
The 2006 Federated Logic Conference

The Seattle Sheraton Hotel and Towers

Seattle, Washington

August 10 - 22, 2006

 ��

ICLP’06 Workshop

PDPAR’06:
Pragmatical Aspects of Decision Procedures

in Automated Reasoning

August 21st, 2006

Proceedings

Editors:

Byron Cook, Roberto Sebastiani

Table of Contents

Table of Contents . iii

Program Committee . iv

Additional Reviewers . iv

Foreword . v

Keynote contributions (abstracts)

Proof Procedures for Separated Heap Abstractions

Peter O’Hearn . 1

The Power of Finite Model Finding

Koen Claessen . 2

Original papers

Mothers of Pipelines

Krstic, Jones, O’Leary . 3

Applications of hierarchical reasoning in the verification of complex systems

Jacobs, Sofronie-Stokkermans . 15

Towards Automatic Proofs of Inequalities Involving Elementary Functions

Akbarpour, Paulson . 27

Rewrite-Based Satisfiability Procedures for Recursive Data Structures

Bonacina, Echenim . 38

An Abstract Decision Procedure for Satisfiability in the Theory of Recursive Data

Types

Barrett, Shikanian, Tinelli .50

Presentation-only papers (abstracts)

A Framework for Decision Procedures in Program Verification

Strichman, Kroening . 62

Easy Parameterized Verification of Biphase Mark and 8N1 Protocols

Brown, Pike . 63

Predicate Learning and Selective Theory Deduction for Solving Difference Logic

Wang, Gupta, Ganai .64

Deciding Extensions of the Theory of Arrays by Integrating Decision Procedures

and Instantiation Strategies

Ghilardi, Niccolini, Ranise, Zucchelli . 65

Producing Conflict Sets for Combinations of Theories

Ranise, Ringeissen, Tran . 66

iii

Program Committee

Byron Cook (Microsoft Research, UK) [co-chair]

Roberto Sebastiani (Università di Trento, Italy) [co-chair]

Alessandro Armando (Università di Genova)

Clark Barrett (New York University)

Alessandro Cimatti (ITC-Irst, Trento)

Leonardo de Moura (SRI International)

Niklas Een (Cadence Design Systems)

Daniel Kroening (ETH-Zurich)

Shuvendu Lahiri (Microsoft Research)

Robert Nieuwenhuis (Technical University of Catalonia)

Silvio Ranise (LORIA, Nancy)

Eli Singerman (Intel Corporation)

Ofer Strichman (Technion)

Aaron Stump (Washington University)

Cesare Tinelli (University of Iowa)

Ashish Tiwari (Stanford Research Institute, SRI)

Additional reviewers

Nicolas Blanc

Juergen Giesl

Guillem Godoy

Kalyanasundaram Krishnamani

Michal Moskal

Enrica Nicolini

Albert Oliveras

Zvonimir Rakamaric

Simone Semprini

Armando Tacchella

Francesco Tapparo

Christoph Wintersteiger

Daniele Zucchelli

iv

Foreword

This volume contains the proceedings of the 4th Workshop on Pragmatics of

Decision Procedures in Automated Reasoning (PDPAR’06), held in Seattle, USA,

on August 21st, 2006, as part of the 2006 Federated Logic Conference (FLoC’06)

and affiliated with the 3rd International Joint Conference on Automated Reasoning

(IJCAR’06).

The applicative importance of decision procedures for the validity or the satisfi-

ability problem in decidable first-order theories is being increasingly acknowledged

in the verification community: many interesting and powerful decision procedures

have been developed, and applied to the verification of word-level circuits, hybrid

systems, pipelined microprocessors, and software.

The PDPAR’06 workshop has brought together researchers interested in both

the theoretical and the pragmatical aspects of decision procedures, giving them a

forum for presenting and discussing not only theoretical and algorithmic issues, but

also implementation and evaluation techniques, with the ultimate goal of making

new decision procedures possible and old decision procedures more powerful and

more useful.

In this edition of PDPAR we have allowed not only original papers, but also

“presentation-only papers”, i.e., papers describing work previously published in

non-FLOC’06 forums (which are not inserted in the proceedings). We are allow-

ing the submission of previously published work in order to allow researchers to

communicate good ideas that the PDPAR attendees are potentially unaware of.

The program included:

• two keynote presentations by Peter O’Hearn, University of London, and Koen

Claessen, Chalmers University.

• 10 technical paper presentations, including 5 original papers and 5 “presentation-

only” papers.

• A discussion session.

Additional details for PDPAR’06 (including the program) are available at the

web site http://www.dit.unitn.it/˜rseba/pdpar06/.

We gratefully acknowledge the financial support of Microsoft Research.

Seattle, August 2006

Byron Cook Microsoft Research, Cambridge, UK

Roberto Sebastiani DIT, University of Trento, Italy

v

vi

Proof Procedures for

Separated Heap Abstractions
(keynote presentation)

Peter O’Hearn

Queen Mary, University of London

ohearn@dcs.qmul.ac.uk

Abstract

Separation logic is a program logic geared towards reasoning about
programs that mutate heap-allocated data structures. This talk de-
scribes ideas arising from joint work with Josh Berdine and Cristiano
Calcagno on proof procedure for a sublogic of separation logic that is
oriented to lightweight program verification and analysis. The proof
theory uses ideas from substructural logic together with induction-free
reasoning about inductive definitions of heap structures. Substructural
reasoning is used to to infer frame axioms, which describe the portion
of a heap that is not altered by a procedure, as well as to discharge ver-
ification conditions; more precisely, the leaves of failed proofs can give
us candidate frame axioms. Full automation is achieved through the
use of special axioms that capture properties that would normally be
proven using by induction. I will illustrate the proof method through
its use in the Smallfoot static assertion checker, where it is used to
prove verification conditions and infer frame axioms, as well as in the
Space Invader program analysis, where it is used to accelerate the con-
vergence of fixed-point calculations.

1

The Power of Finite Model Finding
(keynote presentation)

Koen Claessen

Chalmers University of Technology and

Jasper Design Automation

koen@cs.chalmers.se

Abstract

Paradox is a tool that automatically finds finite models for first-
order logic formulas, using incremental SAT. In this talk, I will present
a new look on the problem of finding finite models for first-order logic
formulas. In particular, I will present a novel application of finite model
finding to the verification of finite and infinite state systems; here,
a finite model finder can be used to automatically find abstractions
of systems for use in safety property verification. In this verification
process, it turns out to be vital to use typed (or sorted) first-order
formulas. Finding models for typed formulas brings the freedom to
use different domain sizes for each type. How to choose these different
domain sizes is still very much an unexplored problem. We show how
a simple extension to a SAT-solver can be used to guide the search for
typed models with several domains of different sizes.

2

Mothers of Pipelines

Sava Krstić, Robert B. Jones, and John W. O’Leary

Strategic CAD Labs, Intel Corporation, Hillsboro, OR, USA

Abstract. We present a novel method for pipeline verification using SMT solvers.
It is based on a non-deterministic “mother pipeline” machine (MOP) that abstracts
the instruction set architecture (ISA). The MOP vs. ISA correctness theorem splits
naturally into a large number of simple subgoals. This theorem reduces proving the
correctness of a given pipelined implementation of the ISA to verifying that each of
its transitions can be modeled as a sequence of MOP state transitions.

1 Introduction

Proving correctness of microarchitectural processor designs (MA) with respect to
their instruction set architecture (ISA) amounts to establishing a simulation relation
between the behaviors of MA and ISA. There are different ways in the literature to
formulate the correctness theorem that relates the steps of the two machines [1], but
the complexity of the MA’s step function remains the major impediment to practical
verification. The challenge is to find a systematic way to break the verification effort
into manageable pieces.

We propose a solution based on the obvious fact that the execution of any
instruction can be seen as a sequence of smaller actions (let us call them mini-steps in
this informal overview), and the observation that the mini-steps can be understood
at an abstract level, without mentioning any concrete MA. Examples of mini-steps
are fetching an instruction, getting an operand from the register file, having an
operand forwarded by a previous instruction in the pipeline, writing a result to the
register file, and retiring. We introduce an intermediate specification MOP between
ISA and MA that describes the execution of each instruction as a sequence of mini-
steps. By design, our highly non-deterministic intermediate specification admits a
broad range of implementations. For example, MOP admits implementations that
are out-of-order or not, speculative or not, superscalar or not, etc. This approach
allows us to separate the implementation-independent proof obligations that relate
ISA to MOP from those that rely upon the details of the MA. This can potentially
amortize some of the proof effort over several different designs.

The concept of parcels, formalizing partially-executed instructions, will be needed
for a thorough treatment of mini-steps. We will follow the intuition that from any
given state of any MA one can always extract the current state of its ISA components
and infer a queue of parcels currently present in the MA pipeline. In Section 2, we
give a precise definition of a transition system MOP whose states are pairs of the
form 〈ISA state, queue of parcels〉, and whose transitions are mini-steps as described
above. Intuitively, it is clear that with a sufficiently complete set of mini-steps we will

be able to model any MA step in this transition system as a sequence of mini-steps.
Similarly, it should be possible to express any ISA step as a sequence of mini-steps
of MOP .

Figure 1 indicates that correctness of a microarchitecture MA with respect to
ISA is implied by correctness results that relate these machines with MOP . In
Section 3, we will prove the crucial MOP vs. ISA correctness property: despite its
non-determinism, all MOP executions correspond to ISA executions. The proof rests
on the local confluence of MOP . (Proofs are provided in the Appendix.)

MA1

++WWWWWW

... MOP oo //______ ISA

MAn

33gggggg

Fig. 1. With transitions that express atomic steps in instruction execution, a mother of pipelines
MOP simulates the ISA and its multiple microarchitectural implementations. Simulation à la
Burch-Dill flushing justifies the arrow from MOP to ISA.

The MA vs. MOP relationship is discussed in Section 4. We will see that all one
needs to prove here is a precise form of the simulation mentioned above: there exists
an abstraction function that maps MA states to MOP states such that for any two
states joined by a MA transition, the corresponding MOP states are joined by a
sequence of mini-steps.

MA vs. MOP vs. ISA correctness theorems systematically reduce to numerous
subgoals, suitable for automated SMT solvers (“satisfiability modulo theories”). We
used CVC Lite [4] and our initial experience is discussed in Section 5.

2 MOP Definition

The MOP definition depends on the ISA and the class of pipelined implementations
that we are interested in. The particular MOP described in this section has a simple
load-store ISA and can model complex superscalar implementations with out-of-
order execution and speculation.

2.1 The Instruction Set Architecture

ISA is a deterministic transition system with system variables pc : IAddr, rf : RF,
mem : MEM, imem : IMEM. We assume the types Reg and Word of registers and
machine words, so that rf can be viewed as a Reg-indexed array with Word values.
Similarly, mem can be viewed as a Word-indexed array with values in Word, while

4

instruction imem.pc actions

opc1 dest src1 src2 pc := pc + 4 rf .dest := alu opc1 (rf .src1) (rf .src2)

opc2 dest src1 imm pc := pc + 4 rf .dest := alu opc2 (rf .src1) imm

ld dest src1 offset pc := pc + 4 rf .dest := mem.(rf .src1 + offset)

st src1 dest offset pc := pc + 4 mem.(rf .dest + offset) := rf .src1

opc3 reg offset pc :=

target if taken
pc + 4 otherwise

, where

target = get target pc offset
taken = get taken (get test opc3) (rf .reg)

Fig. 2. ISA instruction classes (left column) and corresponding transitions. The variables
dest , src1 , src2 , reg have type Reg, and imm, offset have type Word. For the three opcodes, we
have opc1 ∈ {add, sub,mult}, opc2 ∈ {addi, subi,multi}, opc3 ∈ {beqz, bnez, j}.

imem is an IAddr-indexed array with values in the type Instr of instructions. Instruc-
tions fall into five classes that are identified by the predicates alu reg , alu imm, ld ,
st , branch. The form of an instruction of each class is given in Figure 2. The figure
also shows the ISA transitions—the change-of-state equations defined separately for
each instruction class.

2.2 State

Parcels are records with the following fields:

instr : Instr⊥ my pc : IAddr⊥ dest , src1 , src2 : Reg⊥
imm : Word⊥AA opc : Opcode⊥ data1 , data2 , res,mem addr : Word⊥
tkn : bool⊥ next pc : IAddr⊥AA wb : {⊥,>} pc upd : {⊥, � , � ,>}

The subscript ⊥ to a type indicates the addition of the element ⊥ (“undefined”) to
the type. The empty parcel has all fields equal to ⊥. The field wb indicates whether
the parcel has written back to the register file (for arithmetical parcels and loads)
or to the memory (for stores). Similiarly, pc upd indicates whether the parcel has
caused the update of pc. The additional values � and � are to record that the parcel
has updated pc speculatively and that it mispredicted.

In addition to the architected state components pc, rf , mem, imem, the state
of MOP contains integers head and tail , and a queue of parcels q . The queue is
represented by an integer-indexed array with head and tail defining its front and
back ends. We write idx j as an abbreviation for the predicate head ≤ j ≤ tail ,
saying that j is a valid index in q. The jth parcel in q will be denoted q.j.

2.3 Transitions

The transitions of MOP are defined by the rules given in Figures 3 and 4. Each rule
is a guarded parallel assignment described in the def/grd/act format, where def
contains local definitions, grd (guard) is the set of predicates defining the rule’s

5

domain, and act are the assignments made when the rule fires. Some rules contain
additional predicates and functions, defined next.

The rule decode requires the predicate decoded p ≡ p.opc 6= ⊥ and the function
decode that updates the parcel field opc and some of the fields dest , src1 , src2 , imm.
This update depends on the instruction class of p.instr , as in the following table.

instruction opc dest src1 src2 imm

ADD R1 R2 R3 add R1 R2 R3 ⊥
ADDI R1 R2 17 addi R1 R2 ⊥ 17

LD R1 R2 17 ld R1 R2 ⊥ 17

ST R1 R2 17 st ⊥ R1 R2 17

BEQZ R1 17 beqz ⊥ R1 ⊥ 17

J 17 j ⊥ ⊥ ⊥ 17

To specify how a given parcel should receive its data1 and data2 —from the register
file or by forwarding—we use the predicates no mrw r j ≡ (S = ∅) and mrw r j k ≡
(S 6= ∅ ∧ max S = k), where S = {k | k < j ∧ idx k ∧ q.k.dest = r}. The former
checks whether the parcel q.j needs forwarding for a given register r and the latter
gives the position k of the forwarding parcel (mrw = “most recent write”).

The rule write back allows parcels to write back to the register file out-of-
order. The parcel q.j can write back assuming (1) it is not mispredicted, and (2)
there are no parcels in front of it that write to the same register or that have not
fetched an operand from that register. These conditions are expressed by predicates
fit j ≡

∧
head<j′≤j fit at j′ and valid data upto j ≡

∧
head≤j′≤j valid data j′, where

fit at j ≡ q.j.my pc = q.(j − 1).next pc 6= ⊥

valid data j ≡ q.j.data1 6= ⊥ ∧ (alu reg q.j ⇒ q.j.data2 6= ⊥)

Memory access rules (load and store) enforce in-order execution of loads and
stores. The existence and the location of the most recent memory access parcel are
described by predicates mrma and no mrma, analogous to mrw and no mrw above:
one has mrma j k when k the largest valid index such that k < j and q.k is a load
or store; and one has no mrma j when no such number k exists. The completion of
a parcel’s memory access is formulated by

ma complete p ≡ (load p ∧ p.res 6= ⊥) ∨ (store p ∧ p.wb = >).

The last four rules in Figure 3 cover the computation of the next pc value
of a parcel, and the related test of whether the branch is taken and (if so) the
computation of the target address. The functions get taken and get target are the
same ones used by the ISA.

The rules pc update and speculate govern the program counter updating. The
first is based on the next pc value of the last parcel and implements the regular ISA
flow. The second implements practically unconstrained speculative updating of the
pc, specified by an arbitrary branch predict function.

Note that the status of a speculating branch changes when its next pc value is
computed; if the prediction is correct (matches my pc of the next parcel), the change

6

DEF i = imem.pc fetch

GRD length = 0 ∨ q.tail .pc upd ∈ { � ,>}

ACT q.(tail + 1) := empty parcel [instr 7→ i,my pc 7→ pc] tail := tail + 1 AAAAAA

DEF p = q.j decode j

GRD idx j ¬(decoded p)

ACT p := decode p

DEF p = q.j data1 rf j

GRD idx j decoded p p.src1 6= ⊥ p.data1 = ⊥ no mrw (p.src1) j

ACT p.data1 := rf .(p.src1)

DEF p = q.j p̄ = q.k, where mrw (p.src1) j k data1 forward j

GRD idx j decoded p p.src1 6= ⊥ p̄.res 6= ⊥ p.data1 = ⊥

ACT p.data1 := p̄.res

DEF p = q.j d = p.data1 d′ =

p.data2 if alu reg p
p.imm if alu imm p

result j

GRD

»

idx j p.data1 6= ⊥ p.res = ⊥
(alu reg p ∧ p.data2 6= ⊥) ∨ alu imm p

ACT p.res := alu p.opc d d′

DEF p = q.j d = p.data1 d′ = p.data2 mem addr j

GRD idx j p.mem addr = ⊥ (ld p ∧ d 6= ⊥) ∨ (st p ∧ d′ 6= ⊥)

ACT p.mem addr :=

d+ p.imm if ld p

d′ + p.imm if st p

DEF p = q.j write back j

GRD

»

idx j alu reg p ∨ alu imm p ∨ ld p fit j valid data upto j
no mrw (p.dest) j p.res 6= ⊥ p.wb = ⊥

ACT rf .(p.dest) := p.res p.wb := >

DEF p = q.j load j

GRD

»

idx j ld p p.mem addr 6= ⊥ p.res = ⊥
no mrma j ∨ (mrma j k ∧ma complete q.k)

ACT p.res := mem.(p.mem addr)

DEF p = q.j store j

GRD

»

idx j st p p.mem addr 6= ⊥ p.data1 6= ⊥ p.wb = ⊥ fit j
no mrma j ∨ (mrma j k ∧ma complete q.k)

ACT mem.(p.mem addr) := p.data1 p.wb := >

DEF p = q.j branch target j

GRD idx j branch p decoded p p.res = ⊥

ACT p.res := get target (p.my pc) (p.imm)

DEF p = q.j t = get test (p.opc) branch taken j

GRD idx j branch p decoded p p.data1 6= ⊥ p.tkn = ⊥

ACT p.tkn := get taken t (p.data1)

DEF p = q.j next pc branch j

GRD idx j branch p p.tkn 6= ⊥ p.res 6= ⊥ p.next pc = ⊥

ACT p.next pc :=

p.res if p.tkn
(p.my pc) + 4 otherwise

DEF p = q.j next pc nonbranch j

GRD idx j ¬(branch p) decoded p p.next pc = ⊥

ACT p.next pc := (p.my pc) + 4

Fig. 3. MOP transitions (Part 1). The rules data2 rf and data2 forward are analogous to
data1 rf and data1 forward, and are not shown.

