>Required features</u>: pseudo-noise auto-correlation patterns, quasi-orthogonal crosscorrelation.

Introduction

Gold and De Bruijn sequence sets

- Typical choice: Gold codes, generated as logical combination of linear shift register (LSR) sequences (*preferred pairs*) of span n (= number of LSR cells);
- Gold codes features:
 - favorable statistical properties;
 - small cardinality = N + 2, where N (sequence length) = $2^n 1$
- In the literature, the alternative use of **De Bruijn** binary sequences for DS/CDMA has been recently proposed [SPI11]. Their features are:
 - generation by nonlinear shift register;
 - maximal length ($N = 2^n$);
 - very large cardinality $2^{2^{(n-1)}-n}$
 - interesting correlation-related features [AND10, SPI11, SPI13, WAR13, SAR14]

Aims of the paper and advancement with respect to related work

- Propose an efficient sequence generation algorithm based on De Bruijn graphs theory and Eulerian cycles;
- <u>Formal statistical analysis of De Bruijn sequences</u> in DS/CDMA with explicit computation of 2nd and 4th order statistics (variance and normalized kurtosis) of multi-user interference (MUI), in asynchronous BPSK-modulated DS/ CDMA transmission;
- <u>Closed form computation of average bit-error-probability</u> (BEP):
 - by Gaussian approximation [PUR76]
 - by non-Gaussian evaluation [TES99], based on the Generalized Gaussian modeling of the global detection noise affecting the CDMA receiver (Gaussian noise + MUI)
- <u>MUI statistics and BEP performance comparison to Gold codes</u> with and without code selection driven by a formal criterion.

At the end of this analysis we may have more insights about the use of De Bruijn sequences <u>in</u> <u>real DS/CDMA</u> <u>systems</u>

4

Efficient generation of large sets of De Bruijn sequences

DEF: in a binary De Bruijn sequence viewed cyclically over a period, each binary n-tuple appears exactly once, included the all-zero n-tuple, due to the non-linear nature of the generating register

5

- Generation by Non Linear Feedback Shift Registers (NLFSRs)
- NLFSR state at time t: $s(t) = (s_1(t), s_2(t), ..., s_3(t)), s_i(t) \in A = \{0,1\}, for i = 1,2, ..., n$ where
- At each clock transition:
 - each memory cell content shifted one position to the right
 - leftmost cell $s_n(t)$ updated by the output of a nonlinear feedback function g(.)
 - g(.) defines a mapping of $A^n \rightarrow A$
- At time (t+1), the state of the register is given by: $s_i(t+1) = \begin{cases} s_{i+1}(t), for \ i = 1, 2, ..., n-1 \\ g(s(t)), for \ i = n \end{cases}$

Efficient generation of large sets of De Bruijn sequences

- Various generation methods proposed in the literature:
 - use of a lower-order and n-bit pattern initial stage [TUR11]
 - prefer-one, prefer-opposite [ALH10], and prefer-same [FRE82] approaches for bit insertion
 - n-stage FSRs [CHA90, ZHA09]
- To increase time efficiency, De Bruijn graphs theory and Eulerian cycles are here exploited to <u>ignore a large number of</u> <u>sequences</u> that do not verify the definition given above:
 - each acceptable sequence starts from an arbitrary vertex and walks through the graph, by crossing each degree no more than once;
 - a rotated sequence to either the right or the left is not a different De Bruijn sequence;
 - the bitwise not of each De Bruijn sequence originates a distinct De Bruijn sequence of the same family: generation of half the set allows to obtain the whole family;
 - decimal representation of the array used to store the sequences.

