
Metamodels in Europe:
Languages, Tools, and
Applications
Roberto Passerone

University of Trento

Imene Ben Hafaiedh and Susanne Graf

Verimag

Albert Benveniste

INRIA Rennes

Daniela Cancila, Arnaud Cuccuru,

Sébastien Gérard, and Francois Terrier

CEA LIST

Werner Damm

Oldenburg University

Alberto Ferrari and Leonardo Mangeruca

Parades

Bernhard Josko and Thomas Peikenkamp

OFFIS

Alberto Sangiovanni-Vincentelli

University of California, Berkeley

�ABSTRACTION AND REFINEMENT techniques are the

cornerstone of design methodologies. Abstraction

is the fundamental device by which designers ex-

tract the essential features of a complex problem, re-

ducing the complexity of its representation and

manipulation and increasing productivity. This pro-

cess has been shaped during the past few decades

through conceptual representations and languages

that are progressively more detached from a given

system’s implementation because they neglect details

that are relevant only in the context of specific reali-

zations. The converse process of refinement fills out

those details with tools that can evaluate design alter-

natives through simulations and analysis and, when

possible, through synthesis and compilation tech-

niques. In most cases, the refinement step proceeds by

mapping, decomposing, and subsequently assembling

the system from elementary parts, or

components, that encapsulate a logical

unit of behavior.

The adoption of component-based

methodologies has paved the way to

the development of the model-based

approach to design (for example, see

Terrier and Gérard1). This shift was

marked by an increased use of concur-

rency, which more naturally maps on

the structure of modern distributed embedded sys-

tems, over the traditional software paradigm of se-

quential execution. Concurrency, however, increases

complexity, because the number of interactions that

must be considered tends to grow more than linearly

with the number of components, and sometimes sig-

nificantly so. This has led to the proliferation of a host

of component models, whose primary purpose is to

constrain the kind of interaction patterns available

to designers, to simplify the analysis or achieve a cer-

tain degree of expressiveness.

Designers use component models because they

are convenient ways to represent a design and be-

cause designers can choose the abstraction that best

matches the characteristics of the system under devel-

opment. Convergence of technologies into the same

application area, however, results in heterogeneous

Metamodeling

Editor’s note:

This article provides an overview of current efforts in Europe for using metamod-

eling in the integrated development of critical systems such as automotive elec-

tronics. It distinguishes between lightweight versus heavyweight approaches,

surveys a number of related current European projects, and gives details

about the Speeds project to illustrate the role of metamodeling-driven system

engineering.

��Sandeep Shukla, Virginia Tech

0740-7475/09/$25.00 �c 2009 IEEE Copublished by the IEEE CS and the IEEE CASS IEEE Design & Test of Computers38

Authorized licensed use limited to: UNIVERSITA TRENTO. Downloaded on July 29, 2009 at 05:05 from IEEE Xplore. Restrictions apply.

specifications that use several models simultaneously

for system description. The same degree of het-

erogeneity is present when the system description is

partitioned into separate orthogonal aspects, or view-

points. In this case, the fragmentation is at the compo-

nent level and must be resolved by resorting to

appropriate combinations of techniques that account

for specification interdependencies.2

In this context, researchers have taken a step back

and have begun to study and operate on the models

themselves to understand their relationships and to

put an order to an otherwise informal collection of

methods and tools. To achieve these goals, they

used the very same modeling techniques that had

proven successful in design to construct models of

models, or metamodels. These metamodels have

quickly been embraced by methodologies such as

the model-driven architecture (MDA) and platform-

based design (PBD).3-5

In this article, we review the role that models and

metamodels have played and are playing in several

research projects across Europe. Accordingly, we dis-

cuss language design techniques and their use in sev-

eral industrial applications. We also describe the

modeling principles and the infrastructure underlying

the Speculative and Exploratory Design in System

Engineering (Speeds) European project, and high-

light the way metamodeling techniques have helped

its implementation and applications.

Language design strategies
Embedded-systems development needs to provide

global solutions for reconciling three conflicting con-

cerns: enrichment and refinement of system function-

alities, reduction of time to market and production

costs, and compliance with nonfunctional require-

ments.1 To fulfill these objectives, both academic

and industrial communities have been promoting

for more than a decade design approaches and meth-

odologies relying on model-based engineering.3,4 MBE

methodologies address different problem-related con-

cerns such as model transformations, model reposito-

ries, and specific modeling languages.

Metamodeling techniques are the basis for most re-

search efforts in the state of the art in these different

areas. A metamodel is the result of capturing concepts

and rules of a specific modeling language via more or

less formal means.6 In this context, we can say that a

model conforms to a metamodel if the model respects

the set of modeling rules defined in the metamodel

(‘‘just like a well-formed program conforms to the gram-

mar of the programming language in which it is writ-

ten’’).6 The example shown in Figure 1 illustrates this.