7

DEF p = q.tail pc update

GRD length > 0 decoded p p.next pc 6= ⊥ p.pc upd 6= >

ACT pc := p.next pc p.pc upd := >

DEF p = q.tail speculate

GRD length > 0 decoded p branch p p.pc upd = ⊥ p.next pc = ⊥AAAAAAAA

ACT pc := branch predict p.my pc p.pc upd := �

DEF p = q.j prediction ok j

GRD idx j idx (j + 1) p.pc upd = � fit at (j + 1)

ACT p.pc upd := >

DEF p = q.j squash j

GRD idx j idx (j + 1) p.pc upd = � ¬(fit at (j + 1)) p.next pc 6= ⊥

ACT tail := j p.pc upd := �

DEF retire

GRD length > 0 complete (q.head)

ACT head := head+ 1

Fig. 4. MOP transitions (Part 2)

is modeled by rule prediction ok. And if the next pc value turns out wrong, rule
squash becomes enabled, effecting removal of all parcels following the mispredicting
branch.

Rule retire fires only at parcels that have completed their expected modification
of the architected state. complete p is defined by (p.wb = >) ∧ (p.pc upd = >) for
non-branches, and by p.pc upd = > for branches.

3 MOP Correctness

We call MOP states with empty queues flushed and considered them the initial
states of the MOP transition system. The map γ : s 7−→ 〈s, empty queue〉 establishes
a bijection from ISA states to flushed MOP states.

Note that MOP simulates ISA: if s and s′ are two consecutive ISA states, then
there exists a sequence of MOP transitions that leads from γ(s) to γ(s′). The se-
quence begins with fetch and proceeds depending on the class of the instruction
that was fetched, keeping the queue size equal to one until the last transition re-

tire. One can prove with little effort that a requisite sequence from γ(s) to γ(s′)
can always be found within the set described by the strategy

fetch ; decode ; (data1 rf [] (data1 rf ; data2 rf)) ;

(result [] mem addr [] (branch taken ; branch target)) ; [load [] store] ;

(next pc branch [] next pc nonbranch) ; pc update ; retire

A MOP invariant is a property that holds for all states reachable from initial
(flushed) states. Local confluence is MOP ’s fundamental invariant.

Theorem 1. Restricted to reachable states, MOP is locally confluent.

8

We omit the proof of Theorem 1. Note, however, that proof of local confluence
breaks down into lemmas—one for each pair of rules. For MOP , most of the cases
are resolved by rule commutation: if m1

ρ1
←− m

ρ2
−→ m2 (i.e., ρi applies to the

state m and leads from it to mi), then m1

ρ2
−→ m′

ρ1
←− m2, for some m′. For

the sake of illustration, we show in Figure 5 three examples when local confluence
requires non-trivial resolution. Diagrams 1 and 2 show two ways of resolving the

•

fetch

ÄÄ~~~~~~~
pc update

ÂÂ@@@@@@@

• '&%$Ã!"#1

prediction ok head
ÂÂ@@@@@@@ •

fetch
ÄÄ~~~~~~~

•

•

fetch

ÄÄ~~~~~~~
pc update

ÂÂ@@@@@@@

•
'&%$Ã!"#2

(squash t) ; pc update

44 •

•

retire

ÄÄ~~~~~~~
data1 forward j

ÂÂ@@@@@@@

• '&%$Ã!"#3

data1 rf j
ÂÂ@@@@@@@ •

retire
ÄÄ~~~~~~~

•

Fig. 5. Example non-trivial cases of local confluence

confluence of the rule pair (fetch,pc update). Note that both rules are enabled
only when q.tail .pc upd = � . Thus, the parcel q.tail must be a branch, and the
fetch is speculative. Diagram 1 applies when the speculation goes wrong, Diagram
2 when the fetched parcel is correct. (In Diagram 2, t is the index of the branch
at the tail of the original queue.) Diagram 3 shows local confluence for the pair
(retire,data1 forward j) when mrw j (q.j.src1) head holds.

The second fundamental property of MOP is related to termination. Even though
MOP is not terminating (of course), every infinite run must have an infinite number
of fetches:

Lemma 1. Without the rule fetch, MOP (on reachable states) is terminating and
locally confluent.

Proof. Every MOP rule except fetch either reduces the size of the queue, or makes
a measurable progress in at least one of the fields of one parcel, while keeping all
other fields the same. Measureable progress means going from ⊥ to a non-⊥ value,
or, in the case of the pc upd field, going up in the ordering ⊥ ≺ � ≺ � ≺ >. This
finishes the proof of termination. Local confluence of MOP without fetch follows
from a simple analysis of the (omitted) proof of Theorem 1. ¤

Let us say that a MOP state is irreducible if none of the rules, except possibly
fetch applies to it. It follows from Lemma 1, together with Newman’s Lemma [3],
that for every reachable state m there exists a unique irreducible state which can
be reached from m using non-fetch rules. This state will be denoted |m|.

Lemma 2. For every reachable state m, the irreducible state |m| is flushed.

9

Proof. Suppose the queue of |m| is not empty and let p be its head parcel. We
need to consider separately the cases defined by the instruction class of p. All cases
being similar, we will give a proof only for one: when p is a conditional branch. Since
decode does not apply to it, pmust be fully decoded. Since data1 rf does not apply
to p, we must have p.data 6= ⊥ (other conditions in the guard of data1 rf are true).
Now, since branch taken and branch target do not apply, we can conclude that
p.res 6= ⊥ and p.tkn 6= ⊥. This, together with the fact that next pc branch does
not apply, implies p.next pc 6= ⊥. Now, if p.pc upd = >, then retire would apply.
Thus, we must have p.pc upd 6= >. Since pc update does not apply, the queue
must have length at least 2. If p.pc upd = � , then either squash or prediction ok

would apply to the parcel p. Thus, p.pc upd is equal to ⊥ or � , and this contradicts
the (easily checked) invariant saying that a parcel with p.pc upd equal to ⊥ or �

must be at the tail of the queue. ¤

Define α(m) to be the ISA component of the flushed state |m|. Recall now the
function γ defined at the beginning of this section. The functions γ and α map ISA
states to MOP states and the other way around. Clearly, α(γ(s)) = s.

The function α is analogous to the pipeline flushing functions of Burch-Dill [5].
Indeed, we can prove that MOP satisfies the fundamental Burch-Dill correctness
property with respect to this flushing function.

Theorem 2. Suppose a MOP transition leads from m to m′, and m is reachable.
Then α(m′) = isa step (α(m)) or α(m′) = α(m).

Proof. We can assume the transition m −→ m′ is a fetch; otherwise, we clearly
have |m| = |m′|, and so α(m) = α(m′). The proof is by induction on the minimum
length k of a chain of (non-fetch) transitions from m to |m|. If k = 0, then m is
flushed, so m = γ(s) for some ISA state s. By the discussion at the beginning of
Section 3, the fetch transition m −→ m′ is the first in a sequence that, without using
any further fetches, leads from γ(s) to γ(s′), where s′ = isa step s. It follows that
|m′| = |γ(s′)|, so α(m′) = α(γ(s′)) = s′, as required.

m
ρ

//

fetch

²²

m1 // • . . . • // |m|

m′

σ

>>||||||||

m
ρ

//

fetch

²²

m1

fetch

²²

// • . . . • // |m|

m′
σ // m′1

Fig. 6. Two cases for the inductive step in the proof of Theorem 2

Assume now k > 0 and let m
ρ
−→ m1 be the first transition in a minimum

length chain from m to |m|. Analyzing the proof of Theorem 1, one can see that
local confluence in the case of the rule pair (fetch, ρ) can be resolved in one of the
two ways shown in Figure 6, where σ has no occurrences of fetch. In the first case,
we have α(m′) = α(m1), and in the second case we have α(m′) = α(m′1), where m′1

10

is as in Figure 6. In the first case, we have α(m′) = α(m1) = α(m). In the second
case, the proof follows from α(m) = α(m1), α(m′) = α(m′1), and the induction
hypothesis: α(m′1) = α(m1) or α(m′1) = isa step(α(m′1)). ¤

4 Simulating Microarchitectures in MOP

Suppose MA is a microarchitecture purportedly implementing the ISA. We will say
that a state-to-state map β from MA to MOP is a MOP-simulation if for every MA
transition s −→MA s′, the state β(s′) is reachable in MOP from β(s). Existence of a
MOP -simulation proves (the safety part of) the correctness of MA. Indeed, for every
execution sequence s1 −→MA s2 −→MA . . . , we have β(s1) −→+

MOP
β(s2) −→+

MOP

. . ., and then by Theorem 2, α(β(s1)) −→∗
ISA

α(β(s2)) −→∗
ISA

. . ., demonstrating
the crucial simulation relation between MA and ISA.

For a given MA, the MOP -simulation function β should be easy to guess. The
difficult part is to verify that it satisfies the required property: the existence of
a chain of MOP transitions β(s) −→+

MOP
β(s′) for each transition s −→MA s′.

Somewhat simplistically, this verification task can be partitioned as follows.
Suppose MA’s state variables are v1, . . . , vn. (Among them are the ISA state

variables, of course.) The MA transition function

s = 〈v1, . . . , vn〉 7−→ s′ = 〈v′1, . . . , v
′
n〉

is given by n functions next v i such that v′i = next v i 〈v1, . . . , vn〉. The n-step se-
quence s = s0 Ã s1 Ã . . . Ã sn−1 Ã sn = s′ where si = 〈v′1, . . . , v

′
i, vi+1, . . . , vn〉

conveniently serializes the parallel computation that MA does when it makes a
transition from s to s′. These n steps are not MA transitions themselves since the
intermediate si need not be legitimate MA states at all. However, it is reasonable to
expect that the progress described by this sequence is reflected in MOP by actual
transitions:

β(s) = m0 −→
∗
MOP m1 −→

∗
MOP . . . −→∗MOP mn = β(s′). (1)

Defining the intermediate MOP states mi will usually be straightforward. Once
they have been identified, the task of proving that β(s′) is reachable from β(s) is
broken down into n tasks of proving that mi+1 is reachable from mi. Effectively,
the correctness of the MA next-state function is reduced to proving a correctness
property for each state component update function next v i.

5 Mechanization

Our method is intended to be used with a combination of interactive (or manual)
and automated theorem proving. The correctness of the MOP system (Theorem 2)
rests largely on its local confluence (Theorem 1), which is naturally and easily split
into a large number of cases that can be individually verified by an automated SMT

11

solver. The solver needs decision procedures for uninterpreted functions, a fragment
of arithmetic, and common datatypes auch as arrays, records and enumeration types.
Once the MA-simulation function β of Section 4 has been defined and the intermedi-
ate MOP states mi in the chain (1) identified, it should also be possible to generate
the proof of reachability of mi+1 from mi with the aid of the same solver.

We have used manual proof decomposition and CVC Lite to implement the
proof procedure just described. Our models for ISA, MOP , and MA are all written
in the reflective general-purpose functional language reFLect [7]. In this convenient
framework we can execute specifications and—through a HOL-like theorem prover
on top of reFLect or an integrated CVC Lite—formally reason about them at the
same time. Local confluence of MOP is (to some extent automatically) reduced to
about 400 goals, which are individually proved with CVC Lite. For MA we used the
textbook DLX model [9] and proved it is simulated in MOP by constructing the
chains (1) and verifying them with CVC Lite. This proof is sketched in some detail
in the Appendix.

Mechanization of our method is still in progress. Clean and efficient use of SMT
solvers to prove properties of executable high-level models written in another lan-
guage comes with challenges, some of which were discussed in [8]. For us, particularly
exigent is the demand for heuristics for deciding when to expand occurrences of func-
tion symbols in goals passed to the SMT solver with the functions’ definitions, and
when to treat them as uninterpreted.

6 Related Work

The idea of flushing a pipeline automatically was introduced in a seminal paper by
Burch and Dill [5]. In the original approach, all in-flight instructions in the imple-
mentation state are flushed out of the pipeline by inserting bubbles—NOPs that do
not affect the program counter. Pipelines that use a combination of super-scalar exe-
cution, out-of-order execution, variable-latency execution units, etc. are too complex
to flush directly. In response, researchers have invented a variety of ways, many based
on flushing, to relate the implementation pipeline to the specification. We cover here
only those approaches that are most closely related. The interested reader is refered
to [1] for a relatively complete survey of pipeline verification approaches.

Damm and Pnueli [6] use a non-deterministic specification that generates all
program traces that satisfy data dependencies. They use an intermediate abstraction
with auxiliary variables to relate the specification and an implementation with out-
of-order retirement based on Tomasulo’s algorithm. In each step of the specification
model, an entire instruction is executed atomically and its result written back. In
the MOP approach, the execution of each instruction is broken into a sequence of
mini-steps in order to relate to a pipelined implementation.

Skakkebæk et al. [16, 11] introduce incremental flushing and use a non-determini-
stic intermediate model to prove correctness of a simple out-of-order core with in-
order retirement. Like us, they rely on arguments about re-ordering transactions.

12

While incremental flushing must deal with transactions as they are defined for the
pipeline, we decompose pipeline transactions into much simpler “atomic” transac-
tions. This facilitates a more general abstraction and should require significantly
less manual proof effort than the incremental flushing approach.

Sawada and Hunt [14] use an intermediate model with an unbounded history ta-
ble called a micro-architectural execution trace table. It contains instruction-specific
information similar to that found in the MOP queue. Arons [2] follows a similar
path, augmenting an implementation model with history variables that record the
predicted results of instruction execution. In these approaches, auxiliary state is—
like the MOP queue—employed to derive and prove invariants about the implemen-
tation’s relation to the specification. While their auxiliary state is derived directly
from the MA, MOP is largely independent of MA and has fine-grained transitions.

Arvind and Shen [15] use term rewriting to model an out-of-order processor and
its specification. Similar to our approach, multiple rewrite rules may be required
to complete an implementation step. As in the current approach, branch prediction
is modeled by non-determinism. In contrast with the current approach, a single
processor implementation is related directly to its in-order specification.

Hosabettu et al. [10] devised a method to decompose the Burch-Dill correctness
statement into lemmas, one per pipeline stage. This inspired the decomposition we
describe in Section 4.

Lahiri and Bryant [12], and Manolios and Srinivasan [13] verified complex mi-
croprocessor models using the SMT solver UCLID. Some consistency invariants in
[12] occur naturally in our confluence proofs as well, but the overall approach is
not closely related. The WEB-refinement method used in [13] produces proofs of
strong correspondence between ISA and MA (stuttering bisimulation) that implies
liveness. We have proved that MOP with a bounded queue and ISA are stuttering
equivalent, also establishing liveness. The proof is contained in the Appendix.

7 Conclusion

We have presented a new approach for verifying a pipelined system P against its
specification S by using an intermediate “pipeline mother” systemM that explicates
atomic computations occurring in steps of S. For definiteness, we assumed that P is
a microprocessor model and S is its ISA, but the method can potentially be applied
to verify pipelined hardware components in general, or in protocol verification. This
can all be seen as a refinement of the classical Burch-Dill method, but with the
difficult flushing-based simulation pushed to theM vs. S level, where it amounts to
proving local confluence of M—a conjunction of easily-stated properties of limited
size, readily verifiable by SMT solvers.

As an example, we specified a concrete intermediate model MOP for a simple
load-store architecture and proved its correctness. We also verified the textbook
machine DLX against it. However, our MOP contains more than is needed for
verifying DLX : it is designed for simulation of microprocessor models with complex

13

out-of-order execution that cannot be handled by currently available methods. This
will be addressed in future work. Also left for future work are improvements to
our methodology (manual decomposition of verification goals into subgoals which
we prove with CVC Lite [4]) and performance comparison with other published
methods.

Acknowledgment. We thank Jesse Bingham for his comments.

References

1. M. D. Aagaard, B. Cook, N. A. Day, and R. B. Jones. A framework for superscalar micropro-
cessor correctness statements. Software Tools for Technology Transfer, 4(3):298–312, 2003.

2. T. Arons. Verification of an advanced MIPS-type out-of-order execution algorithm. In Com-
puter Aided Verification (CAV’04), volume 3114 of LNCS, pages 414–426, 2004.

3. F. Baader and T. Nipkow. Term Rewriting and All That. Cambridge University Press, 1998.
4. C. Barrett and S. Berezin. CVC Lite: A new implementation of the cooperating validity checker.

In R. Alur and D. A. Peled, editors, Computer Aided Verification (CAV’04), volume 3114 of
LNCS, pages 515–518, 2004.

5. J. Burch and D. Dill. Automatic verification of pipelined microprocessor control. In D. L. Dill,
editor, Computer Aided Verification (CAV’94), volume 818 of LNCS, pages 68–80, 1994.

6. W. Damm and A. Pnueli. Verifying out-of-order executions. In H. F. Li and D. K. Probst,
editors, Correct Hardware Design and Verification Methods (CHARME’97), pages 23–47. Chap-
man and Hall, 1997.

7. J. Grundy, T. Melham, and J. O’Leary. A reflective functional language for hardware design
and theorem proving. J. Functional Programming, 16(2):157–196, 2006.

8. J. Grundy, T. F. Melham, S. Krstić, and S. McLaughlin. Tool building requirements for an
API to first-order solvers. Electr. Notes Theor. Comput. Sci., 144(2):15–26, 2006.

9. J. Hennessy and D. Patterson. Computer Architecture: A Quantitative Approach. Morgan
Kaufmann, 1995.

10. R. Hosabettu, G. Gopalakrishnan, and M. Srivas. Verifying advanced microarchitectures that
support speculation and exceptions. In E. A. Emerson and A. P. Sistla, editors, Computer
Aided Verification (CAV’00), volume 1855 of LNCS, pages 521–537, 2000.

11. R. B. Jones. Symbolic Simulation Methods for Industrial Formal Verification. Kluwer, 2002.
12. S. K. Lahiri and R. E. Bryant. Deductive verification of advanced out-of-order microprocessors.

In W. A. Hunt Jr. and F. Somenzi, editors, Computer Aided Verification (CAV’03), volume
2725 of LNCS, pages 341–354, 2003.

13. P. Manolios and S. K. Srinivasan. A complete compositional reasoning framework for the effi-
cient verification of pipelined machines. In IEEE/ACM International conference on Computer-
aided design (ICCAD’05), pages 863–870. IEEE Computer Society, 2005.

14. J. Sawada and W. Hunt. Processor verification with precise exceptions and speculative exe-
cution. In Alan J. Hu and Moshe Y. Vardi, editors, Computer Aided Verification (CAV’98),
volume 1427 of LNCS, pages 135–146, 1998.

15. X. Shen and Arvind. Design and verification of speculative processors. In Workshop on Formal
Techniques for Hardware, Maarstrand, Sweden, June 1998.

16. J. Skakkebæk, R. Jones, and D. Dill. Formal verification of out-of-order execution using in-
cremental flushing. In Alan J. Hu and Moshe Y. Vardi, editors, Computer Aided Verification
(CAV’98), volume 1427 of LNCS, pages 98–109, 1998.

14

Applications of hierarchical reasoning in

the verification of complex systems

Swen Jacobs and Viorica Sofronie-Stokkermans

Max-Planck-Institut für Informatik, Stuhlsatzenhausweg 85, Saarbrücken, Germany

e-mail: {sjacobs, sofronie}@mpi-sb.mpg.de

Abstract

In this paper we show how hierarchical reasoning can be used to
verify properties of complex systems. Chains of local theory extensions
are used to model a case study taken from the European Train Control
System (ETCS) standard, but considerably simplified. We show how
testing invariants and bounded model checking can automatically be
reduced to checking satisfiability of ground formulae over a base theory.