A De Bruijn graph: every four-digit sequence occurs exactly once if one traverses every edge exactly once and returns to one's starting point (an Eulerian cycle)

Efficient generation of large sets of De Bruijn sequences

Generating algorithm pseudocode:

- 1. Parameters initialization: n, L_Seq (length of sequence), N_Seq (number of distinct sequences), T_Seq (matrix to store the generated De Bruijn sequences)
- 2.Set $Poss_Seq$ to $\{1, \{0\}^n, 1\}$ or $\{0, \{1\}^n, 0\}$ 3.Calculate $Dir_Vectors$ according to $Poss_Seq$
- 4.Calculate Next_Num according to Dir_Vectors 5.Loop (# generated sequences $< N_Seq$)
- 5.1Calculate next possible vertex w.r.t. *Dir_Vectors*
- 5.2Update $Poss_Seq$ according to the next possible vertex
- 5.3Update Next_Num according to Dir_Vectors
- 5.4If (achieved sequence meets De Bruijn definition) then Calculate bitwise NOT of the generated sequence Rotate the generated sequence and its complementary such that it starts with 0^n
 - Store the decimal value of both the generated sequence and its complementary one, in T_Seq
- 6.End Loop

Generation time for different span:

Span	3	4	5	6
Time (sec.)	0.263	0.416	70.764	\approx 4 days
# generated sequences	2	16	2048	4000000
# sequences	2	16	2048	67108864

Sequence sets: length and cardinality comparison:

	<i>m</i> -seq	<i>m</i> -sequences Gold		De Bruijn		
n	length	# seq.	length	# seq.	length	# seq.
5	31	6	31	33	32	2048
6	63	6	63	65	64	2^{26}
7	127	18	127	129	128	2^{57}
8	255	16	255	257	256	2^{120}
9	511	48	511	513	512	2^{247}
10	1023	60	1023	1025	1024	2^{502}

De Bruijn Sequences for DS/CDMA Transmission: Efficient Generation, Statistical Analysis and Performance ... S. Spinsante, M. Sarayloo, et. al.

De Bruijn sequences properties

- Periodic auto-correlation $C_{aa}^{r}[k]$ of span n De Bruijn sequence a for a shift k:

 - $C_{aa}_{P}^{P}[k] = 2^{n}$, for k = 0• $C_{aa}^{P}[k] = 0$, for $1 \le |k| \le n 1$ (Zero Correlation Zone)
 - $C_{aa}^{P}[k] \neq 0, |k| = n$
 - $C_{aa}^{r}[k] \equiv 0 \pmod{4}, \forall k, n \geq 2$
- Bound on periodic auto-correlation sidelobes values:

•
$$0 \le \max C_{aa}^{P}[k] \le 2^{n} - 4 \left[\frac{2^{n}}{2n}\right]^{+}$$

 $1 \le k \le N - 1, N = 2^{n}$

Bound on $maxC_{aa}^{P}[k]$ sidelobe value for 5≤n≤10

sp	oan	length	null samples	bound on	ratio
1	n	N	around peak	$max \ C_{aa}^{P} \left[k ight]$	$rac{max \ C_{aa}^{P}[k]}{N}$
	5	32	$1 \le k \le 4$	[0, 16]	0.5
	6	64	$1 \le k \le 5$	[0, 40]	0.625
,	7	128	$1 \le k \le 6$	[0, 88]	0.687
	8	256	$1 \le k \le 7$	[0, 192]	0.75
	9	512	$1 \le k \le 8$	[0, 396]	0.77
1	10	1024	$1 \le k \le 9$	[0, 816]	0.79

De Bruijn Sequences for DS/CDMA Transmission: Efficient Generation, Statistical Analysis and Performance ... S. Spinsante, M. Sarayloo, et. al.

De Bruijn sequences properties

• Cross-correlation function $C_{a_1a_2}[k]$ for a shift k:

$$-C_{a_1a_2}[k] = C_{a_1a_2}[N-k], 0 \le k \le N-1$$

$$-\sum_{k=0}^{N-1} C_{a_1 a_2}[k] = 0$$

$$-C_{a_1a_2}[k] \equiv 0 \pmod{4}, n \ge 2, \forall k$$

• Bound on cross-correlation sidelobes values: $-2^n \leq C_{a_1a_2}[k] \leq 2^n - 4, 0 \leq k \leq N - 1$

	Max abs.	Mean	σ
	value		
<i>m</i> -sequence	11	0.032258	5.65391
Gold31	9	-0.0447	5.4064
De Bruijn	32	0	6.0703