At the figure’s top, we show the graphical definition

of the metamodel of a simple modeling language for

interfaces with operations, where rectangles represent

objects, and arrows (with their different heads) repre-

sent rectangles’ relationships. An Interface is a Named-

Element (arrow pointing up), which can have a

number of associated Operations (arrow pointing

right). These, in turn, may take typed parameters with

a specified direction and may return a typed value.

Designers are not concerned with the metamodel defi-

nition, and instead use graphical tools to represent their

specification of an interface, as shown in the bottom

left of the figure, where interface VehicleControllerInter-

face has been defined to have two operations. At the re-

pository level, the specification is represented as a

particular instantiation of objects derived from the

above class diagram, as shown in the bottom right, in

a way that conforms to the metamodel definition.

There are two strategies for using metamodeling

techniques in the design of domain-specific languages:

a heavyweight and a lightweight approach.

Heavyweight vs. lightweight design

Figure 2 is an overview of the heavyweight and

lightweight approaches for defining specific domain

languages and their impact on underlying tool archi-

tectures. The figure shows the steps and the models

involved in the creation of languages and tools corre-

sponding to certain concepts of interest��related in

this case to the domain of real-time systems.

In the heavyweight variant, outlined in the left-

hand side of Figure 2, designers create a new domain-

specific language (DSL) for modeling the domain

of interest, characterized by a fully dedicated meta-

model. This way, the DSL is optimally suited to the

problem at hand.7 Because every discipline has its

own specific language, the main drawback of this ap-

proach is how ‘‘to interface the various parts of the

design so that integrated systems can be verified,

tested, or simply unambiguously understood.’’7 This

translates, in the realm of tools, to more effort

required to obtain an integrated and consistent tool

chain, which must be supported by a specific intero-

perability infrastructure, as illustrated by the bottom-

left ‘‘Realm of tool’’ box in Figure 2.

The lightweight variant, outlined in Figure 2b,

relies on the extension of an existing metamodel.

39May/June 2009

Authorized licensed use limited to: UNIVERSITA TRENTO. Downloaded on July 29, 2009 at 05:05 from IEEE Xplore. Restrictions apply.

This metamodel typically captures the modeling con-

cepts and rules of a more general-purpose modeling

language, such as the well-accepted Unified Mode-

ling Language.8 In the context of UML, this mecha-

nism of lightweight extension is called a profile. In

our example, the Modeling and Analysis of Real

Time Embedded (Marte) systems profile is used to

capture the concepts related to real-time systems.

Each extension of an element from the UML meta-

model is formally captured by a stereotype concept.

Each stereotype definition can be associated with

properties and/or modeling constraints that make

sense for the domain targeted by the profile. Stereo-

types are then manipulated at the modeling level as

annotations on model elements, so that various semi-

automatic tools can access the information captured

by the profile (for example, for code generation, ver-

ification, or domain-specific analysis). The advantage

of this approach is that existing metamodels can be

reused and specialized.

The most difficult part when defining a lightweight

extension is to determine the most suitable elements

of the metamodel that must be extended (that is, the

metaclasses for which stereotypes must be defined).

This task typically requires a deep knowledge of the

metamodel. However, once the profile has been

defined, this approach lets designers specialize a

general-purpose tool (such as Papyrus or RSA) at

low cost.9,10 General-purpose tools support domain-

specific aspects in the sense that stereotypes are

made available at the modeling level in the form

of annotations. In addition, tools usually support

Metamodeling

« metaclass »
NamedElement

name : String

returnType

0..1

« metaclass »
Interface

(a)

(b)

(c)

VehicleControllerInterface

getSpeed(): Int
controlEngine(in torque: Torque)

Operation
{ordered}

1..* 0..*
« metaclass »

Operation

« metaclass »
Type

Type

1

Parameter
{ordered}

« enumeration »
DirectionKind

IN
OUT

« metaclass »
Parameter

direction : DirectionKind = IN

name = “VehicleControllerInterface”

: Interface

Operation [0]

: Operation

name = “getSpeed”

: Type

name = “Int”

: Operation

M
od

el
in

g
 le

ve
l

M
et

am
od

el
in

g
 le

ve
l

name = “controlEngine”

: Parameter

: Type

name = “Torque”
Type

Parameter [0]

Operation [1]

« conforms to »

returnType

name = “torque”
direction = IN

Elements the user does not see because they
are represented internally by the tools.=

Figure 1. Language definition and use for a vehicle controller interface specification in model-based engineering

form: metamodel definition (a), user-defined model (b), and model repository (c).

40 IEEE Design & Test of Computers

Authorized licensed use limited to: UNIVERSITA TRENTO. Downloaded on July 29, 2009 at 05:05 from IEEE Xplore. Restrictions apply.

integration in the form of optional plug-ins, as illus-

trated in the bottom-right side of Figure 2.