1 Introduction

Many problems in computer science can be reduced to proving satisfiability
of conjunctions of (ground) literals modulo a background theory. This theory
can be a standard theory, the extension of a base theory with additional
functions (free or subject to additional conditions), or a combination of
theories. In [8] we showed that for special types of theory extensions, which
we called local, hierarchic reasoning in which a theorem prover for the base
theory is used as a “black box” is possible. Many theories important for
computer science are local extensions of a base theory. Several examples
(including theories of data structures, e.g. theories of lists (or arrays cf. [3]);
but also theories of monotone functions or of functions satisfying semi-Galois
conditions) are given in [8] and [9]. Here we present additional examples of
local theory extensions occurring in the verification of complex systems.

In this paper we address a case study taken from the specification of
the European Train Control System (ETCS) standard [2], but considerably
simplified, namely an example of a communication device responsible for
a given segment of the rail track, where trains may enter and leave. We
suppose that, at fixed moments in time, all knowledge about the current
positions of the trains is available to a controller which accordingly imposes
constraints on the speed of some trains, or allows them to move freely within
the allowed speed range on the track. Related problems were tackled before
with methods from verification [2].

The approach we use in this paper is different from previously used
methods. We use sorted arrays (or monotonely decreasing functions) for
storing the train positions. The use of abstract data structures allows us to

15

pass in an elegant way from verification of several finite instances of problems
(modeled by finite-state systems) to general verification results, in which sets
of states are represented using formulae in first-order logic, by keeping the
number of trains as a parameter. We show that for invariant or bounded
model checking the specific properties of “position updates” can be expressed
in a natural way by using chains of local theory extensions. Therefore we can
use results in hierarchic theorem proving both for invariant and for bounded
model checking1. By using locality of theory extensions we also obtained
formal arguments on possibilities of systematic “slicing” (for bounded model
checking): we show that for proving (disproving) the violation of the safety
condition we only need to consider those trains which are in a ’neighborhood’
of the trains which violate the safety condition2.

Structure of the paper. Section 2 contains the main theoretical results needed
in the paper. In Section 3 we describe the case study we consider. In Sec-
tion 4 we present a method for invariant and bounded model checking based
on hierarchical reasoning. Section 5 contains conclusions and perspectives.

2 Preliminaries

Theories and models. Theories can be regarded as sets of formulae or
as sets of models. Let T be a theory in a (many-sorted) signature Π =
(S,Σ,Pred), where S is a set of sorts, Σ is a set of function symbols and
Pred a set of predicate symbols (with given arities). A Π-structure is a tuple

M = ({Ms}s∈S , {fM}f∈Σ, {PM}P∈Pred),

where for every s ∈ S, Ms is a non-empty set, for all f ∈ Σ with arity
a(f)=s1. . .sn → s, fM :

∏n
i=1

Msi→Ms and for all P ∈ Pred with arity
a(P) = s1. . .sn, PM ⊆Ms1× . . .×Msn . We consider formulae over variables
in a (many-sorted) family X = {Xs | s ∈ S}, where for every s ∈ S, Xs is a
set of variables of sort s. A model of T is a Π-structure satisfying all formulae
of T . In this paper, whenever we speak about a theory T we implicitly refer
to the set Mod(T) of all models of T , if not otherwise specified.

Partial structures. Let T0 be a theory with signature Π0 = (S0,Σ0,Pred).
We consider extensions T1 of T0 with signature Π = (S,Σ,Pred), where
S = S0 ∪ S1,Σ = Σ0 ∪ Σ1 (i.e. the signature is extended by new sorts
and function symbols) and T1 is obtained from T0 by adding a set K of
(universally quantified) clauses. Thus, Mod(T1) consists of all Π-structures
which are models of K and whose reduct to Π0 is a model of T0.

A partial Π-structure is a structureM = ({Ms}s∈S , {fM}f∈Σ, {PM}P∈Pred),
where for every s ∈ S, Ms is a non-empty set and for every f ∈ Σ with arity

1Here we only focus on one example. However, we also used this technique for other
case studies (among which one is mentioned – in a slightly different context – in [9]).

2In fact, it turns out that slicing (locality) results with a similar flavor presented by
Necula and McPeak in [6] have a similar theoretical justification.

16

s1 . . . sn → s, fM is a partial function from Ms1 × · · · ×Msn to Ms. The
notion of evaluating a term t with variables X = {Xs | s ∈ S} w.r.t. an
assignment {βs:Xs →Ms | s ∈ S} for its variables in a partial structure M
is the same as for total many-sorted algebras, except that this evaluation
is undefined if t = f(t1, . . . , tn) with a(f) = (s1 . . . sn → s), and at least
one of βsi(ti) is undefined, or else (βs1(t1), . . . , βsn(tn)) is not in the domain
of fM. In what follows we will denote a many-sorted variable assignment
{βs:Xs → Ms | s ∈ S} as β : X →M. Let M be a partial Π-structure, C
a clause and β : X →M. We say that (M, β) |=w C iff either (i) for some
term t in C, β(t) is undefined, or else (ii) β(t) is defined for all terms t of C,
and there exists a literal L in C s.t. β(L) is true in M. M weakly satisfies
C (notation: M |=w C) if (M, β) |=w C for all assignments β. M weakly
satisfies (is a weak partial model of) a set of clauses K (notation: M |=w K,
M is a w.p.model of K) if M |=w C for all C ∈ K.

Local theory extensions. Let K be a set of (universally quantified) clauses
in the signature Π = (S,Σ,Pred), where S = S0 ∪ S1 and Σ = Σ0 ∪ Σ1. In
what follows, when referring to sets G of ground clauses we assume they are
in the signature Πc = (S,Σ ∪ Σc,Pred) where Σc is a set of new constants.
An extension T0 ⊆ T0 ∪ K is local if satisfiability of a set G of clauses with
respect to T0∪K, only depends on T0 and those instances K[G] of K in which
the terms starting with extension functions are in the set st(K, G) of ground
terms which already occur in G or K. Formally,

K[G] = {Cσ |C ∈ K, for each subterm f(t) of C, with f ∈ Σ1,

f(t)σ ∈ st(K, G), and for each variable x which does not
occur below a function symbol in Σ1, σ(x) = x},

and T0 ⊆ T1=T0 ∪ K is a local extension if it satisfies condition (Loc):

(Loc) For every set G of ground clauses G |=T1⊥ iff there is no partial
Πc-structure P such that P|Π0

is a total model of T0, all terms

in st(K, G) are defined in P , and P weakly satisfies K[G] ∧G.

In [8, 9] we gave several examples of local theory extensions: e.g. any ex-
tension of a theory with free function symbols; extensions with selector
functions for a constructor which is injective in the base theory; extensions
of several partially ordered theories with monotone functions. In Section 4.2
we give additional examples which have particular relevance in verification.

Hierarchic reasoning in local theory extensions. Let T0 ⊆ T1=T0 ∪K
be a local theory extension. To check the satisfiability of a set G of ground
clauses w.r.t. T1 we can proceed as follows (for details cf. [8]):

Step 1: Use locality. By the locality condition, G is unsatisfiable w.r.t. T1 iff
K[G] ∧G has no weak partial model in which all the subterms of K[G] ∧G
are defined, and whose restriction to Π0 is a total model of T0.

17

Step 2: Flattening and purification. We purify and flatten K[G] ∧ G by
introducing new constants for the arguments of the extension functions as
well as for the (sub)terms t = f(g1, . . . , gn) starting with extension functions
f ∈ Σ1, together with new corresponding definitions ct ≈ t. The set of
clauses thus obtained has the form K0 ∧G0 ∧D, where D is a set of ground
unit clauses of the form f(c1, . . . , cn) ≈ c, where f ∈ Σ1 and c1, . . . , cn, c are
constants, and K0, G0 are clause sets without function symbols in Σ1.

Step 3: Reduction to testing satisfiability in T0. We reduce the problem to
testing satisfiability in T0 by replacing D with the following set of clauses:

N0 =
∧
{

n∧

i=1

ci≈di→c≈d | f(c1, . . . , cn) = c, f(d1, . . . , dn) = d ∈ D}.

Theorem 1 ([8]) With the notations above, the following are equivalent:

(1) T0 ∧ K ∧G has a model.

(2) T0∧K[G]∧G has a w.p.model (where all terms in st(K,G) are defined).

(3) T0∧K0∧G0∧D has a w.p.model (with all terms in st(K,G) defined).

(4) T0∧K0∧G0∧N0 has a (total) Σ0-model.

3 The RBC Case Study

The case study we discuss here is taken from the specification of the Eu-
ropean Train Control System (ETCS) standard: we consider a radio block
center (RBC), which communicates with all trains on a given track segment.
Trains may enter and leave the area, given that a certain maximum number
of trains on the track is not exceeded. Every train reports its position to
the RBC in given time intervals and the RBC communicates to every train
how far it can safely move, based on the position of the preceding train. It
is then the responsibility of the trains to adjust their speed between given
minimum and maximum speeds.

For a first try at verifying properties of this system, we have considerably
simplified it: we abstract from the communication issues in that we always
evaluate the system after a certain time ∆t, and at these evaluation points
the positions of all trains are known. Depending on these positions, the
possible speed of every train until the next evaluation is decided: if the
distance to the preceding train is less than a certain limit lalarm, the train
may only move with minimum speed min (otherwise with any speed between
min and the maximum speed max).

3.1 Formal Description of the System Model

We present two formal system models. In the first one we have a fixed
number of trains; in the second we allow for entering and leaving trains.

Model 1: Fixed Number of Trains. In this simpler model, any state of
the system is characterized by the following functions and constants:

18

• ∆t > 0, the time between evaluations of the system.

• min and max, the minimum and maximum speed of trains. We assume
that 0 ≤ min ≤ max.

• lalarm, the distance between trains which is deemed secure.

• n, the number of trains.

• pos, a function which maps indices (between 0 and n−1) associated to
trains on the track to the positions of those trains on the track. Here
pos(i) denotes the current position of the train with index i.

We use a new function pos′ to model the evolution of the system: pos′(i)
denotes the position of i at the next evaluation point (after ∆t time units).
The way positions change (i.e. the relationship between pos and pos′) is
defined by the following set Kf = {F1,F2,F3,F4} of axioms:

(F1) ∀i (i = 0 → pos(i) + ∆t∗min ≤R pos′(i) ≤R pos(i) + ∆t∗max)

(F2) ∀i (0 < i < n ∧ pos(i− 1) >R 0 ∧ pos(p(i))− pos(i) ≥R lalarm

→ pos(i) + ∆t ∗min ≤R pos′(i) ≤R pos(i) + ∆t∗max)

(F3) ∀i (0 < i < n ∧ pos(i− 1) >R 0 ∧ pos(p(i))− pos(i) <R lalarm

→ pos′(i) = pos(i) + ∆t∗min)

(F4) ∀i (0 < i < n ∧ pos(i− 1) ≤R 0 → pos′(i) = pos(i)),

Note that the train with number 0 is the train with the greatest position,
i.e. we count trains from highest to lowest position.

Axiom F1 states that the first train may always move at any speed
between min and max. F2 states that the other trains can do so if their
predecessor has already started and the distance to it is larger than lalarm.
If the predecessor of a train has started, but is less than lalarm away, then
the train may only move at speed min (axiom F3). F4 requires that a train
may not move at all if its predecessor has not started.

Model 2: Incoming and leaving trains. If we allow incoming and
leaving trains, we additionally need a measure for the number of trains on
the track. This is given by additional constants first and last, which at any
time give the number of the first and last train on the track (again, the first
train is supposed to be the train with the highest position). Furthermore, the
maximum number of trains that is allowed to be on the track simultaneously
is given by a constant maxTrains. These three values replace the number of
trains n in the simpler model, the rest of it remains the same except that the
function pos is now defined for values between first and last, where before it
was defined between 0 and n − 1. The behavior of this extended system is
described by the following set Kv consisting of axioms (V1)− (V9):

(V1) ∀i (i = first→ pos(i) + ∆t ∗min ≤R pos′(i) ≤R pos(i) + ∆t ∗max)

(V2) ∀i (first < i ≤ last ∧ pos(i− 1) >R 0 ∧ pos(i− 1)− pos(i) ≥R lalarm

→ pos(i) + ∆t ∗min ≤R pos′(i) ≤R pos(i) + ∆t ∗max)

19

(V3) ∀i (first < i ≤ last ∧ pos(i− 1) >R 0 ∧ pos(i− 1)− pos(i) <R lalarm

→ pos′(i) = pos(i) + ∆t ∗min)

(V4) ∀i (first < i ≤ last ∧ pos(i− 1) ≤R 0→ pos′(i) = pos(i))

(V5) last− first + 1 < maxTrains→ last′ = last ∨ last′ = last + 1

(V6) last− first + 1 = maxTrains→ last′ = last

(V7) last− first + 1 > 0→ first′ = first ∨ first′ = first + 1

(V8) last− first + 1 = 0→ first′ = first,

(V9) last′ = last + 1 → pos′(last′) <R pos′(last)

where primed symbols denote the state of the system at the next evaluation.
Here, axioms V1−V4 are similar to F1−F4, except that the fixed bounds

are replaced by the constants first and last. V5 states that if the number of
trains is less than maxTrains, then a new train may enter or not. V6 says
that no train may enter if maxTrains is already reached. V7 and V8 are
similar conditions for leaving trains. Finally, V9 states that if a train enters,
its position must be behind the train that was last before.

4 Hierarchical reasoning in verification

The safety condition which is important for this type of systems is collision
freeness. Intuitively (but in a very simplified model of the system of trains)
collision freeness is similar to a ’bounded strict monotonicity’ property for
the function pos which stores the positions of the trains:

Mon(pos) ∀i, j (0 ≤ i < j < n→ pos(i) >R pos(j))

Mon(pos) expresses the condition that for all trains i, j on the track, if i
precedes j then i should be positioned strictly ahead of j.

We will also consider a more realistic extension, which allows to express
collision-freeness when the maximum length of the trains is known. In both
cases, we focus on invariant checking and on bounded model checking.

4.1 Problems: Invariant checking, bounded model checking

In what follows we illustrate the ideas for the simple approach, in which
collision-freeness is identified with strict monotonicity of the function which
stores the positions of the trains. To check that strict monotonicity of train
positions is an invariant, we need to check that:

(a) In the initial state the train positions (expressed by a function pos0)
satisfy the strict monotonicity condition Mon(pos0).

(b) Assuming that at a given state, the function pos (indicating the po-
sitions) satisfies the strict monotonicity condition Mon(pos), and the
next state positions, stored in pos′, satisfy the axioms K, where K ∈
{Kf ,Kv}, then pos′ satisfies the strict monotonicity condition Mon(pos′).

20

Checking (a) is not a problem. For (b) we need to show that in the extension
T of a combination T0 of real arithmetic with an index theory describing
precedence of trains, with the two functions pos and pos′ the following hold:

T |= K∧Mon(pos)→ Mon(pos′), i.e. T ∧K∧Mon(pos)∧¬Mon(pos′) |=⊥ .

The set of formulae to be proved unsatisfiable w.r.t. T involves the axioms
K and Mon(pos), containing universally quantified variables of sort i. Only
¬Mon(pos′) corresponds to a ground set of clauses G. However, positive re-
sults for reasoning in combinations of theories were only obtained for testing
satisfiability for ground formulae [7, 4], so are not directly applicable.

In bounded model checking the same problem occurs. For a fixed k, one
has to show that there are no paths of length at most k from the initial state
to an unsafe state. We therefore need to store all intermediate positions in
arrays pos0, pos1, . . . , posk, and – provided that K(posi−1, posi) is defined
such that K = K(pos, pos′) – to show:

T ∧

j∧

i=1

K(posi−1, posi) ∧Mon(pos0) ∧ ¬Mon(posj) |=⊥ for all 0 ≤ j ≤ k.

4.2 Our solution: locality, hierarchical reasoning

Our idea. In order to overcome the problem mentioned above we proceed
as follows. We consider two successive extensions of the base many-sorted
combination T0 of real arithmetic (for reasoning about positions, sort num)
with an index theory (for describing precedence between trains, sort i):

• the extension T1 of T0 with a monotone function pos, of arity i→ num,

• the extension T2 of T1 with a function pos′ satisfying K ∈ {Kf ,Kv}.

We show that both extensions T0 ⊆ T1 = T0∪Mon(pos) and T1 ⊆ T2 = T1∪K
are local, where K ∈ {Kf ,Kv}. This allows us to reduce problem (b) to
testing satisfiability of ground clauses in T0, for which standard methods for
reasoning in combinations of theories can be applied. A similar method can
be used for bounded model checking.

The base theory. As mentioned before, we assume that T0 is the many-
sorted combination of a theory T i

0
(sort i) for reasoning about precedence

between trains and the theory T num
0

of real numbers (sort num) for reasoning
about distances between trains. As a convention, everywhere in what follows
i, j, k denote variables of sort i and c, d denote variables of sort num.

We have several possibilities of choosing T i
0
: we can model the trains on

a track by using an (acyclic) list structure, where any train is linked to its
predecessor, or using the theory of integers with predecessor.

In what follows let T i
0

be (a fragment of) integer arithmetic and T num
0

be
the theory of real or rational numbers. In both these theories satisfiability
of ground clauses is decidable.

21

Collision freeness as monotonicity. Let T0 be the (disjoint, many-
sorted) combination of T i

0
and T num

0
. Then classical methods on combina-

tions of decision procedures for (disjoint, many-sorted) theories can be used
to give a decision procedure for satisfiability of ground clauses w.r.t. T0. Let
T1 be obtained by extending T0 with a function pos of arity i→ num mapping
train indices to the real numbers, which satisfies condition Mon(pos):

Mon(pos) ∀i, j (first ≤ i < j ≤ last→ pos(i) >R pos(j)),

where i and j are indices, < is the ordering on indices and >R is the usual
ordering on the real numbers. (For the case of a fixed number of trains, we
can assume that first = 0 and last = n− 1.)

A more precise axiomatization of collision-freeness. The monotonic-
ity axiom above is, in fact, an oversimplification. A more precise model, in
which the length of trains is considered can be obtained by replacing the
monotonicity axiom for pos with the following axiom:

∀i, j, k (first ≤ j ≤ i ≤ last∧ i− j = k → pos(j)−pos(i) ≥ k ∗LengthTrain),

where LengthTrain is the standard (resp. maximal) length of a train.
As base theory we consider the combination T ′

0
of the theory of inte-

gers and reals with a multiplication operation ∗ of arity i × num → num
(multiplication of k with the constant LengthTrain in the formula above)3.

Let T ′
1

be the theory obtained by extending the combination T ′
0

of the
theory of integers and reals with a function pos satisfying the axiom above.

Theorem 2 The following extensions are local theory extensions:

(1) The theory extension T0 ⊆ T1.

(2) The theory extension T ′
0
⊆ T ′

1
.

Proof : We prove that every model of T1 in which the function pos is partially
defined can be extended to a model in which pos is totally defined. Locality
then follows by results in [8]. To define pos at positions where it is undefined
we use the density of real numbers and the discreteness of the index theory
(between two integers there are only finitely many integers). 2

We now extend the resulting theory T1 again in two different ways, with
the axiom sets for one of the two system models, respectively. A similar
construction can be done starting from the theory T ′

1
.