Maximum absolute value, mean, and standard deviation of the crosscorrelation, for De Bruijn, Gold, and msequences of span n = 5

De Bruijn sequences properties

- Randomness analysis: Golomb's postulates [GOL82]
 - 1st and 2nd postulates (<u>balance and run</u> properties): always verified;
 - 3rd postulate (ideal 2-level autocorrelation): <u>not verified</u> BUT a Zero Correlation Zone is exhibited;
- Linear complexity (C) = estimated length of the shortest LFSR which would be able to generate the sequence itself;
- According to Berlekamp [BER68], C provides numerical description of the amount of information needed to infer the structure of the spreading codes generation algorithm
- De Bruijn sequences: $2^{n-1} + n \le C \le 2^n 1$
- Gold codes: C = n

Linear complexity profiles and bounds of sequences, $3 \le n \le 10$

Received multi-user DS/CDMA signal (1):

From the channel (supposed to be AWGN):

$$r(t) = \sqrt{2P} \sum_{k=1}^{K} b_k \left(t - \tau_k \right) a_k \left(t - \tau_k \right) \cos\left(2\pi f_0 t + \theta - \phi_k \right) + z(t)$$

• After coherent demodulation and de-spreading (ref. user 1), sampled at

$$t=T: \qquad R = \sqrt{\frac{P}{2}}Tb_{1,0} + \sqrt{\frac{P}{2}}T\left(\frac{1}{N}\sum_{k=2}^{K}I_{k,1}\right) + \xi$$

$$I_{k,1} = \left\{\overline{\chi}_{k,1}(\alpha_k) + \left[\overline{\chi}_{k,1}(\alpha_k+1) - \overline{\chi}_{k,1}(\alpha_k)\right]\upsilon_k\right\}\cos(\phi_k) \quad \overline{\chi}_{k,1}(\alpha_k) = \begin{cases}C_{a_k,a_1}(\alpha_k) & \text{if } b_{k,-1} = b_{k,0}\\ \\C_{a_k,a_1}(\alpha_k) & \text{if } b_{k,-1} \neq b_{k,0}\end{cases}$$

$$Multi-User Interference (MUI) term$$

$$\alpha_k T_c \leq \tau_k < (\alpha_k + 1) T_c \quad \upsilon_k = (\tau_k - \alpha_k T_c) / T_c$$

Even and odd PN cross correlations

Received multi-user DS/CDMA signal (2):

• More in details [PUR76,TES99]:

• More in details [PUR76,TES99]:

$$C_{a_{k},a_{1}}(\alpha_{k}) = \Psi_{a_{k},a_{1}}(\alpha_{k}) + \Psi_{a_{k},a_{1}}(\alpha_{k} - N)$$

$$\Psi_{a_{k},a_{1}}(l) = \begin{cases} \sum_{j=0}^{N-1-l} a_{k}(l)a_{1}(j+l) & 0 \le l \le N-1 \\ \sum_{j=0}^{N-1+l} a_{k}(j-l)a_{1}(l) & 1-N \le l < 0 \\ 0 & |l| \ge N \end{cases}$$

Considering a BPSK modulation and deterministic (known) spreading sequences, the BEP computation is as follows:

$$P_{be} = \Pr\left\{\frac{error}{b_{k,0}} = -1\right\} = \Pr\left\{\frac{R > 0}{b_{k,0}} = -1\right\} = \Pr\left\{\left\|\sqrt{\frac{P}{2}}T\left(\frac{1}{N}\sum_{k=2}^{K}I_{k,1}\right) + \xi\right\| > \sqrt{\frac{P}{2}}T\right\}$$

$$\mathsf{Practically:} \ P_{be} = \int_{\sqrt{P/2T}}^{+\infty} f_{Z_G}\left(z\right)dz \quad \mathsf{where:} \ Z_G = \sqrt{\frac{P}{2}}T\left(\frac{1}{N}\sum_{k=2}^{K}I_{k,1}\right) + \xi$$

12

How can we NUMERICALLY compute DS/CDMA BEP?