Theorem 3 The following extensions are local theory extensions:

(1) The extension T1 ⊆ T1 ∪ Kf
(2) The extension T1 ⊆ T1 ∪ Kv.

3In the light of locality properties of such extensions (cf. Theorem 2), k will always be
instantiated by values in a finite set of concrete integere, all within a given, concrete range;
thus the introduction of this many-sorted multiplication does not affect decidability.

22

Proof : (1) Clauses in Kf are flat and linear w.r.t. pos′, so we again prove lo-
cality of the extension by showing that weak partial models can be extended
to total ones. The proof proceeds by a case distinction. We use the fact that
the left-hand sides of the implications in Kf are mutually exclusive. (2) is
proved similarly. 2

Let K ∈ {Kv,Kf}. By the locality of T1 ⊆ T2 = T1 ∪ K and by Theorem 1,
the following are equivalent:

(1) T0 ∧Mon(pos) ∧ K ∧ ¬Mon(pos′) |=⊥,

(2) T0 ∧Mon(pos) ∧ K[G] ∧G |=w⊥, where G = ¬Mon(pos′),

(3) T0 ∧Mon(pos) ∧ K0 ∧G0 ∧N0(pos′) |=⊥,

where K[G] consists of all instances of the rules in K in which the terms start-
ing with the function symbols pos′ are ground subterms already occurring
in G or K, K0 ∧G0 is obtained from K[G]∧G by introducing new constants
for the arguments of the extension functions as well as for the (sub)terms
t = f(g1, . . . , gn) starting with extension functions f ∈ Σ1, and N0(pos′) is
the set of instances of the congruence axioms for pos′ which correspond to
the definitions for these newly introduced constants.

It is easy to see that, due to the special form of the rules in K (all free
variables in any clause occur as arguments of pos′ both in Kf and in Kv),
K[G] (hence also K0) is a set of ground clauses. By the locality of T0 ⊆ T1 =
T0 ∪Mon(pos), the following are equivalent:

(1) T0 ∧Mon(pos) ∧ K0 ∧G0 ∧N0(pos′) |=⊥,

(2) T0 ∧Mon(pos)[G′] ∧G′ |=w⊥, where G′ = K0 ∧G0 ∧N0(pos′),

(3) T0 ∧Mon(pos)0 ∧G
′
0
∧N0(pos) |=⊥,

where Mon(pos)[G′] consists of all instances of the rules in Mon(pos) in
which the terms starting with the function symbol pos are ground subterms
already occurring inG′, Mon(pos)0∧G

′
0

is obtained from Mon(pos)[G′]∧G′ by
purification and flattening, and N0(pos) corresponds to the set of instances
of congruence axioms for pos which need to be taken into account.

This allows us to use hierarchical reasoning on properties of the system, i.e.
to reduce the verification of system properties to deciding satisfiability of
constraints in T0. An advantage is that, after the reduction of the problem to
a satisfiability problem in the base theory, one can automatically determine
which constraints on the parameters (e.g. ∆t,min,max, ...) guarantee truth
of the invariant. This can be achieved, e.g. using quantifier elimination. The
method is illustrated in Section 4.3; more details can be found in [5].

Similar results can be established for bounded model checking. In this case
the arguments are similar, but one needs to consider chains of extensions
of length 1, 2, 3, . . . , k for a bounded k, corresponding to the paths from

23

the initial state to be analyzed. An interesting side-effect of our approach
(restricting to instances which are similar to the goal) is that it provides a
possibility of systematic “slicing”: for proving (disproving) the violation of
the safety condition we only need to consider those trains which are in a
’neighborhood’ of the trains which violate the safety condition.

4.3 Illustration

In this section we indicate how to apply hierarchical reasoning on the case
study given in Section 3, Model 1. We follow the steps given at the end of
Section 2 and show how the sets of formulas are obtained that can finally
be handed to a prover of the base theory T0.

To check whether T1 ∪ Kf |= ColFree(pos′), where

ColFree(pos′) ∀i (0 ≤ i < n− 1 → pos′(i) >R pos′(i+ 1)),

we check whether T1 ∪ Kf ∪ G |= ⊥, where G = {0 ≤ k < n − 1, k′ =
k + 1, pos′(k) ≤R pos′(k′)} is the (skolemized) negation of ColFree(pos′),
flattened by introducing a new constant k′. This problem is reduced to a
satisfiability problem over T1 as follows:

Step 1: Use locality. We construct the set Kf [G]: There are no ground
subterms with pos′ at the root in Kf , and only two ground terms with pos′

in G, pos′(k) and pos′(k′). This means that Kf [G] consists of two instances
of Kf : one with i instantiated to k, the other instantiated to k′. E.g., the
two instances of F2 are:

(F2[G]) (0 < k < n ∧ pos(k − 1) >R 0 ∧ pos(k − 1)− pos(k) ≥R lalarm

→ pos(k) + ∆t ∗min ≤R pos′(k) ≤R pos(k) + ∆t∗max)
(0 < k′ < n ∧ pos(k′ − 1) >R 0 ∧ pos(k′ − 1)− pos(k′) ≥R lalarm

→ pos(k′) + ∆t ∗min ≤R pos′(k′) ≤R pos(k′) + ∆t∗max)

The construction of (F1[G]), (F3[G]) and (F4[G]) is similar. In addition, we
specify the known relationships between the constants of the system:
(Dom) ∆t > 0 ∧ 0 ≤ min ∧ min ≤ max

Step 2: Flattening and purification. Kf [G] ∧ G is already flat w.r.t.
pos′. We replace all ground terms with pos′ at the root with new constants:
we replace pos′(k) by c1 and pos′(k′) by c2. We obtain a set of definitions
D = {pos′(k) = c1, pos′(k′) = c2} and a set Kf0

of clauses which do not
contain occurrences of pos′, consisting of (Dom) together with:

(G0) 0 ≤ k < n− 1 ∧ k′ = k + 1 ∧ c1 ≤R c2

(F20) (0 < k < n ∧ pos(k − 1) >R 0 ∧ pos(k − 1)− pos(k) ≥R lalarm

→ pos(k) + ∆t ∗min ≤R c1 ≤R pos(k) + ∆t∗max)

(0 < k′ < n ∧ pos(k′ − 1) >R 0 ∧ pos(k′ − 1)− pos(k′) ≥R lalarm

→ pos(k′) + ∆t ∗min ≤R c2 ≤R pos(k′) + ∆t∗max)

The construction can be continued similarly for F1, F3 and F4.

24

Step 3: Reduction to satisfiability in T1. We add the functionality
clause N0 = {k = k′ → c1 = c2} and obtain a satisfiability problem in T1:
Kf0
∧ G0 ∧ N0. To decide satisfiability of T1 ∧ Kf0

∧ G0 ∧ N0, we have to
do another transformation w.r.t. the extension T0 ⊆ T1. The resulting set
of ground clauses can directly be handed to a decision procedure for the
combination of the theory of indices and the theory of reals. We flatten and
purify the set Kf0

∧G0∧N0 of ground clauses w.r.t. pos by introducing new
constants denoting k − 1 and k′ − 1, together with their definitions k′′ =
k−1, k′′′ = k′−1; as well as constants di for pos(k), pos(k′), pos(k′′), pos(k′′′).
Taking into account only the corresponding instances of the monotonicity
axiom for pos we obtain a set of clauses consisting of (Dom) together with:

(G′
0
) k′′ = k − 1 ∧ k′′′ = k′ − 1

(G0) 0 ≤ k < n− 1 ∧ k′ = k + 1 ∧ c1 ≤R c2
(GF20) 0<k<n ∧ d3>R0 ∧ d3−d1 ≥R lalarm → d1+∆t∗min ≤R c1 ≤R d1+∆t∗max

0<k′<n ∧ d4>R0 ∧ d4−d2 ≥R lalarm → d2+∆t∗min ≤R c2 ≤R d2+∆t∗max

and Mon(pos)[G′]. After making some simplifications we obtain the following
set of (many-sorted) constraints:

CDefinitions CIndices CReals CMixed

pos′(k) = c1 pos(k′) = d2 k′′ = k − 1 c1 ≤R c2 d3 >R d4 (GF10)
pos′(k′) = c2 pos(k′′) = d3 k′′′ = k′ − 1 d1 >R d2 d4 >R d2 (GF20)
pos(k) = d1 pos(k′′′) = d4 0 ≤ k < n− 1 d3 >R d1 d1 = d4 (GF30)

k′ = k + 1 d3 >R d2 (Dom) (GF40)

For checking the satisfiability of CIndices∧CReals∧CMixed we can use a prover
for the two-sorted combination of the theory of integers and the theory of
reals, possibly combined with a DPLL methodology for dealing with full
clauses. An alternative method, somewhat similar to DPLL(T0), would be
to use only branching on the literals containing terms of index sort – this
reduces the verification problem to the problem of checking the satisfiability
of a set of linear constraints over the reals.

5 Conclusions

In this paper we described a case study concerning a system of trains on a
rail track, where trains may enter and leave the area. An example of a safety
condition for such a system (collision freeness) was considered. The problem
above can be reduced to testing satisfiability of quantified formulae in com-
plex theories. However, the existing results on reasoning in combinations of
theories are restricted to testing satisfiability for ground formulae.

This paper shows that, in the example considered, we can reduce sat-
isfiability checking of universally quantified formulae to the simpler task of
satisfiability checking for ground clauses. For this, we identify corresponding
chains of theory extensions T0 ⊆ T1 ⊆ · · · ⊆ Ti, such that Tj = Tj−1∪Kj is a
local extension of Tj−1 by a set Kj of (universally quantified) clauses. This

25

allows us to reduce, for instance, testing collision freeness in theories con-
taining arrays to represent the train positions, to checking the satisfiability
of a set of sets of ground clauses over the combination of the theory of reals
with a theory which expresses precedence between trains. The applicability
of the method is however general: the challenge is, at the moment, to recog-
nize classes of local theories occurring in various areas of application. The
implementation of the procedure described here is in progress, the method is
clearly easy to implement. At a different level, our results open a possibility
of using abstraction-refinement deductive model checking in a whole class of
applications including the examples presented here – these aspects are not
discussed in this paper, and rely on results we obtained in [9].

The results we present here also have theoretical implications: In one
of the models we considered here, collision-freeness is expressed as a mono-
tonicity condition. Limits of decidability in reasoning about sorted arrays
were explored in [1]. The decidability of satisfiability of ground clauses in
the fragment of the theory of sorted arrays which we consider here is an easy
consequence of the locality of extensions with monotone functions.

Acknowledgements. This work was partly supported by the German Research

Council (DFG) as part of the Transregional Collaborative Research Center “Auto-

matic Verification and Analysis of Complex Systems” (SFB/TR 14 AVACS). See

www.avacs.org for more information.

References

[1] A. Bradley, Z. Manna, and H. Sipma. What’s decidable about arrays? In E. Emerson
and K. Namjoshi, editors, Verification, Model-Checking, and Abstract-Interpretation,
7th Int. Conf. (VMCAI 2006), LNCS 3855, pp. 427–442. Springer, 2006.

[2] J. Faber. Verifying real-time aspects of the European Train Control System. In Pro-
ceedings of the 17th Nordic Workshop on Programming Theory, pp. 67–70. University
of Copenhagen, Denmark, October 2005.

[3] H. Ganzinger, V. Sofronie-Stokkermans, and U. Waldmann. Modular proof systems
for partial functions with weak equality. In D. Basin and M. Rusinowitch, editors,
Automated reasoning : 2nd Int. Joint Conference, IJCAR 2004, LNAI 3097, pp. 168–
182. Springer, 2004. An extended version will appear in Information and Computation.

[4] S. Ghilardi. Model theoretic methods in combined constraint satisfiability. Journal of
Automated Reasoning, 33(3–4):221–249, 2004.

[5] S. Jacobs and V. Sofronie-Stokkermans. Applications of hierarchical reasoning
in the verification of complex systems (extended version). Available online at
http://www.mpi-sb.mpg.de/∼sofronie/papers/jacobs-sofronie-pdpar-extended.ps

[6] S. McPeak and G. Necula. Data structure specifications via local equality axioms.
In K. Etessami and S. Rajamani, editors, Computer Aided Verification, 17th Interna-
tional Conference, CAV 2005, LNCS 3576, pp. 476–490, 2005.

[7] G. Nelson and D. Oppen. Simplification by cooperating decision procedures. ACM
Trans. on Programming Languages and Systems, 1(2):245–257, 1979.

[8] V. Sofronie-Stokkermans. Hierarchic reasoning in local theory extensions. CADE’2005:
Int. Conf. on Automated Deduction, LNCS 3632, pp. 219–234. Springer, 2005.

[9] V. Sofronie-Stokkermans. Interpolation in local theory extensions. In Proceedings of
IJCAR 2006, LNAI 4130, pp. 235–250. Springer, 2006.

26

Towards Automatic Proofs of Inequalities Involving

Elementary Functions

Behzad Akbarpour and Lawrence C. Paulson

Computer Laboratory, University of Cambridge

Abstract

Inequalities involving functions such as sines, exponentials and log-
arithms lie outside the scope of decision procedures, and can only be
solved using heuristic methods. Preliminary investigations suggest that
many such problems can be solved by reduction to algebraic inequali-
ties, which can then be decided by a decision procedure for the theory
of real closed fields (RCF). The reduction involves replacing each oc-
currence of a function by a lower or upper bound (as appropriate)
typically derived from a power series expansion. Typically this re-
quires splitting the domain of the function being replaced, since most
bounds are only valid for specific intervals.

1 Introduction

Decision procedures are valuable, but too many problems lie outside of their
scope. Linear arithmetic restricts us to the language of =, <, ≤, + and mul-
tiplication by integer constants, combined by Boolean connectives. In their
formalization of the Prime Number Theorem [2], Avigad and his colleagues
spent much time proving simple facts involving logarithms. We would like
to be able to prove inequalities involving any of the so-called elementary
functions: sine, cosine, arctangent, logarithm and exponential. Richard-
son’s theorem tells us that this problem is undecidable [11], so we are left
with heuristic methods.

In this paper, we outline preliminary work towards such heuristics. We
have no implementation nor even a definite procedure, but we do have meth-
ods that we have tested by hand on about 30 problems. Our starting point is
that the theory of real closed fields—that is, the real numbers with addition
and multiplication—is decidable. Our idea is to replace each occurrence of
an elementary function by an algebraic expression that is known to be an
upper or lower bound, as appropriate. If this results in a purely algebraic in-
equality, then we supply the problem to a decision procedure for the theory
of real closed fields.

27

Complications include the need for case analysis on the arguments of
elementary functions, since many bounds are only valid over restricted in-
tervals. If these arguments are complex expressions, then identifying their
range requires something like a recursive application of the method. The
resulting algebraic inequalities may be too difficult to be solved efficiently.
Even so, the method works on many problems.

Paper outline. We begin by reviewing the basis of our work, namely
existing decision procedures for polynomials and prior work on verifying in-
equalities involving the elementary functions (Sect. 2). To illustrate the idea,
we present a simple example involving the exponential function (Sect. 3) and
then a more complex example involving the logarithm function (Sect. 4). We
conclude by presenting a list of solved problems and outlining our next steps
(Sect. 5).

2 Background

Our work relies on the existence of practical, if not always efficient, decision
procedures for the theory of real closed fields (RCF). According to Dolz-
mann et al. [3], Tarski found the first quantifier elimination procedure in the
1930s, while Collins introduced the first feasible method in 1975. His cylin-
drical algebraic decomposition is still doubly exponential in the worst case.
Dolzmann et al. proceed to survey several quantifier elimination algorithms
and their applications. One freely-available implementation is QEPCAD [5],
a decision procedure that performs partial cylindrical algebraic decomposi-
tion. The prover HOL Light provides a simpler quantifier elimination pro-
cedure for real closed fields [8]. Also in HOL Light is an implementation
of Parrilo’s method [10] for deciding polynomials using sum-of-squares de-
compositions; less general than any quantifier elimination procedure, it is
dramatically more efficient.1 Some polynomial inequalities can also be tack-
led using heuristic procedures such as those of Hunt et al. [6] and Tiwari [12].

Our second starting point is the work of Mũnoz and Lester [9], on proving
real number inequalities that may contain the elementary functions, but no
variables. The example they give is

3π

180
≤
g

v
tan

(

35π

180

)

,

where g and v are constants. Their method for proving such ground inequal-
ities relies on upper and lower bounds for the elementary functions, coupled
with interval arithmetic. The absence of variables makes the problem much
simpler; in particular, if we need to establish the range of the argument x
in tan(x), we simply call the procedure recursively.

1Harrison has mentioned this implementation [4], but as yet no documentation exists.

28

These methods might be expected to work for some problems containing
variables. Interval arithmetic should be able to prove some inequalities
involving a variable x say, if we know that 0 ≤ x ≤ 1. However, the
method fails on some easy-looking problems; as Mũnoz and Lester note,
interval arithmetic can lose information rapidly. For example, if x ∈ [0, 1],
interval arithmetic cannot prove the trivial x−x ≥ 0: we get [0, 1]− [0, 1] =
[0, 1] + [−1, 0] = [−1, 1], and neither [−1, 1] ≤ 0 nor [−1, 1] ≥ 0 hold. This is
a well-known issue and there are some techniques that can reduce its impact,
such as (obviously) reducing x− x to 0 before applying interval arithmetic.
But, in some cases, when we wanted to prove E ≤ 0, the best we could do
with interval arithmetic was to prove that E ≤ ε for an arbitrary small, but
positive, ε. A method based on a decision procedure for real closed fields
ought to be more general and effective.

3 A Simple Example Concerning Exponentials

Figure 1 presents a family of upper and lower bounds for the exponential
function. Mũnoz and Lester [9] give similar bounds, but we have corrected
errors in the first two and altered the presentation. All conventions are as
in the original paper. The lower bound is written exp(x, n) and the upper
bound is written exp(x, n), where n is a non-negative integer. For all x and
n, they satisfy

exp(x, n) ≤ ex ≤ exp(x, n).

As n increases, the bounds converge monotonically to the target function,
here exp. As n increases, the bounds get tighter and the RCF problems that
must be decided get harder; in return, we should be able to prove harder
inequalities involving exponentials.

Case analysis on the value of x in ex cannot be avoided. Clearly no
polynomial could serve as an upper bound, or as an accurate lower bound,
of the exponential function. The role of m in these bounds is to segment the
real line into integers, with separate bounds in each segment. These case
analyses will complicate our proofs. In particular, unless the argument of
the exponential function has a finite range, these bounds are useless, since
they would require the examination of infinitely many cases.

For a simple demonstration of our idea, let us prove the theorem

0 ≤ x ≤ 1 =⇒ ex ≤ 1 + x+ x2.

Here it suffices to replace the function e by an upper bound:

0 ≤ x ≤ 1 =⇒ exp(x, n) ≤ 1 + x+ x2.

We have a lower bound if 0 < x ≤ 1, so we need to perform a simple case
analysis.

29

exp(x, n) =

2(n+1)+1
∑

i=0

xi

i!
if −1 ≤ x < 0 (1)

exp(x, n) =

2(n+1)
∑

i=0

xi

i!
if −1 ≤ x < 0 (2)

exp(0, n) = exp(0, n) = 1 (3)

exp(x, n) =
1

exp(−x, n)
if 0 < x ≤ 1 (4)

exp(x, n) =
1

exp(−x, n)
if 0 < x ≤ 1 (5)

exp(x, n) = exp(x/m, n)m if x < −1, m = −bxc (6)

exp(x, n) = exp(x/m, n)m if x < −1, m = −bxc (7)

exp(x, n) = exp(x/m, n)m if 1 < x, m = b−xc (8)

exp(x, n) = exp(x/m, n)m if 1 < x, m = b−xc (9)

Figure 1: Bounds for the Exponential Function

30

• If x = 0 then exp(0, n) = 1 ≤ 1 + 0 + 02 = 1, trivially.

• If 0 < x ≤ 1, then by equations (5) and (1)

exp(x, n) =

2(n+1)+1
∑

i=0

(−x)i

i!

−1

and putting n = 0, it suffices to prove

(

1 + (−x) +
(−x)2

2
+

(−x)3

6

)

−1

≤ 1 + x+ x2.

This last inequality is non-trivial, but as it falls within RCF, it can be
proved automatically. Existing tools require us first to eliminate the division,
reducing the problem to the two inequalities

0 < 1− x+
x2

2
−
x3

6
and 1 ≤

(

1 + x+ x2

)(

1− x+
x2

2
−
x3

6

)

.

HOL Light has two separate tools that can prove these. Sean McLaugh-
lin’s quantifier elimination package [8] can prove the pair of inequalities in
351 seconds, while John Harrison’s implementation of the sum-of-squares
method [10] needs only 0.48 seconds.2

Let us check these inequalities ourselves. The first one is clear, since
xk+1 ≤ xk for all k. Multiplying out the second inequality reduces it to

0 ≤
x2

2
−

2x3

3
+
x4

3
−
x5

6
.

Multiplying both sides by 6 and factoring reduces this inequality to

0 ≤ x2(1− x)(3− x+ x2)

when it is obvious that all of the factors are non-negative.
This proof is not obvious, and its length shows that we have much to gain

by automating the procedure. That involves performing the case analysis,
substituting the appropriate bounds, calling an RCF decision procedure,
and in case of failure, retrying with a larger value of n.

4 An Extended Example Concerning Logarithms

Figure 2 presents the bounds for the logarithm function. They are again
taken from Mũnoz and Lester [9], while correcting several errata. The next

2All timings were done on a dual 3GHz Pentium equipped with 4GB of memory.

31

example will demonstrate how a complicated derivation can arise from a
simple-looking inequality:

−
1

2
< x ≤ 3 =⇒ ln(1 + x) ≤ x.

We re-express the condition on x in terms of 1 + x, which is the argument
of ln, when substituting in the lower bound:

1

2
< 1 + x ≤ 4 =⇒ ln(1 + x, n) ≤ x

As with the exponential function, to obtain reasonably tight bounds requires
considering rather small intervals. Our problem splits into four cases:

1

2
< 1 + x < 1 or 1 + x = 1 or 1 < 1 + x ≤ 2 or 2 < 1 + x ≤ 4

Let us leave the first case for last, as it is the most complicated, and consider
the other three cases.

ln(x, n) =
2n
∑

i=1

(−1)i+1 (x− 1)i

i
if 1 < x ≤ 2 (10)

ln(x, n) =
2n+1
∑

i=1

(−1)i+1 (x− 1)i

i
if 1 < x ≤ 2 (11)

ln(1, n) = ln(1, n) = 0 (12)

ln(x, n) = − ln

(

1

x
, n

)

, if 0 < x < 1 (13)

ln(x, n) = − ln

(

1

x
, n

)

, if 0 < x < 1 (14)

ln(x, n) = m ln(2, n) + ln(y, n) if x > 2, x = 2my, 1 < y ≤ 2 (15)

ln(x, n) = m ln(2, n) + ln(y, n) if x > 2, x = 2my, 1 < y ≤ 2 (16)

Figure 2: Bounds for the Logarithm Function

If 1 + x = 1, then x = 0 and trivially ln(1 + x, n) = ln(1, n) = 0 ≤ x.
If 1 < 1 + x ≤ 2, then

ln(1 + x, n) =
2n+1
∑

i=1

(−1)i+1 ((1 + x)− 1)i

i
=

2n+1
∑

i=1

(−1)i+1x
i

i

32

by equation (11). Setting n = 0 yields ln(1 + x, n) = x and reduces our
inequality to the trivial x ≤ x.

If 2 < 1 + x ≤ 4, then we have to apply equation (16). That requires
finding a positive integer m and some y such that 1+x = 2my and 1 < y ≤ 2.
Clearly m = 1. In this case, putting n = 0, we have

2n+1
∑

i=1

(−1)i+1 (2− 1)i

i
+

2n+1
∑

i=1

(−1)i+1 (y − 1)i

i
= 1 + (y − 1)

= y

≤ 2y − 1

= x.

Now, let us turn to that postponed first case. If 1
2 < 1 + x < 1, then

1 < 1/(1 + x) < 2. Putting n = 1, we have

ln(1 + x, n) = − ln

(

1

1 + x
, n

)

= −
2n
∑

i=1

(−1)i+1
(1

1+x − 1)
i

i

=

2n
∑

i=1

(−1)i

i

(

−x

1 + x

)i

=

(

x

1 + x

)

+

(

1

2

)(

−x

1 + x

)2

.

Now
(

x

1 + x

)

+

(

1

2

)(

−x

1 + x

)2

≤ x ⇐⇒

x(1 + x) +
1

2
x2 ≤ x(1 + x)2 ⇐⇒

x+
3

2
x2 ≤ x+ 2x2 + x3 ⇐⇒

−
1

2
x2 ≤ x3 ⇐⇒

−
1

2
≤ x

which holds because 1
2 < 1+x. Note that putting n = 0 would have required

us to prove 0 ≤ x, which fails.
This derivation reveals some limitations. We should have been able

to prove this result with looser bounds on x, since ln(1 + x) ≤ x holds for
x > −1. We could not do this because our upper bound, ln(x, n), introduces
the value m in equation (16). This formulation allows the upper bound to

33

be tight, but for our purposes we need to seek looser bounds that have less
restrictive range conditions.

The bounds for the exponential function have a similar problem. An
alternative lower bound, valid for all x ≥ 0, comes directly from its Taylor
expansion:

exp(x, n) =

n
∑

i=0

xi

i!
.

This series for the logarithm [1] also suggests a lower bound, for x ≥ 1:

ln(x, n) =
n
∑

i=1

(x− 1)i

ixi
.

Finding upper and lower bounds for elementary functions that work well
with RCF decision procedures is one of our first tasks.

5 Conclusions

Our preliminary investigations are promising. We have used the method
described above to solve the problems shown in Fig. 3. (Note that some of
these split into several problems when the absolute value function is removed
and chains of inequalities are separated.) We manually reduced each prob-
lem to algebraic form as described above, then tried to solve the reduced
problems using three different tools.

• QEPCAD solved all of the problems, usually taking less than one
second.

• HOL Light’s sum-of-squares tool (REAL_SOS) solved all of the problems
but two, again usually in less than a second.

• HOL Light’s quantifier elimination tool (REAL_QELIM_CONV) solved all
of the problems but three. It seldom required more than five seconds.
The 351 seconds we reported above is clearly exceptional.

The simplest bound using n = 0 was sufficient for all but one of the problems,
which required n = 1.

Much work remains to be done before this procedure can be automated.
We need to experiment with a variety of upper and lower bounds. Case
analyses will still be inevitable, so we need techniques to automate them in
the most common situations. We need to tune the procedure by testing on
a large suite of problems, and we have to evaluate different ways of deciding
the RCF problems that are finally generated.

34

−
1

2
≤ x ≤ 3 =⇒

x

1 + x
≤ ln(1 + x) ≤ x

−3 ≤ x ≤
1

2
=⇒

−x

1− x
≤ ln(1− x) ≤ −x

0 ≤ x ≤ 3 =⇒ |ln(1 + x)− x| ≤ x2

−3 ≤ x ≤ 0 =⇒ |ln(1− x) + x| ≤ x2

|x| ≤
1

2
=⇒ |ln(1 + x)− x| ≤ 2x2

|x| ≤
1

2
=⇒ |ln(1− x) + x| ≤ 2x2

0 ≤ x ≤ 0.5828 =⇒ |ln(1− x)| ≤
3x

2

−0.5828 ≤ x ≤ 0 =⇒ |ln(1 + x)| ≤ −
3x

2
1

2
≤ x ≤ 4 =⇒ lnx ≤ x− 1

0 ≤ x ≤ 1 =⇒ e(x−x2) ≤ 1 + x

−1 ≤ x ≤ 1 =⇒ 1 + x ≤ ex

−1 ≤ x ≤ 1 =⇒ 1− x ≤ e−x

−1 ≤ x ≤ 1 =⇒ ex ≤
1

1− x

−1 ≤ x ≤ 1 =⇒ e−x ≤
1

1 + x

x ≤
1

2
=⇒ e−x/(1−x) ≤ 1− x

−
1

2
≤ x =⇒ ex/(1+x) ≤ 1 + x

0 ≤ x ≤ 1 =⇒ e−x ≤ 1−
x

2

−1 ≤ x ≤ 0 =⇒ ex ≤ 1 +
x

2

0 ≤ |x| ≤ 1 =⇒
1

4
|x| ≤ |ex − 1| ≤

7

4
|x|

Figure 3: Problems Solved

35

Acknowledgements

The research was funded by the epsrc grant EP/C013409/1, Beyond Lin-
ear Arithmetic: Automatic Proof Procedures for the Reals. R. W. Butler,
D. Lester, J. Harrison and C. Muñoz answered many questions. A. Chaieb
and the referees commented on this paper.

References

[1] M. Abramowitz and I. A. Stegun. Handbook of Mathematical Functions
with Formulas, Graphs, and Mathematical Tables. Wiley, 1972.

[2] J. Avigad, K. Donnelly, D. Gray, and P. Raff. A formally verified proof
of the prime number theorem. ACM Trans. Comput. Logic, in press.

[3] A. Dolzmann, T. Sturm, and V. Weispfenning. Real quantifier elim-
ination in practice. Technical Report MIP-9720, Universität Passau,
D-94030, Germany, 1997.

[4] J. Harrison. A HOL theory of Euclidean space. In Hurd and Melham
[7], pages 114–129.

[5] H. Hong. QEPCAD — quantifier elimination by partial cylin-
drical algebraic decomposition. Available on the Internet at
http://www.cs.usna.edu/~qepcad/B/QEPCAD.html.

[6] W. A. Hunt, Jr., R. B. Krug, and J. Moore. Linear and nonlinear
arithmetic in ACL2. In D. Geist and E. Tronci, editors, Correct Hard-
ware Design and Verification Methods (CHARME), LNCS 2860, pages
319–333, 2003.

[7] J. Hurd and T. Melham, editors. Theorem Proving in Higher Order
Logics: TPHOLs 2005, LNCS 3603. Springer, 2005.

[8] S. McLaughlin and J. Harrison. A proof-producing decision procedure
for real arithmetic. In R. Nieuwenhuis, editor, Automated Deduction
— CADE-20 International Conference, LNAI 3632, pages 295–314.
Springer, 2005.

[9] C. Muñoz and D. Lester. Real number calculations and theorem prov-
ing. In Hurd and Melham [7], pages 195–210.

[10] P. A. Parrilo. Semidefinite programming relaxations for semialgebraic
problems. Mathematical Programming, 96(2):293–320, 2003.

[11] D. Richardson. Some undecidable problems involving elementary func-
tions of a real variable. Journal of Symbolic Logic, 33(4):514–520, Dec.
1968.

36

[12] A. Tiwari. Abstraction based theorem proving: An example from the
theory of reals. In C. Tinelli and S. Ranise, editors, PDPAR: Workshop
on Pragmatics of Decision Procedures in Automated Deduction, pages
40–52. INRIA, Nancy, 2003.

37

Rewrite-Based Satisfiability Procedures for

Recursive Data Structures

Maria Paola Bonacina and Mnacho Echenim

Dipartimento di Informatica
Università degli Studi di Verona, Italy

Abstract

If a rewrite-based inference system is guaranteed to terminate on
the axioms of a theory T and any set of ground literals, then any
theorem-proving strategy based on that inference system is a rewrite-
based decision procedure for T -satisfiability. In this paper, we consider
the class of theories defining recursive data structures, that might ap-
pear out of reach for this approach, because they are defined by an
infinite set of axioms. We overcome this obstacle by designing a prob-
lem reduction that allows us to prove a general termination result for
all these theories. We also show that the theorem-proving strategy de-
cides satisfiability problems in any combination of these theories with
other theories decided by the rewrite-based approach.

1 Introduction

Most state-of-the-art verification tools rely on built-in satisfiability proce-
dures for specific theories. These satisfiability procedures can be quite com-
plicated to design and combine, and significant effort is devoted to proving
them correct and complete, and implementing them. A new approach to
defining satisfiability procedures was introduced in [3], where the authors
showed that a sound and complete first-order theorem-proving strategy can
be used to solve satisfiability problems for several theories of data structures.
The idea behind this approach is that since such a strategy is a semi-decision
procedure for first-order validity, if one proves that it terminates on a pre-
sentation of the theory of interest T and any set of ground literals, then
it is a decision procedure for T -satisfiability. In [3], this idea was applied
to a standard inference system, the superposition calculus SP , and several
theories, including those of arrays and possibly cyclic lists.

Since most verification problems involve more than one theory, a signif-
icant advantage of an approach based on generic reasoning is that it makes
it conceptually simple to combine theories, by considering the union of their
presentations. Along with several experimental results that showed the prac-
ticality of the rewrite-based approach, the authors of [1] defined the notion

38

of variable-inactive theories. This variable-inactivity condition guarantees
that SP terminates on a combination of theories, provided it terminates on
each individual theory. The authors showed that an SP-based strategy is a
satisfiability procedure for any combination of the theories of [3] and those
they considered.

Several of the theories for which SP has been shown to yield satisfiability
procedures involve lists. The superposition calculus yields satisfiability pro-
cedures for the theories of lists à la Shostak and à la Nelson and Oppen (see
[3]), and for the theory of lists with nil (see [2]). A theory of lists that was
not yet considered is that of acyclic lists, where formulae such as car(x) ' x
are unsatisfiable. This theory, along with that of integer offsets considered
in [6, 1], belong to the general class of theories of recursive data structures,
that we denote RDS. Each member of this class is denoted RDSk, where
k represents the number of selectors in the theory. We shall see that the
theory of integer offsets is RDS1, and the theory of acyclic lists is RDS2.
In this paper, we investigate how a rewrite-based inference system can be
used to solve any RDSk-satisfiability problem, for any k. The contributions
of the paper are the following:

• Every theory in the classRDS is presented by an infinite set of axioms,
which cannot be given as an input to a theorem prover. Here, we
present a reduction that conquers this infinite presentation problem.

• We prove that for any fair search plan, the inference system terminates
on any reduced RDSk-satisfiability problem.

• We show that for every k, the theory RDSk can be combined with all
the theories considered in [3, 1, 2], namely those of lists à la Shostak
and à la Nelson and Oppen, arrays and records with or without ex-
tensionality, sets with extensionality, possibly empty lists and integer
offsets modulo.

Related work. Theories of recursive data structures were studied by Op-
pen in [8], where he described a linear satisfiability procedure for the case
where uninterpreted function symbols are excluded. In [9], Zhang et al.
investigated quantifier-elimination problems for an extension of the theory
considered by Oppen: their setting includes atoms (constants) and several
different constructors. However, their setting also excludes uninterpreted
function symbols. They provided a satisfiability procedure for this theory
that “guesses” a so-called type completion, to determine which constructor
was used on each term, or whether the term is an atom, and then calls
Oppen’s algorithm.

In this paper, we consider the recursive data structures as defined in [8],
since our aim was to investigate how to apply the rewrite-based method-
ology to theories defined by infinite sets of axioms. Similar to any other

39

theory for which the superposition calculus can be used as a satisfiability
procedure, all these theories can be combined with the theory of equality
with uninterpreted functions. For instance, it can be used to prove the
RDSk-unsatisfiability of a set such as

S = {cons(c1, . . . , ck) ' c, cons(c1, . . . , ck) ' c
′, f(c) 6' f(c′)},

where f is an uninterpreted function symbol.
Due to space restrictions, the proofs were not included in this paper.

They can all be found in [5].

Preliminaries

In the following, given a signature Σ, we consider the standard definitions
of Σ-terms, Σ-literals and Σ-theories. The symbol ' denotes unordered
equality, and ./ is either ' or 6'. Unless stated otherwise, the letters x
and y will denote variables, d and e elements of an interpretation domain,
and all other lower-case letters will be constants or function symbols in Σ.
Given a term t, Var(t) denotes the set of variables appearing in t. If t is a
constant or a variable, then the depth of t is depth(t) = 0, and otherwise,
depth(f(t1, . . . , tn)) = 1 + max{depth(ti) | i = 1, . . . , n}. The depth of a
literal is defined by depth(l ./ r) = depth(l) + depth(r). A positive literal is
flat if its depth is 0 or 1, and a negative literal is flat if its depth is 0. We
will make use of the following standard result: given a signature Σ and a
Σ-theory T , let S be a finite set of Σ-literals. Then there exists a signature
Σ′ obtained from Σ by adding a finite number of constants, and a finite set
S′ of flat Σ′-literals such that S′ is T -satisfiable if and only if S is.

A simplification ordering Â is an ordering that is stable, monotonic and
contains the subterm ordering : if s Â t, then c[s]σ Â c[t]σ for any context
c and substitution σ, and if t is a subterm of s then s Â t. A complete
simplification ordering, or CSO, is a simplification ordering that is total
on ground terms. We write t ≺ s if and only if s Â t. More details on
orderings can be found, e.g., in [4]. A CSO is extended to literals and
clauses by multiset extension as usual, and when no confusion is possible,
we will mention maximal literals without any reference to Â.

The superposition calculus, or SP , is a rewrite-based inference system
which is refutationally complete for first-order logic with equality (see, e.g.,
[7]). It consists of expansion and contraction rules, and is based on a CSO
on terms which is extended to literals and clauses in a standard way. Given
a CSO Â, we write SPÂ for SP with Â. An SPÂ-derivation is a sequence

S0 `SPÂ S1 `SPÂ . . . Si `SPÂ . . . ,

each Si being a set of clauses obtained by applying an expansion or a con-
traction rule to clauses in Si−1. Such a derivation yields a set of persistent

40

clauses :
S∞ =

⋃

j≥0

⋂

i≥j

Si,

which can of course be infinite. Given a finite set of ground literals S, in
order to prove that the set of persistent clauses obtained by a fair SPÂ-
derivation from T ∪S is finite, we may impose additional restrictions on the
CSO Â. Any CSO verifying these restrictions will be termed as T -good. We
also say that an SPÂ-strategy is T -good if the CSO Â is T -good.

A clause C is variable-inactive for Â if no maximal literal in C is an
equation t ' x, where x /∈ Var(t). A set of clauses is variable-inactive for
Â if all its clauses are variable-inactive for Â. A theory presentation T
is variable-inactive for Â if the limit S∞ of any fair SPÂ-derivation from
S0 = T ∪ S is variable-inactive. When no confusion is possible, we will say
that a clause (resp. a set of clauses or a theory presentation) is variable-
inactive, without any mention of Â.