- In other words: can we express in closed form the probability density function of the random variable Z_G ?
- The answer is **NO**, therefore, we should resort to some approximation:
 - Gaussian Approximation (GA): it simply considers a Gaussian distribution for Z_G. It is reasonable when the number of users is large [PUR76];
 - Generalized Gaussian Approximation (GG): as the pdf of MUI for real-valued binary sequence has an impulsive pseudo-Laplace distribution (*leptokurtic*), we can suppose that the pdf of Z_G fits well with the Generalized Gaussian pdf model [TES99], expressed in terms of its normalized kurtosis:

$$f_{Z_G}(z) = \frac{c\gamma}{\Gamma(1/c)} \exp\left(-\left|\gamma z\right|^c\right)$$

$$\kappa(Z_G) \doteq \frac{E(Z_G^4)}{\left\{E(Z_G^2)\right\}^2} = \frac{\frac{3}{4}\left(\frac{E_b}{\eta}\right)^{-2} + \frac{E(I^4)}{N^4} + 3\left(\frac{E_b}{\eta}\right)^{-1}\frac{E(I^2)}{N^2}}{\left[\frac{E(I^2)}{N^2} + \frac{\eta}{2E_b}\right]^2}$$

 Γ = Euler's Gamma function

 κ = 3 and *c*=2 for Gaussian-distributed r.v.

$$c = F\left(\kappa_{Z_G}\right) \approx \sqrt{\frac{5}{\kappa_{Z_G} - 1.865}} - 0.12$$

 $2 < \kappa_{Z_G} < 10$

(an alternative, <u>more precise</u> expression of *F*, <u>valid for a wider range</u> <u>of values</u> of the normalized kurtosis is in eq.30 of the paper) 13

• Approximated analytical expressions for DS/CDMA BEP:

• Using <u>GA approximation</u>, BEP is given as follows:

$$P_{be} \approx Q\left(\sqrt{SINR}\right) \quad SINR = \left(\frac{E\left(I^2\right)}{N^2} + \frac{\eta}{2E_b}\right)^{-1}$$

• Using <u>GG approximation</u>, we obtain after some mathematical manipulations:

$$P_{be} \approx \frac{1}{2} - \frac{1}{2} \Gamma_{inc} \left(\left[\frac{\Gamma(3/c)}{\Gamma(1/c)} SINR \right]^{c/2}, \frac{1}{c} \right)$$

$$\Gamma_{inc}(x,s) = \frac{1}{\Gamma(s)} \int_{0}^{x} t^{(s-1)} e^{-t} dt$$

«Incomplete» Gamma function

Numerical results

Random sequence selection

- This really means: <u>no selection criterion applied</u>, random indices of the De Bruijn matrix have been used to select the sequences;
- GA and GG approximations have been compared with <u>tight upper and lower bounds on DS/CDMA BEP</u> computed as in [LEH89];
- <u>BPSK modulation with Reed-Solomon coding</u> (RS(31,23)) have been considered in deriving numerical results (an analytical lower bound on BER is available for RS coding);
- *N*=32 and *K*=4 users have been considered in BEP computations.

Numerical results

- Making things smarter: sequence selection criterion (K sequences selected, for each value of N)
 - i. all the sequences in each set are assessed for their minimum aperiodic auto-correlation sidelobe $C_{a_k,a_1}(\alpha_k)$
 - ii. looking at the lowest minimum aperiodic auto-correlation sidelobe values found in i), the subset featuring the lowest sidelobe value joint a number of sequences K is selected;
 - iii. K sequences are extracted from the subset obtained in ii), by looking at sequence pairs featuring the most favorable aperiodic cross-correlation;
 - iv) if it is not possible to find a close subset of K sequences as per iii), they are selected randomly over the subset obtained in ii);
 - Number of groups of non-duplicated K sequences out of *M* (cardinality of the set):

$$G_{M,K} = \begin{pmatrix} M \\ K \end{pmatrix} = \frac{M!}{K!(M-K)!}$$

Sequence selection

- Minimum aperiodic cross-correlation sidelobe criterion;
- Things are changing: selected De Bruijn sequences <u>decreases both</u> <u>variance and normalized kurtosis of</u> <u>MUI;</u>
- As result, <u>BEP is noticeable decreased</u> with respect to Gold sequences (the selection criterion is not effective for small Gold sets).