2 The theory of recursive data structures

The theory RDSk of recursive data structures is based on the following
signature:

ΣRDSk = {cons} ∪ Σsel ,

Σsel = {sel1, . . . , selk},

where cons has arity k, and the seli’s all have arity 1. The function symbols
sel1, . . . , selk stand for the selectors, and cons stands for the constructor.
This theory is axiomatized by the following (infinite) set of axioms, denoted
Ax(RDSk):

seli(cons(x1, . . . , xi, . . . , xk)) ' xi for i = 1, . . . , k

cons(sel1(x), . . . , selk(x)) ' x,

t[x] 6' x,

where x and the xi’s are (implicitly) universally quantified variables and t[x]
is any compound Σsel -term where the variable x occurs. The axioms t[x] 6' x
are acyclicity axioms that prevent the theory from entailing equations such
as sel1(sel2(sel3(x))) ' x.

For the sake of clarity, we also define

Ac = {t[x] 6' x | t[x] is a Σsel -term},

Ac[n] = {t[x] 6' x | t[x] is a Σsel -term and depth(t[x]) ≤ n}.

41

Example 1 Consider the case where k = 2. If we write car(x) instead of
sel1(x) and cdr(x) instead of sel2(x), then our axioms become:

car(cons(x, y)) ' x,

cdr(cons(x, y)) ' y,

cons(car(x), cdr(x)) ' x,

t[x] 6' x,

and for example, we have:

Ac[2] = {car(car(x)) 6' x, cdr(cdr(x)) 6' x,
car(cdr(x)) 6' x, cdr(car(x)) 6' x}.

We consider the problem of checking the RDSk-satisfiability of a set S
of ground (equational) literals built out of the symbols in ΣRDSk and a set
of finitely many constant symbols. This is done by checking the satisfiability
of the following set of clauses:

Ax(RDSk) ∪ S.

According to the methodology of [3, 1, 2], this problem is solved in three
phases:

Flattening: flatten all ground literals in the original problem, thus obtain-
ing an equisatisfiable set of flat literals,

RDSk-reduction: transform the flattened problem into an equisatisfiable
RDSk-reduced problem consisting of a finite set of clauses,

Termination: prove that any fair SPÂ-strategy terminates on the RDSk-
reduced problems.

The flattening step is straightforward, and we now focus on the RDSk-
reduction step.

3 RDSk-reduction

The aim of a reduction is to transform a formula into another one which is
equisatisfiable and easier to work on. Here, given a formula S, we want to
transform it into a formula which is equisatisfiable in a theory that does not
axiomatize the relationship between the constructor and the selectors. We
begin by observing that S can be transformed by suppressing either every
occurrence of cons, or every occurrence of the seli’s.

42

Example 2 Consider the case where k = 2, and let

S = {cons(c1, c2) ' c, sel1(c) ' c′1}.

If we remove the occurrence of cons, S would become

S1 = {sel1(c) ' c1, sel2(c) ' c2, sel1(c) ' c′1}.

If we remove the occurrence of sel1, S would become

S2 = {cons(c1, c2) ' c, c1 ' c
′
1}.

We choose to remove every occurrence of cons because it is easier to work
with function symbols of arity 1:

Definition 3 A set of ground flat literals is RDSk-reduced if it contains no
occurrence of cons. 3

Given a set S of ground flat literals, the symbol cons may appear only in
literals of the form cons(c1, . . . , ck) ' c for constants c, c1, . . . , ck. Negative
ground flat literals are of the form c 6' c′ and therefore do not contain
any occurrence of cons. The RDSk-reduction of S is obtained by replacing
every literal cons(c1, . . . , ck) ' c appearing in S by the literals sel1(c) '
c1, . . . , selk(c) ' ck. The resulting RDSk-reduced form S′ of S is denoted
RedRDSk(S), and it is obviously unique.

It is not intuitive in which theory the RDSk-reduced form of S is equi-
satisfiable to S, and we need the following definition:

Definition 4 Let (ext) denote the following “extensionality lemma”:

k
∧

i=1

(selk(x) ' selk(y)) ⇒ x ' y. 3

Proposition 5 The extensionality lemma is logically entailed by the axiom
cons(sel1(x), . . . , selk(x)) ' x.

We can then show that RDSk-reduction reduces satisfiability w.r.t.
Ax(RDSk) to satisfiability w.r.t. Ac ∪ {(ext)}.

Lemma 6 Let S be a set of ground flat literals, then Ax(RDSk) ∪ S is
satisfiable if and only if Ac ∪ {(ext)} ∪ RedRDSk(S) is.

The first implication of this lemma is quite simple to prove, we show on
an example the idea behind the proof of the converse implication.

43

Example 7 Consider the case where k = 1 and S = {cons(c′) ' c}, the
RDS1-reduced form of S is therefore S′ = {sel1(c) ' c′}. We consider the
model M = (N, I) of Ac∪{(ext)}∪S′, where I interprets c as 0, c′ as 1, and
sel1 as the successor function on natural numbers. We construct a model
M ′ = (D′, I ′) of Ax(RDS1) ∪ S, such that D ⊆ D′ and I ′ is identical to I
on D, as follows.

Intuitively, since M ′ must satisfy the axiom cons(sel1(x)) ' x, I ′ will
interpret cons as the predecessor function. Hence, for every d ∈ N \ {0},
cons

I′(d) is the predecessor of d.
However, the predecessor function on natural numbers is not defined

for 0. In order to define correctly the value of cons
I′(0), we augment D

with a new element, say −1, and obtain a new set D1. Then we define
cons

I′(0) = −1, and sel
I′

1 (−1) = 0. We now need to define the value of
cons

I′(−1), so we augment D1 with a new element, say −2, and define
cons

I′(−1) = −2, and sel
I′

1 (−2) = −1.
By iterating this process, we obtain the model M ′ = (D′, I ′), where

D′ = Z, I ′ interprets sel1 as the standard successor function on integers,
and cons as the standard predecessor function on integers. It is clear that
M ′ is a model of Ax(RDS1) ∪ S.

It is also possible to define a notion of RDSk-reduction where every oc-
currence of the seli’s is removed. However, no additional property is gained
by using this other alternative, and the corresponding reduction is less in-
tuitive.

4 From Ac to Ac[n]

The set Ac being infinite, SP cannot be used as a satisfiability procedure
on any set of the form Ac ∪ {(ext)} ∪ S. Thus, the next move is to bound
the number of axioms in Ac needed to solve the satisfiability problem, and
try to consider an Ac[n] instead of Ac. It is clear that for any n and any
set S, a model of Ac ∪ {(ext)} ∪ S is also a model of Ac[n] ∪ {(ext)} ∪ S,
the difficulty is therefore to determine an n for which a model of Ac ∪ S is
guaranteed to exist, provided Ac[n]∪{(ext)}∪S is satisfiable. The following
example provides the intuition that this bound depends on the number of
selectors in S.

Example 8 Let S = {sel1(c1) ' c2, sel2(c2) ' c3, sel3(c3) ' c4, c1 ' c4}.
Then:

Ac[1] ∪ {(ext)} ∪ S and Ac[2] ∪ {(ext)} ∪ S are satisfiable,
Ac[3] ∪ {(ext)} ∪ S and Ac ∪ {(ext)} ∪ S are unsatisfiable.

The following lemma allows us prove that having n occurrences of selec-
tors implies that it is indeed sufficient to consider Ac[n] instead of Ac.

44

Lemma 9 Let S be an RDSk-reduced set of ground flat literals and let l
be the number of occurrences of selectors in S. For n ≥ l, suppose that
Ac[n] ∪ {(ext)} ∪ S is satisfiable. Then Ac[n+ 1] ∪ {(ext)} ∪ S is also
satisfiable.

A simple induction using Lemma 9 shows that for every k ≥ 0, if Ac[n]∪S
is satisfiable, then so is Ac[n+ k] ∪ S. We can therefore deduce:

Corollary 10 Let S be an RDSk-reduced set of ground flat literals and let
n be the number of occurrences of selectors in S. Then, Ac ∪ {(ext)} ∪ S is
satisfiable if and only if Ac[n] ∪ {(ext)} ∪ S is.

5 SPÂ as a satisfiability procedure

We now show that only a finite number of clauses are generated by the
superposition calculus on any set Ac[n] ∪ {(ext)} ∪ S, where S is RDSk-
reduced. This will be the case provided we use an RDSk-good CSO:

Definition 11 A CSO Â is RDSk-good if t Â c for every ground compound
term t and every constant c. 3

Lemma 12 Let S0 = Ac[n]∪{(ext)}∪S, where S is a finite RDSk-reduced
set of ground flat literals. Consider the limit S∞ of the derivation S0 `SPÂ
S1 `SPÂ . . . generated by a fair RDSk-good SPÂ-strategy; every clause in
S∞ belongs to one of the categories enumerated below:

i) the empty clause;

ii) the clauses in Ac[n] ∪ {(ext)}, i.e.

a) t[x] 6' x, where t is a Σsel -term of depth at most n,

b) x ' y ∨

(

∨k
i=1

(seli(x) 6' seli(y))

)

;

iii) ground clauses of the form

a) c ' c′ ∨ (
∨m
j=1

dj 6' d
′
j) where m ≥ 0,

b) f(c) ' c′ ∨ (
∨m
j=1

dj 6' d
′
j) where m ≥ 0,

c) t[c] 6' c′ ∨ (
∨m
j=1

dj 6' d′j), where t is a compound Σsel -term of
depth at most n− 1 and m ≥ 0,

d)
∨m
j=1

dj 6' d
′
j, where m ≥ 1;

iv) clauses of the form

c ' x ∨

(

∨j
p=1

selip(c) 6' selip(x)

)

∨

(

∨k
p=j+1

cip 6' selip(x)

)

∨
(

∨m
j=1

dj 6' d
′
j

)

45

where i1, . . . , ik is a permutation of 1, . . . , k, 0 ≤ j ≤ k and m ≥ 0;

v) clauses of the form

c ' c′ ∨

(

∨j1
p=1

(selip(c) 6' selip(c
′))

)

∨

(

∨j2
p=j1+1

(selip(c) 6' c
′
ip

)

)

∨
(

∨j3
p=j2+1

(cip 6' selip(c
′))

)

∨

(

∨k
p=j3+1

(cip 6' c
′
ip

)

)

∨
(

∨m
j=1

dj 6' d
′
j

)

where i1, . . . , ik is a permutation of 1, . . . , k, 0 ≤ j1 ≤ j2 ≤ j3 ≤ k,
j3 > 0 and m ≥ 0.

This lemma is proved by induction on the length l of the derivations.
The result is true for l = 0: the clauses in S0 are in (ii) or (iii) with m = 0.
A case analysis shows that if the result is true for l − 1, then it is also true
for l. We give an example of such a derivation:

Example 13 Consider the case where k = 3, and suppose we want to test
the unsatisfiability of the following set:

S = { sel1(c) ' d1, sel2(c′) ' d′2, sel2(c) ' d2,
sel1(c′) ' d′1, sel3(c) ' d3, sel3(c′) ' d′3,

d1 ' d′1, d2 ' d′2, d3 ' d′3,
c 6' c′ }.

• A superposition of sel1(c) ' d1 into {(ext)} yields a clause in (iv)
(with m = 0):

c ' x ∨
(

sel2(c) 6' sel2(x) ∨ sel3(c) 6' sel3(x)
)

∨
(

d1 6' sel1(x)
)

,

• A superposition of sel2(c′) ' d′2 into the underlined literal of this clause
yields a clause in (v):

c ' c′ ∨
(

sel3(c) 6' sel3(c′)
)

∨
(

sel2(c) 6' d′2

)

∨
(

d1 6' sel1(c′)
)

,

• A simplification of this clause by sel2(c) ' d2 yields a clause in (v):

c ' c′ ∨
(

sel3(c) 6' sel3(c′)
)

∨
(

d1 6' sel1(c′)
)

∨
(

d2 6' d
′
2

)

,

• Further simplifications by sel1(c′) ' d′1, sel3(c) ' d3 and sel3(c′) ' d′3
yield the clause

c ' c′ ∨

(3
∨

i=1

di 6' d
′
i

)

.

46

• The simplifications by di ' d′i for i = 1, . . . , 3 yield the clause c ' c′,
which together with c 6' c′ produces the empty clause.

Since the signature is finite, there are finitely many clauses such as those
enumerated in Lemma 12. We therefore deduce:

Corollary 14 Any fair RDSk-good SPÂ-strategy terminates when applied
to Ac[n] ∪ {(ext)} ∪ S, where S is a finite RDSk-reduced set of ground flat
literals.

We can also evaluate the complexity of this procedure by determining
the number of clauses in each of the categories defined in Lemma 12.

Theorem 15 Any fair RDSk-good SPÂ-strategy is an exponential satisfi-
ability procedure for RDSk.

Proof. Let n be the number of literals in S, both the number of constants
and the number of selectors appearing in S are therefore in O(n). We
examine the cardinalities of each of the categories defined in Lemma 12.

• Category (ii) contains O(n) clauses if k = 1 and O(kn) clauses if k ≥ 2.

• Clauses in categories (iii), (iv) or (v) can contain any literal of the
form d 6' d′ where d and d′ are constants, thus, these categories all
contain O(2n

2

) clauses.

Hence, the total number of clauses generated is bound by a constant which
is O(2n

2

), and since each inference step is polynomial, the overall procedure
is in O(2n

2

).

Although this complexity bound is exponential, it measures the size of
the saturated set. Since a theorem prover seeks to generate a proof, as
opposed to a saturated set, the relevance of this result with respect to pre-
dicting the performance of a theorem prover can therefore be quite limited.

One could actually have expected this procedure to be exponential for
k ≥ 2, since in that case Ac[n] contains an exponential number of axioms.
However the procedure is also exponential when k = 1, and a more care-
ful analysis shows that this complexity is a consequence of the presence of
(ext). In fact, it was shown in [2] that any fair SPÂ-strategy is a polyno-
mial satisfiability procedure for the theory presented by the set of acyclicity
axioms Ac when k = 1.

We finally address combination by proving that RDSk is variable-
inactive for SPÂ.

Theorem 16 Let S0 = Ac[n] ∪ S ∪ {(ext)}, where S is an RDSk-reduced
set of ground flat literals, and n is the number of occurrences of selectors in
S. Then S∞ is variable-inactive.

47

Proof. The clauses in S∞ belong to one of the classes enumerated in
Lemma 12. Thus, the only clauses of S∞ that may contain a literal t ' x
where x /∈ Var(t) are in class (iv). Since Â is a CSO, the literals t ' x
cannot be maximal in those clauses.

This shows that the rewrite-based approach to satisfiability procedures
can be applied to the combination of RDSk with any number of the theories
considered in [3, 1], including those of arrays and records with or without
extensionality.

6 Conclusion

In this paper, we considered a class of theories representing recursive data
structures, each of which is defined by an infinite set of axioms. We showed
that the superposition calculus can be used as the basis of a satisfiability
procedure for any theory in this class, and this result was obtained by defin-
ing a reduction that permits to restrict the number of acyclicity axioms to
be taken into account.

A main issue we plan to investigate is complexity, since the basic pro-
cedure is exponential. A linear algorithm for such structures was obtained
in [8], but it excludes uninterpreted function symbols. The setting of [6]
includes uninterpreted function symbols, but the authors gave a polynomial
algorithm only for the case where k = 1 (the theory of integer offsets). We
intend to investigate making the complexity of the rewrite-based procedure
dependent on k, and improving the bound for k = 1.

From the point of view of practical efficiency, we plan to test the per-
formance of a state-of-the-art theorem prover on problems featuring this
theory, possibly combined with those of [3, 1], and compare it with systems
implementing decision procedures from other approaches. In this context,
we may work on designing specialized search plans for satisfiability prob-
lems. Another direction for future work is to examine how the rewrite-
based approach applies to recursive data structures with an atom predicate,
or multiple constructors.

Acknowledgments

The authors wish to thank Silvio Ranise for bringing this class of theories
to their attention and for his encouragement.

References

[1] Alessandro Armando, Maria Paola Bonacina, Silvio Ranise, and Stephan
Schulz. On a rewriting approach to satisfiability procedures: Extension,
combination of theories and an experimental appraisal. In Bernhard

48

Gramlich, editor, Frontiers of Combining Systems, 5th International
Workshop, FroCoS 2005, Vienna, Austria, September 19-21, 2005, Pro-
ceedings, volume 3717 of Lecture Notes in Computer Science, pages 65–
80. Springer, 2005.

[2] Alessandro Armando, Maria Paola Bonacina, Silvio Ranise, and Stephan
Schulz. On a rewriting approach to satisfiability procedures: Theories
of data structures, modularity and experimental appraisal. Technical
Report RR 36/2005, Dipartimento di Informatica, Università degli Studi
di Verona, 2006.

[3] Alessandro Armando, Silvio Ranise, and Michaël Rusinowitch. A rewrit-
ing approach to satisfiability procedures. Inf. Comput., 183(2):140–164,
2003.

[4] Franz Baader and Tobias Nipkow. Term Rewriting and All That. Cam-
bridge University Press, 1998.

[5] Maria Paola Bonacina and Mnacho Echenim. Generic theorem prov-
ing for decision procedures. Technical report, Università degli studi di
Verona, 2006. Available at http:profs.sci.univr.it/~echenim/.

[6] Robert Nieuwenhuis and Albert Oliveras. Congruence closure with inte-
ger offsets. In Moshe Y. Vardi and Andrei Voronkov, editors, Logic for
Programming, Artificial Intelligence, and Reasoning, 10th International
Conference, LPAR 2003, Almaty, Kazakhstan, September 22-26, 2003,
Proceedings, volume 2850 of Lecture Notes in Computer Science, pages
78–90. Springer, 2003.

[7] Robert Nieuwenhuis and Albert Rubio. Paramodulation-based theorem
proving. In John Alan Robinson and Andrei Voronkov, editors, Handbook
of Automated Reasoning, pages 371–443. Elsevier and MIT Press, 2001.

[8] Derek C. Oppen. Reasoning about recursively defined data structures.
J. ACM, 27(3):403–411, 1980.

[9] Ting Zhang, Henny B. Sipma, and Zohar Manna. Decision procedures
for recursive data structures with integer constraints. In David A. Basin
and Michaël Rusinowitch, editors, Automated Reasoning - Second Inter-
national Joint Conference, IJCAR 2004, Cork, Ireland, July 4-8, 2004,
Proceedings, volume 3097 of Lecture Notes in Computer Science, pages
152–167. Springer, 2004.

49

An Abstract Decision Procedure for Satisfiability in the

Theory of Recursive Data Types

Clark Barrett1 Igor Shikanian1 Cesare Tinelli2

1New York University, barrett|igor@cs.nyu.edu
2The University of Iowa, tinelli@cs.uiowa.edu

Abstract

The theory of recursive data types is a valuable modeling tool for software verifica-
tion. In the past, decision procedures have been proposed for both the full theory and
its universal fragment. However, previous work has been limited in various ways. In
this paper, we present a general algorithm for the universal fragment. The algorithm
is presented declaratively as a set of abstract rules which are terminating, sound, and
complete. We show how other algorithms can be realized as strategies within our
general framework. Finally, we propose a new strategy and give experimental results
showing that it performs well in practice.

1 Introduction

Recursive data types are commonly used in programming. The same notion is also a
convenient abstraction for common data types such as records and data structures such
as linked lists used in more conventional programming languages. The ability to reason
automatically and efficiently about recursive data types thus provides an important tool
for the analysis and verification of programs.

Perhaps the best-known example of a simple recursive data type is the list type used in
LISP. Lists are either the null list or are constructed from other lists using the constructor

cons. This constructor takes two arguments and returns the result of prepending its first
argument to the list in its second argument. In order to retrieve the elements of a list, a
pair of selectors is provided: car returns the first element of a list and cdr returns the rest
of the list.

More generally, we are interested in any set of (possibly mutually) recursive data types,
each of which contains one or more constructors. Each constructor has selectors that can
be used to retrieve the original arguments as well as a tester which indicates whether a
given term was constructed using that constructor. As an example of the more general
case, suppose we want to model lists of trees of natural numbers. Consider a set of three
recursive data types: nat, list, and tree. nat has two constructors: zero, which takes no
arguments (we call such a constructor a nullary constructor or constant); and succ, which
takes a single argument of type nat and has the corresponding selector pred. The list type
is as before except that we now specify that the elements of the list are of type tree. The
tree type in turn has two constructors: node, which takes an argument of type list and
has the corresponding selector children, and leaf, which takes an argument of type nat and
has the corresponding selector data. We can represent this set of types using the following
convenient notation based on that used in functional programming languages:

50

nat := succ(pred : nat) | zero;
list := cons(car : tree, cdr : list) | null;
tree := node(children : list) | leaf(data : nat);

The testers for this set of data types are is succ, is zero, is cons, is null, is node, and
is leaf.

Propositions about a set of recursive data types can be captured in a sorted first-
order language which closely resembles the structure of the data types themselves in that
it has function symbols for each constructor and selector, and a predicate symbol for
each tester. For instance, propositions that we would expect to be true for the example
above include: (i) ∀x : nat. succ(x) 6= zero; (ii) ∀x : list. x = null ∨ is cons(x); and (iii)
∀x : tree. is leaf(x)→ (data(x) = zero ∨ is succ(data(x))).

In this paper, we discuss a procedure for deciding such formulas. We focus on satis-
fiability of a set of literals, which (through well-known reductions) can be used to decide
the validity of universal formulas.

There are three main contributions of this work over earlier work on the topic. First,
our setting is more general: we allow mutually recursive types and multiple constructors.
The second contribution is in presentation. We present the theory itself in terms of an
initial model rather than axiomatically as is often done. Also, the presentation of the
decision procedure is given as abstract rewrite rules, making it more flexible and easier to
analyze than if it were given imperatively. Finally, as described in Section 4, the flexibility
provided by the abstract algorithm allows us to describe a new strategy with significantly
improved practical efficiency.

Related Work. Term algebras over constructors provide the natural intended model
for recursive data types. In [7] two dual axiomatizations of term algebras are presented,
one with constructors only, the other with selectors and testers only.

An often-cited reference for the quantifier-free case is the treatment by Nelson and
Oppen in 1980[11, 12] (where the problem is also shown to be NP-complete). In particular,
Oppen’s algorithm in [12] gives a detailed decision procedure for a single recursive data
type with a single constructor; however, the case of multiple constructors is discussed only
briefly and not rigorously.

More recently, several papers by Zhang et al. [14, 15] explore decision procedures for a
single recursive data type. These papers focus on ambitious schemes for quantifier elimina-
tion and combinations with other theories. A possible extension of Oppen’s algorithm to
the case of multiple constructors is discussed briefly in [14]. A comparison of our algorithm
with that of [14] is made in Section 4.

Finally, another approach based on first-order reasoning with the superposition calculus
is described in [5]. This work shows how a decision procedure for a recursive data type can
be automatically inferred from the first-order axioms, even though the axiomatization is
infinite. Although the results are impressive from a theoretical point of view, the scope is
limited to theories with a single constructor and the practical efficiency of such a scheme
has yet to be shown.

2 The Theory of Recursive Data Types

Previous work on recursive data types (RDTs) uses first-order axiomatizations in an at-
tempt to capture the main properties of a recursive data type and reason about it. We
find it simpler and cleaner to use a semantic approach instead, as is done in algebraic

51

specification. A set of RDTs can be given a simple equational specification over a suitable
signature. The intended model for our theory can be formally, and uniquely, defined as
the initial model of this specification. Reasoning about a set of RDTs then amounts to
reasoning about formulas that are true in this particular initial model.

2.1 Specifying RDTs

We formalize RDTs in the context of many-sorted equational logic (see [9] among others).
We will assume that the reader is familiar with the basic notions in this logic, and also
with basic notions of term rewriting.

We start with the theory signature. We assume a many-sorted signature Σ whose set
of sorts consists of a distinguished sort bool for the Booleans, and p ≥ 1 sorts τ1, . . . , τp
for the RDTs. We also allow r ≥ 0 additional (non-RDT) sorts σ1, . . . , σr. We will denote
by s, possibly with subscripts and superscripts, any sort in the signature other than bool,
and by σ any sort in {σ1, . . . , σr}.

As mentioned earlier, the function symbols in our theory signature correspond to the
constructors, selectors, and testers of the set of RDTs under consideration. We assume
for each τi (1 ≤ i ≤ p) a set of mi ≥ 1 constructors of τi. We denote these symbols as Cij ,

where j ranges from 1 to mi. We denote the arity of Cij as nij (0-arity constructors are also

called nullary constructors or constants) and its sort as sij,1 × · · · × s
i
j,nij
→ τi. For each

constructor Cij , we have a set of selectors, which we denote as Sij,k, where k ranges from 1

to nij , of sort τi → sij,k. Finally, for each constructor, there is a tester1 isCij : τi → bool.
In addition to these symbols, we also assume that the signature contains two constants,

true and false of sort bool, and an infinite number of distinct constants of each sort σ. The
constants are meant to be names for the elements of that sort, so for instance if σ1 were
a sort for the natural numbers, we could use all the numerals as the constants of sort σ1.
Having all these constants in the signature is not necessary for our approach, but in the
following exposition it provides an easy way of ensuring that the sorts in σ are infinite.
Section 5.1 shows that our approach can be easily extended to the case in which some
of these sorts are finite. To summarize, the set of function symbols of the signature Σ
consists of:

Cij : sij,1 × · · · × s
i
j,nij
→ τi, for i = 1, . . . , p, j = 1, . . . ,mi,

Sij,k : τi → sij,k, for i = 1, . . . , p, j = 1, . . . ,mi, k = 1, . . . , nij ,

isCij : τi → bool, for i = 1, . . . , p, j = 1, . . . ,mi,
true : bool, false : bool,
An infinite number of constants for each σl, for l = 1, . . . , r.

As usual in many-sorted equational logic, we also have p+ r+ 1 equality symbols (one for
each sort mentioned above), all written as ≈.

Our procedure requires one additional constraint on the set of RDTs: It must be well-

founded. Informally, this means that each sort must contain terms that are not cyclic or
infinite. More formally, we have the following definitions by simultaneous induction over
constructors and sorts: (i) a constructor Cij is well-founded if all of its argument sorts are
well-founded; (ii) the sorts σ1, . . . , σr are all well-founded; (iii) a sort τi is well-founded if
at least one of its constructors is well-founded. We require that every sort be well-founded
according to the above definition.

1To simplify some of the proofs, and without loss of generality, we use functions to bool instead of
predicates for the testers.

52

In some cases, it will be necessary to distinguish between finite and infinite τ -sorts: (i)
a constructor is finite if it is nullary or if all of its argument sorts are finite; (ii) a sort τi is
finite if all of its constructors are finite, and is infinite otherwise; (iii) the sorts σ1, . . . , σr
are all infinite. As we will see, consistent with the above terminology, our semantics will
interpret finite, resp. infinite, τ -sorts indeed as finite, resp. infinite, sets.

We denote by T (Σ) the set of well-sorted ground terms of signature Σ or, equivalently,
the (many-sorted) term algebra over that signature. The RDTs with functions and pred-
icates denoted by the symbols of Σ are specified by the following set E of (universally
quantified) equations. For reasons explained below, we assume that associated with every
selector Sij,k : τi → sij,k is a distinguished ground term of sort sij,k containing no selectors

(or testers), which we denote by tij,k.

Equational Specification of the RDT: for i = 1, . . . , p:

∀x1, . . . , xnij
. isCij(C

i
j(x1, . . . , xnij

)) ≈ true (for j = 1, . . . ,mi)

∀x1, . . . , xni
j′
. isCij(C

i
j′(x1, . . . , xni

j′
)) ≈ false (for j, j′ = 1, . . . ,mi, j 6= j′)

∀x1, . . . , xnij
. Sij,k(C

i
j(x1, . . . , xnij

)) ≈ xk (for k = 1, . . . , nij , j = 1, . . . ,mi)

∀x1, . . . , xni
j′
. Sij,k(C

i
j′(x1, . . . , xni

j′
)) ≈ tij,k (for j, j′ = 1, . . . ,mi, j 6= j′)

The last axiom specifies what happens when a selector is applied to the “wrong”
constructor. Note that there is no obviously correct thing to do in this case since it would
correspond to an error condition in a real application. Our axiom specifies that in this
case, the result is the designated ground term for that selector. This is different from other
treatments (such as [7, 14, 15]) where the application of a wrong selector is treated as the
identity function. The main reason for this difference is that identity function would not
always be well-sorted in multi-sorted logic.

By standard results in universal algebra we know that E admits an initial model R and
we can show the following result:2 Let Ω be the signature obtained from Σ by removing
the selectors and the testers; then, the reduct of R to Ω is isomorphic to T (Ω). Informally,
this means that R does in fact capture the set of RDTs in question, as we can take the
carrier of R to be the term algebra T (Ω).

3 The Decision Procedure

In this section, we present a decision procedure for the satisfiability of sets of literals
over R. Our procedure builds on the algorithm by Oppen [12] for a single type with
a single constructor. As an example of Oppen’s algorithm, consider the list data type
without the null constructor and the following set of literals: {cons(x, y) ≈ z, car(w) ≈
x, cdr(w) ≈ y, w 6≈ z}. Oppen’s algorithm uses a graph which relates terms according
to their meaning in the intended model. Thus, cons(x, y) is a parent of x and y and
car(w) and cdr(w) are children of w. The equations induce an equivalence relation on the
nodes of the graph. The Oppen algorithm proceeds by performing upwards (congruence)
and downwards (unification) closure on the graph and then checking for cycles3 or for a
violation of any disequalities. For our example, upwards closure results in the conclusion
w ≈ z, which contradicts the disequality w 6≈ z.

2Proofs of all results in this paper can be found in [4].
3A simple example of a cycle is: cdr(x) ≈ x.

53

As another example, consider the following set of literals: {cons(x, y) ≈ z, car(w) ≈
x, cdr(w) ≈ y, v ≈ w, y 6≈ cdr(v)}. The new graph has a node for v, with cdr(v) as
its right child. The Oppen algorithm requires that every node with at least one child
have a complete set of children, so car(v) is added as a left child of v. Now, downwards
closure forces car(v) ≈ car(w) ≈ x and cdr(v) ≈ cdr(w) ≈ y, contradicting the disequality
y 6≈ cdr(v).

An alternative algorithm for the case of a single constructor is to introduce new terms
and variables to replace variables that are inside of selectors. For example, for the first set
of literals above, we would introduce w ≈ cons(s, t) where s, t are new variables. Now, by
substituting and collapsing applications of selectors to constructors, we get {cons(x, y) ≈
z, w ≈ cons(s, t), x ≈ s, t ≈ y, w 6≈ z}. In general, this approach only requires downwards
closure.

Unfortunately, with the addition of more than one constructor, things are not quite as
simple. In particular, the simple approach of replacing variables with constructor terms
does not work because one cannot establish a priori whether the value denoted by a
given variable is built with one constructor or another. A simple extension of Oppen’s
algorithm for the case of multiple constructors is proposed in [14]. The idea is to first
guess a type completion, that is, a labeling of every variable by a constructor, which is
meant to constrain a variable to take only values built with the associated constructor.
Once all variables are labeled by a single constructor, the Oppen algorithm can be used to
determine if the constraints can be satisfied under that labeling. Unfortunately, the type
completion guess can be very expensive in practice.

Our presentation combines ideas from all of these algorithms as well as introducing
some new ones. There is a set of upward and downward closure rules to mimic Oppen’s
algorithm. The idea of a type completion is replaced by a set of labeling rules that can
be used to refine the set of possible constructors for each term (in particular, this allows
us to delay guessing as long as possible). And the notion of introducing constructors and
eliminating selectors is captured by a set of selector rules. In addition to the presentation,
one of our key contributions is to provide precise side-conditions for when case splitting is
necessary as opposed to when it can be delayed. The results given in Section 4 show that
with the right strategy, significant gains in efficiency can be obtained.

We describe our procedure formally in the following, as a set of derivation rules. We
build on and adopt the style of similar rules for abstract congruence closure [1] and syn-
tactic unification [8].

3.1 Definitions and Notation

In the following, we will consider well-sorted formulas over the signature Σ above and an
infinite set X of variables. To distinguish these variables, which can occur in formulas
given to the decision procedure described below, from other internal variables used by the
decision procedure, we will sometimes call the elements of X input variables.

Given a set Γ of literals over Σ and variables from X, we wish to determine the
satisfiability of Γ in the algebra R. We will assume for simplicity, and with no loss
of generality, that the only occurrences of terms of sort bool are in atoms of the form
isCjk(t) ≈ true, which we will write just as isCjk(t).

Following [1], we will make use of the sets Vτi (Vσi) of abstraction variables of sort τi
(σi); abstraction variables are disjoint from input variables (variables in Γ) and function
as equivalence class representatives for the terms in Γ. We assume an arbitrary, but fixed,
well-founded ordering Â on the abstraction variables that is total on variables of the same

54

sort. We denote the set of all variables (both input and abstraction) in E as Var(E). We
will use the expression lbls(τi) for the set {Ci

1
, . . . , Cimi} and define lbls(σl) to be the empty

set of labels for each σl. We will write sort(t) to denote the sort of the term t.
The rules make use of three additional constructs that are not in the language of Σ:

→, 7→, and Inst.
The symbol → is used to represent oriented equations. Its left-hand side is a Σ-term

t and its right-hand side is an abstraction variable v. The symbol 7→ denotes labellings of
abstraction variables with sets of constructor symbols. It is used to keep track of possible
constructors for instantiating a τi variable.4 Finally, the Inst construct is used to track
applications of the Instantiate rules given below. It is needed to ensure termination by
preventing multiple applications of the same Instantiate rule. It is a unary predicate
that is applied only to abstraction variables.

Let ΣC denote the set of all constant symbols in Σ, including nullary constructors. We
will denote by Λ the set of all possible literals over Σ and input variables X. Note that
this does not include oriented equations (t→ v), labeling pairs (v 7→ L), or applications of
Inst. In contrast, we will denote by E multisets of literals of Λ, oriented equations, labeling
pairs, and applications of Inst. To simplify the presentation, we will consistently use the
following meta-variables: c, d denote constants (elements of ΣC) or input variables from
X; u, v, w denote abstraction variables; t denotes a flat term—i.e., a term all of whose
proper sub-terms are abstraction variables—or a label set, depending on the context.
u,v denote possibly empty sequences of abstraction variables; and u → v is shorthand
for the set of oriented equations resulting from pairing corresponding elements from u

and v and orienting them so that the left hand variable is greater than the right hand
variable according to Â. Finally, v ./ t denotes any of v ≈ t, t ≈ v, v 6≈ t, t 6≈ v, or
v 7→ t. To streamline the notation, we will sometimes denote function application simply
by juxtaposition.

Each rule consists of a premise and one or more conclusions. Each premise is made
up of a multiset of literals, oriented equations, labeling pairs, and applications of Inst.
Conclusions are either similar multisets or ⊥, where ⊥ represents a trivially unsatisfiable
formula. The soundness of our rule-based procedure depends on the fact that the premise
E of a rule is satisfied in R by a valuation α of Var(E) iff one of the conclusions E′ of the
rule is satisfied in R by an extension of α to Var(E′).

3.2 The derivation rules

Our decision procedure consists of the following derivation rules on multisets E.

Abstraction rules

Abstract 1
p[c], E

c→ v, v 7→ lbls(s), p[v], E
if

p ∈ Λ, c : s,
v fresh from Vs

Abstract 2
p[Ciju], E

Ciju→ v, p[v], v 7→ {Cij}, E
if p ∈ Λ, v fresh from Vτi

Abstract 3

p[Sij,ku], E

Sij,1u→ v1, . . . , S
i
j,nij

u→ vnij
, p[vk],

v1 7→ lbls(s1), . . . , vnij
7→ lbls(snij

), E

if
p ∈ Λ, Sij,k : τi → sk,

each vι fresh from Vsι

4To simplify the writing of the rules, some rules may introduce labeling pairs for variables with a non-τ
sort, even though these play no role.

55

The abstraction or flattening rules assign a new abstraction variable to every sub-
term in the original set of literals. Abstraction variables are then used as place-holders
or equivalence class representatives for those sub-terms. While we would not expect a
practical implementation to actually introduce these variables, it greatly simplifies the
presentation of the remaining rules. Notice that in each case, a labeling pair for the
introduced variables is also created. This corresponds to labeling each sub-term with the
set of possible constructors with which it could have been constructed. Also notice that
in the Abstract 3 rule, whenever a selector Sij,k is applied, we effectively introduce all
possible applications of selectors associated with the same constructor. This simplifies the
later selector rules and corresponds to the step in the Oppen algorithm which ensures that
in the term graph, any node with children has a complete set of children.

Literal level rules

Orient
u ≈ v, E

u→ v, E
if u Â v

Inconsistent
v 6≈ v, E

⊥

Remove 1
isCij v, E

v 7→ {Cij}, E

Remove 2
¬isCij v, E

v 7→ lbls(sort(v)) \ {Cij}, E

The simple literal level rules are mostly self-explanatory. The Orient rule is used to
replace an equation between abstraction variables (which every equation eventually be-
comes after applying the abstraction rules) with an oriented equation. Oriented equations
are used in the remaining rules below. The Remove rules remove applications of testers
and replace them with labeling pairs that impose the same constraints.

Upward (i.e., congruence) closure rules

Simplify 1
u ./ t, u→ v, E

v ./ t, u→ v, E

Simplify 2
fuuv→ w, u→ v, E

fuvv→ w, u→ v, E

Superpose
t→ u, t→ v, E

u→ v, t→ v, E
if u Â v

Compose
t→ v, v → w, E

t→ w, v → w, E

These rules are modeled after similar rules for abstract congruence closure in [1]. The
Simplify and Compose rules essentially provide a way to replace any abstraction variable
with a smaller (according to Â) one if the two are known to be equal. The Superpose

rule merges two equivalence classes if they contain the same term. Congruence closure is
achieved by these rules because if two terms are congruent, then after repeated applications
of the first set of rules, they will become syntactically identical. Then the Superpose rule
will merge their two equivalence classes.