Conclusion

- Performance of binary De Bruijn sequences assessed, as spreading codes in multiple users DS/CDMA systems, <u>through a formal statistical analysis of link</u> <u>performance</u>, in comparison with traditionally used Gold codes;
- The formal statistical analysis shows that De Bruijn codes exhibit <u>performance</u> <u>comparable to Gold codes</u> and even worse <u>if no selection criterion is applied</u>;
- On the other hand, the selection criterion based on the minimization the pairwise aperiodic cross-correlation among the sequences associated to different users may lead to remarkably improved performance of De Bruijn sequences;
- The much greater cardinality, and better randomness-related properties of De Bruijn sequences, could anyway <u>improve the robustness of the communication</u> <u>system against interception or security attacks</u>.

References

[AND10] S. Andrenacci, E. Gambi, C. Sacchi, and S. Spinsante, "Application of de Bruijn sequences in automotive radar systems: Preliminary evaluations," in Proc. IEEE RADARCON'10.

[SPI11] S. Spinsante, S. Andrenacci, and E. Gambi, "Binary de bruijn sequences for ds/cdma systems: analysis and results," EURASIP Jour. on Wir. Comm. and Networking, vol. 4, 2011.

[SPI13] S. Spinsante and E. Gambi, "De Bruijn binary sequences and spread spectrum applications: a marriage possible?", *IEEE Aerosp. Electron. Syst. Mag.*, vol.28, no.11, pp. 28 – 39, Nov. 2013.

[WAR13] C. Warty, E. Gambi, and S. Spinsante, "Secured scrambling codes for vehicular control and navigation," in Connected Vehicles and Expo (ICCVE), 2013 International Conference on, Dec 2013, pp. 920–925.

[SAR14] M. Sarayloo, E. Gambi, and S. Spinsante, "De bruijn sequences as zero correlation zone codes for satellite navigation systems," in *Telecommunications (ICT), 2014 21st International Conference on*, May 2014, pp. 216–220.

[PUR76] M. Pursley, "Performance evaluation of phase-coded spread spectrum multiple access communication – part 1: System analysis," *IEEE Trans. Commun.*, vol.COMM-25, Aug. 1977, pp. 816-825.

[TES99] A. Teschioni, C. Sacchi, and C. Regazzoni, "Non Gaussian characterization of DS/CDMA noise in few-user systems with complex signature sequences," *IEEE Transactions on Signal Processing*, vol. 47, no. 1, pp. 234–237, Jan 1999.

[LEH89] J. Lehnert, "An efficient technique for evaluating direct sequence spread-spectrum multiple-access communications," *IEEE Transactions on Communications*, vol. 37, no. 8, pp. 851–858, Aug 1989.

[TUR11] M. Turan, "Evolutionary construction of de Bruijn sequences," in Proc. 4th ACM Workshop on Security AlSec'11.

[ALH10] A. Alhakim, "A simple combinatorial algorithm for de Bruijn sequences," American Mathematical Monthly, vol. 117.

[FRE82] H. Fredricksen, "A survey of full-length nonlinear shift register cycle algorithms," SIAM Review, vol. 24, pp. 195–221, Apr. 1982.

[CHA90] A. Chan and R. Games, "On the quadratic spans of de Bruijn sequences," IEEE Trans. Inf. Theory, vol. 36, pp. 822–829, Jul. 1990.

[GOL82] S. Golomb, Ed., Shift Register Sequences. Laguna Hills, CA: Aegean Park Press, 1982.

[BER68] E. Berlekamp, Ed., Algebraic coding theory. New York: McGraw-Hill, 1968.

[ZHA09] W. Zhang, S. Liu, and H. Huang, "An efficient implementation algorithm for generating de Bruijn sequences," *Computer Standards & Interfaces*, vol. 31, pp. 1190–1191, Nov. 2009.

S. Spinsante, M. Sarayloo, et. al. De Bruijn Sequences for DS/CDMA Transmission: Efficient Generation, Statistical Analysis and Performance ...