Downward (i.e., unification) closure rules

Decompose
Ciju→ v, Cijv→ v, E

Ciju→ v, u→ v, E

Clash
c→ v, d→ v, E

⊥
if c, d ∈ ΣC, c : σ, d : σ, c 6= d

56

Cycle
Cinjnunuvn→un−1, . . . , C

i2
j2

u2u2v2→u1, C
i1
j1

u1u1v1→u,E

⊥
if n ≥ 1

The main downward closure rule is the Decompose rule: whenever two terms with
the same constructor are in the same equivalence class, their arguments must be equal.
The Clash rule detects instances of terms that are in the same equivalence class that
must be disequal in the intended model. The Cycle rule detects the (inconsistent) cases
in which a term would have to be cyclical.

Selector rules

Instantiate 1
Sij,1u→ u1, . . . , S

i
j,nij

u→ unij
, u 7→ {Cij}, E

Ciju1 · · ·unij
→ u, u 7→ {Cij}, Inst(u), E

if Inst(u) 6∈ E

Instantiate 2

v 7→ {Cij}, E

Ciju1 · · ·unij
→ v, Inst(v), E

u1 7→ lbls(sij,1), . . . , unij
7→ lbls(si

j,nij
)

if

Inst(v) 6∈ E,
v 7→ L 6∈ E,
Cij finite constructor,

Sab,c(v)→ v′ 6∈ E,

uk fresh from Vsi
j,k

Collapse 1
Ciju1 · · ·unij

→ u, Sij,ku→ v, E

Ciju1 · · ·unij
→ u, uk ≈ v, E

Collapse 2
Sij,ku→ v, u 7→ L, E

tij,k ≈ v, u 7→ L, E
if Cij /∈ L

Rule Instantiate 1 is used to eliminate selectors by replacing the argument of the
selectors with a new term constructed using the appropriate constructor. Notice that
only terms that have selectors applied to them can be instantiated and then only once
they are unambiguously labeled. Rule Instantiate 2 is used for finite constructors. For
completeness, terms labeled with finite constructors must be instantiated even when no
selectors are applied to them. The Collapse rules eliminate selectors when the result of
their application can be determined. In Collapse 1, a selector is applied to a term known
to be equal to a constructor of the “right” type. In this case, the selector expression is
replaced by the appropriate argument of the constructor. In Collapse 2, a selector is
applied to a term which must have been constructed with the “wrong” constructor. In
this case, the designated term tij,k for the selector replaces the selector expression.

Labeling rules

Refine
v 7→ L1, v 7→ L2, E

v 7→ L1 ∩ L2, E
Empty

v 7→ ∅, E

⊥
if v : τi

Split 1
Sij,k(u)→ v, u 7→ {Cij} ∪ L, E

Sij,k(u)→ v, u 7→ {Cij}, E Sij,k(u)→ v, u 7→ L, E
if L 6= ∅

Split 2
u 7→ {Cij} ∪ L, E

u 7→ {Cij}, E u 7→ L, E
if

L 6= ∅,
{Cij} ∪ L all finite constructors

57

The Refine rule simply combines labeling constraints that may arise from different
sources for the same equivalence class. Empty enforces the constraint that every τ -term
must be constructed by some constructor. The splitting rules are used to refine the set
of possible constructors for a term and are the only rules that cause branching. If a term
labeled with only finite constructors cannot be eliminated in some other way, Split 2 must
be applied until it is labeled unambiguously. For other terms, the Split 1 rule only needs
to be applied to distinguish the case of a selector being applied to the “right” constructor
from a selector being applied to the “wrong” constructor. On either branch, one of the
Collapse rules will apply immediately. We discuss this further in Section 4, below. The
rules are proved sound, complete and terminating in our full report [4].

4 Strategies and Efficiency

It is not difficult to see that the problem of determining the satisfiability of an arbitrary
set of literals is NP-complete. The problem was shown to be NP-hard in [12]. To see
that it is in NP, we note that given a type completion, no additional splits are necessary,
and the remaining rules can be carried out in polynomial time. However, as with other
NP-complete problems (Boolean satisfiability being the most obvious example), the right
strategy can make a significant difference in practical efficiency.

4.1 Strategies

A strategy is a predetermined methodology for applying the rules. Before discussing our
recommended strategy, it is instructive to look at the closest related work. Oppen’s original
algorithm is roughly equivalent to the following: After abstraction, apply the selector rules
to eliminate all instances of selector symbols. Next, apply upward and downward closure
rules (the bidirectional closure). As you go, check for conflicts using the rules that can
derive ⊥. We will call this the basic strategy. Note that it excludes the splitting rules:
because Oppen’s algorithm assumes a single constructor, the splitting rules are never used.
A generalization of Oppen’s algorithm is mentioned in [14]. They add the step of initially
guessing a “type completion”. To model this, consider the following simple Split rule:

Split
u 7→ {Cij} ∪ L, E

u 7→ {Cij}, E u 7→ L, E
if L 6= ∅

Now consider a strategy which invokes Split greedily (after abstraction) until it no longer
applies and then follows the basic strategy. We will call this strategy the greedy splitting

strategy. One of the key contributions of this paper is to recognize that the greedy splitting
strategy can be improved in two significant ways. First, the simple Split rule should be
replaced with the smarter Split 1 and Split 2 rules. Second, these rules should be delayed
as long as possible. We call this the lazy splitting strategy. The lazy strategy reduces the
size of the resulting derivation in two ways. First, notice that Split 1 is only enabled when
some selector is applied to u. By itself, this eliminates many needless case splits. Second,
by applying the splitting rules lazily (in particular by first applying selector rules), it may
be possible to avoid splitting completely in many cases.

Example. Consider the following simple tree data type: tree := node(left : tree, right :
tree) | leaf with leaf as the designated term for both selectors. Suppose we receive the
input formula leftn(Z) ≈ X ∧ is node(Z) ∧ Z ≈ X. After applying all available rules
except for the splitting rules, the result will look something like this:

58

Worst Case Greedy Lazy
Number of Splits Benchmarks Sat Unsat Splits Time (s) Splits Time (s)

0 4416 306 4110 0 24.6 0 24.6

1-5 2520 2216 304 6887 16.8 2414 17.0

6-10 692 571 121 4967 5.8 1597 5.7

11-20 178 112 66 2422 2.3 517 1.6

21-100 145 73 72 6326 4.5 334 1.1

101+ 49 11 38 16593 9.8 73 0.3

Table 1: Greedy vs. Lazy Splitting

{ Z → u0, X → u0, u0 7→ {node},node(u1, v1)→ u0, un → u0,
left(u1)→ u2, . . . , left(un−1)→ un, u1 7→ {leaf,node}, . . . , un 7→ {leaf,node},
right(u1)→v2,. . ., right(un−1)→vn, v1 7→ {leaf,node}, . . . , vn 7→ {leaf,node}},

Notice that there are 2n abstraction variables labeled with two labels each. If we eagerly
applied the naive Split rule at this point, the derivation tree would reach size O(22n).

Suppose, on the other hand, that we use the lazy strategy. First notice that Split

1 can only be applied to n of the abstraction variables (ui, 1 ≤ i ≤ n). Thus the more
restrictive side-conditions of Split 1 already reduce the size of the problem to at worst
O(2n) instead of O(22n). However, by only applying it lazily, we do even better: suppose
we split on ui. The result is two branches, one with ui 7→ {node} and the other with
ui 7→ {leaf}. The second branch induces a cascade of (at most n) applications of Collapse
2 which in turn results in uk 7→ {leaf} for each k > i. This eventually results in ⊥ via
the Empty and Refine rules. The other branch contains ui 7→ {node} and results in the
application of the Instantiate rule, but little else, and so we will have to split again, this
time on a different ui. This process will have to be repeated until we have split on all of
the ui. At that point, there will be a cycle from u0 back to u0, and so we will derive ⊥ via
the Cycle rule. Because each split only requires at most O(n) rules and there are n − 1
splits, the total size of the derivation tree will be O(n2).

4.2 Experimental Results

We have implemented both the lazy and the greedy splitting strategies in the theorem
prover CVC Lite [2]. Using the mutually recursive data types nat, list, and tree mentioned
in the introduction, we randomly generated 8000 benchmarks.5

As might be expected with a large random set, most of the benchmarks are quite easy.
In fact, over half of them are solved without any case splitting at all. However, a few
of them did prove to be somewhat challenging (at least in terms of the number of splits
required). Table 1 shows the total time and case splits required to solve the benchmarks.
The benchmarks are divided into categories based on the the maximum number of case
splits required to solve the benchmark.

For easy benchmarks that don’t require many splits, the two algorithms perform almost
identically. However, as the difficulty increases, the lazy strategy performs much better.
For the hardest benchmarks, the lazy strategy outperforms the greedy strategy by more
than an order of magnitude.

5See http://www.cs.nyu.edu/~barrett/datatypes for details on the benchmarks and results.

59

5 Extending the Algorithm

In this section we briefly discuss several ways in which our algorithm can be used as a
component in solving a larger or related problem.

5.1 Finite Sorts

Here we consider how to lift the limitation imposed before that each of σ ∈ {σ1, . . . , σr} is
infinite valued. Since we have no such restrictions on sorts τi, the idea is to simply replace
such a σ by a new τ -like sort τσ, whose set of constructors (all of which will be nullary)
will match the domain of σ. For example, if σ is a finite scalar of the form {1, . . . , n},
then we can let τσ ::== null1 | . . . | nulln. We then proceed as before, after replacing all
occurrences of σ by τσ and each i by nulli.

5.2 Simulating Partial Function Semantics

As mentioned earlier, it is not clear how best to interpret the application of a selector to the
wrong constructor. One compelling approach is to interpret selectors as partial functions.
An evaluation of a formula then has three possible outcomes: true, false, or undefined.
This approach may be especially valuable in a verification application in which application
of selectors is required to be guarded so that no formula should ever be undefined. This
can easily be implemented by employing the techniques described in [6]: given a formula to
check, a special additional formula called a type-correctness condition is computed (which
can be done in time and space linear in the size of the input formula). These two formulas
can then be checked using a decision procedure that interprets the partial functions (in
this case, the selectors) in some arbitrary way over the undefined part of the domain. The
result can then be interpreted to reveal whether the formula would have been true, false,
or undefined under the partial function semantics.

5.3 Cooperating with other Decision Procedures

A final point is that that our procedure has been designed to integrate easily into a Nelson-
Oppen-style framework for cooperating decision procedures [10]. In the many-sorted case,
the key theoretical requirements (see [13]) for two decision procedures to be combined
are that the signatures of their theories share at most sort symbols and each theory is
stably infinite over the shared sorts.6 A key operational requirement is that the decision
procedure is also able to easily compute and communicate equality information.

The theory of R (i.e., the set of sentences true in R) is trivially stably infinite over the
sorts σ1, . . . , σr and over any τ -sort containing a non-finite constructor—as all such sorts
denote infinite sets in R. Also, in our procedure the equality information is eventually
completely captured by the oriented equations produced by the derivation rules, and so
entailed equalities can be easily detected and reported.

For a detailed and formal discussion of how to integrate a rule-based decision procedure
such as this one into a general framework combining Boolean reasoning and multiple
decision procedures, we refer the reader to our related work in [3]. Note that, in particular,
this work shows how the internal theory case splits can be delegated on demand to the
Boolean engine; this is the implementation strategy followed in CVC Lite.

6A many-sorted theory T is stably infinite over a subset S of its sorts if every quantifier-free formula
satisfiable in T is satisfiable in a model of T where the sorts of S denote infinite sets.

60

References

[1] L. Bachmair, A. Tiwari, and L. Vigneron. Abstract congruence closure. JAR, 31:129–168,
2003.

[2] C. Barrett and S. Berezin. CVC Lite: A new implementation of the cooperating validity
checker. In Proceedings of CAV, pages 515–518, July 2004.

[3] C. Barrett, R. Nieuwenhuis, A. Oliveras, and C. Tinelli. Splitting on demand in sat-
isfiability modulo theories. Technical report, University of Iowa, 2006. Available at
ftp://ftp.cs.uiowa.edu/pub/tinelli/papers/BarNOT-RR-06.pdf.

[4] C. Barrett, I. Shikanian, and C. Tinelli. An abstract decision procedure for satisfiability in
the theory of recursive data types. Technical Report TR2005-878, Department of Computer
Science, New York University, Nov. 2005.

[5] M. P. Bonacina and M. Echenim. Generic theorem proving for decision proce-
dures. Technical report, Università degli studi di Verona, 2006. Available at
http://profs.sci.univr.it/∼echenim/.

[6] S. B. et al. A practical approach to partial functions in CVC Lite. In W. A. et al., editor,
Selected Papers from PDPAR ’04, volume 125(3) of ENTCS, pages 13–23. Elsevier, July 2005.

[7] W. Hodges. A Shorter Model Theory. Cambridge University Press, 1997.

[8] A. Martelli and U. Montanari. An efficient unification algorithm. ACM Transactions on

Programming Languages and Systems, 4(2):258–282, 1982.

[9] K. Meinke and J. V. Tucker. Universal algebra. In S. Abramsky, D. V. Gabbay, and T. S. E.
Maibaum, editors, Handbook of Logic in Computer Science, volume 1. Claredon Press, 1992.

[10] G. Nelson and D. Oppen. Simplification by cooperating decision procedures. ACM Transac-

tions on Programming Languages and Systems, 1(2):245–57, 1979.

[11] G. Nelson and D. C. Oppen. Fast decision procedures based on congruence closure. JACM,
27(2):356–364, April 1980.

[12] D. C. Oppen. Reasoning about recursively defined data structures. JACM, 27(3):403–411,
July 1980.

[13] C. Tinelli and C. Zarba. Combining decision procedures for sorted theories. In J. Alferes and
J. Leite, editors, Proceedings of JELIA ’04, volume 3229 of LNAI, pages 641–653. Springer,
2004.

[14] T. Zhang, H. B. Sipma, and Z. Manna. Decision procedures for term algebras with integer
constraints. In Proceedings of IJCAR ’04 LNCS 3097, pages 152–167, 2004.

[15] T. Zhang, H. B. Sipma, and Z. Manna. Term algebras with length function and bounded
quantifier alternation. In Proceedings of TPHOLs, 2004.

61

A Framework for Decision Procedures in

Program Verification
(presentation-only paper)

Ofer Strichman1 and Daniel Kroening2

1 Technion, Haifa, Israel
2 ETH Zurich, Switzerland

ofers@ie.technion.ac.il, daniel.kroening@inf.ethz.ch

Abstract

Program analysis tools for modern programming languages require
a very rich logic to reason about constructs such as bit-vector oper-
ators or dynamic data structures. We propose a generic framework
for reducing decidable decision problems to propositional logic that
starts with an axiomatization of the logics. Instantiating the frame-
work for a specific logic requires a deductive decision procedure that
fulfills several conditions. Linear arithmetic, the theory of arrays and
other logics useful for verification, have such a decision procedure, as
we show. Further, the framework allows to reduce combined theories
to a unified propositional formula, which enables learning across the-
ories. We conclude by presenting several challenges that need to be
met for making the framework more general and useful for program
verification.

62

Easy Parameterized Verificaton of

Biphase Mark and 8N1 Protocols
(presentation-only paper)

Geoffrey Brown1 and Lee Pike 2

1 Indiana University
2 Galois Connections

geobrown@cs.indiana.edu, leepike@galois.com

Abstract

The Biphase Mark Protocol (BMP) and 8N1 Protocol are physical
layer protocols for data transmission. We present a generic model in
which timing and error values are parameterized by linear constraints,
and then we use this model to verify these protocols. The verifications
are carried out using SRI’s SAL model checker that combines a sat-
isfiability modulo theories decision procedure with a bounded model
checker for highly-automated induction proofs of safety properties over
infinite-state systems. Previously, parameterized formal verification of
real-time systems required mechanical theorem-proving or specialized
real-time model checkers; we describe a compelling case-study demon-
strating a simpler and more general approach. The verification reveals
a significant error in the parameter ranges for 8N1 given in a published
application note.

63

Predicate Learning and Selective Theory

Deduction for Solving Difference Logic
(presentation-only paper)

Chao Wang, Aarti Gupta, Malay Ganai

NEC Labs America, Princeton, USA

{chaowang|agupta|malay}@nec-labs.com

Abstract

Design and verification of systems at the Register-Transfer (RT) or
behavioral level require the ability to reason at higher levels of abstrac-
tion. Difference logic consists of an arbitrary Boolean combination of
propositional variables and difference predicates and therefore provides
an appropriate abstraction. In this paper, we present several new op-
timization techniques for efficiently deciding difference logic formulas.
We use the lazy approach by combining a DPLL Boolean SAT proce-
dure with a dedicated graph-based theory solver, which adds transitiv-
ity constraints among difference predicates on a “need-to” basis. Our
new optimization techniques include flexible theory constraint prop-
agation, selective theory deduction, and dynamic predicate learning.
We have implemented these techniques in our lazy solver. We demon-
strate the effectiveness of the proposed techniques on public bench-
marks through a set of controlled experiments.

64

Deciding Extensions of the Theory of

Arrays by Integrating Decision

Procedures and Instantiation Strategies
(presentation-only paper)

Silvio Ghilardi1, Enrica Nicolini1,

Silvio Ranise2 and Daniele Zucchelli1

1 Università degli Studi di Milano, Italy
2 LORIA and INRIA-Lorraine, Nancy, France

ghilardi@dsi.unimi.it, nicolini@mat.unimi.it,

silvio.ranise@loria.fr, zucchelli@dsi.unimi.it

Abstract

The theory of arrays, introduced by McCarthy in his seminal pa-
per “Toward a mathematical science of computation”, is central to
Computer Science. Unfortunately, the theory alone is not sufficient
for many important verification applications such as program analysis.
Motivated by this observation, we study extensions of the theory of
arrays whose satisfiability problem (i.e. checking the satisfiability of
conjunctions of ground literals) is decidable. In particular, we consider
extensions where the indexes of arrays has the algebraic structure of
Presburger Arithmetic and the theory of arrays is augmented with ax-
ioms characterizing additional symbols such as dimension, sortedness,
or the domain of definition of arrays.

We provide methods for integrating available decision procedures
for the theory of arrays and Presburger Arithmetic with automatic in-
stantiation strategies which allow us to reduce the satisfiability problem
for the extension of the theory of arrays to that of the theories decided
by the available procedures. Our approach aims to reuse as much as
possible existing techniques so to ease the implementation of the pro-
posed methods. To this end, we show how to use both model-theoretic
and rewriting-based theorem proving (i.e., superposition) techniques
to implement the instantiation strategies of the various extensions.

65

Producing Conflict Sets

for Combinations of Theories
(presentation-only paper)

Silvio Ranise, Christophe Ringeissen and Duc-Khanh Tran

LORIA and INRIA-Lorraine, Nancy, France

{ranise|ringeiss|tran}@loria.fr

Abstract

Recently, it has become evident that the capability of computing
conflict sets is of paramount importance for the efficiency of systems for
Satisfiability Modulo Theories (SMT). In this paper, we consider the
problem of modularly constructing conflict sets for a combined theory,
when this is obtained as the disjoint union of many component theories
for which satisfiability procedures capable of computing conflict sets
are assumed available. The key idea of our solution to this problem
is the concept of explanation graph, which is a labelled, acyclic and
undirected graph capable of recording the entailment of some elemen-
tary equalities. Explanation graphs allow us to record the explanations
computed by, for instance, a proof-producing congruence closure and
to extend the well-known Nelson-Oppen combination method to mod-
ularly build conflict sets for disjoint unions of theories. We study how
the computed conflict sets relate to an appropriate notion of minimal-
ity.

66