The heavyweight and lightweight variants address

the problem of multidomain modeling capabilities dif-

ferently. Because multiple profiles can be applied to a

given model, it can be easier to integrate and combine

DSLs for lightweight than for heavyweight approaches.

A heavyweight approach requires that a dedicated

metamodel and modeling environment be defined

for each DSL, and a potentially complex interoperabil-

ity tool might be required to ensure consistency and

interaction between the different model ‘‘views.’’ For

example, in the Papyrus UML modeler developed at

the LISE laboratory in France,9,11 a designer can auto-

matically import and apply several profiles in a given

model and, hence, add information concerning multi-

ple domains to preexisting model elements. Con-

versely, the heavyweight Speeds approach uses a

single ‘‘rich’’ metamodel that takes the role of integra-

tion infrastructure and avoids the proliferation of

several DSLs.

Profiles as DSL and industrial feedback

The lightweight extension mechanism has been

supported by the embedded-systems industry through

the development of two important profiles for this

application domain: the SysML and Marte profiles.

� The SysML (System Modeling Language) profile has

been motivated by the need to provide modeling

support that is not limited to software-centric sys-

tems development. Instead, SysML addresses a

wider understanding of system architectures and

interactions with their environment, whether or

not they are later realized through software. At the

modeling level, two main aspects have been inte-

grated: links with reference requirement documen-

tation, and the capability to describe coarse-grained

architectures supporting both discrete (such as

messages, data, and material) and continuous

(such as energy) interactions. All other aspects (be-

havioral descriptions, for example) are assumed to

reuse largely existing UML constructs and semantics.

« metamodel »
Domain-specific language
for design and analysis of

real-time embedded systems

« profile »
Domain-specific language

(Marte)

« metamodel »
General-purpose language

(UML)

« supports » « supports »

« extends »

« supports »
« tool »

« optional »
Domain-specific
modeling add-in

Optional customization of the modeling
tool. General-purpose tools usually
provide configuration parameters to

support these kinds of customization.

«customizes»
« tool »

Other DSL
modeling tool

(a) (b) (c)

« tool »
Domain-specific

modeling environment

« tool »
General-purpose

modeling environment

(= Reused elements)
« tool »

Interoperability Tool

Concepts of
the real-time domain

R
ea

lm
 o

f c
on

ce
p

t
R

ea
lm

 o
f l

an
g

ua
g

e
R

ea
lm

 o
f t

oo
l

« heavyweight formalization of »
« lightweight formalization of »

Figure 2. Uses of metamodeling techniques related to concepts of the real-time domain: heavyweight approaches (a),

lightweight approaches with reused elements (b), and optional connection to domain-specific modeling add-ins (c).

41May/June 2009

Authorized licensed use limited to: UNIVERSITA TRENTO. Downloaded on July 29, 2009 at 05:05 from IEEE Xplore. Restrictions apply.

� The Marte systems profile is designed to provide ab-

stract views to support real-time embedded systems

(RTES) development as well as unify the various

existing approaches through a common language,

built by all the actors of the RTES community.

Marte’s scope is to cover all RTES development

activities that require specific constructs or referen-

ces, not by replacing existing efficient solutions but

by mapping them to a reference and global meta-

model. Marte is structured as a set of subprofiles

that support design, analysis, and the expression

of timing characteristics; the subprofiles also sup-

port the description of the execution model, the

platform, and the platform API model libraries.

Several industrial European projects have adopted

the lightweight strategy. Such projects focus on real-

time embedded systems, with special attention to the

railway, automotive, and aerospace application do-

mains. As examples, we will discuss two typical use

cases: one for safety-related systems development and

one for the automotive domain.

A profile for safety analysis. Safety requirements

play a crucial role in the railways, automotive,

and aerospace domains. In many cases, safety re-

quirements have profound implications for system

architecture. As a result, the scientific community

attempts to integrate safety requirements in software

development as early as possible. However, in the

past few decades, the requirements for safety and

real-time embedded-system development have been

accompanied by the use of heterogeneous methodol-

ogies and tools. In addition, safety teams and system

development teams are not the same��thus compli-

cating the integration effort. In such a scenario, two

directions seem to be possible. The first is driven by

tool integration, in which each team develops its

own model with its own tool. The issue is then how

to proceed with the integration of the results or of

the tools themselves. One advantage of this approach

lies in the use of existing tools, tailored to the specific

application they support. However, the late and often

problematic integration implies that the changes in

the architecture needed to consider safety require-

ments force designers to redesign parts of the system

well after the end of the specification phase. This cre-

ates long redesign cycles that adversely affect produc-

tivity and, in certain cases, correctness.

A different approach relies on the lightweight ex-

tension we have described. The Imofis industrial

European project, which began in mid-2008, fits into

this context.12 The objective is to define a develop-

ment environment for safety-critical applications.

The idea behind Imofis is to define a conceptual

data model for safety in strict collaboration with the

safety teams of the railway and automotive industries.

Concepts in this data model are drawn from an ontol-

ogy given by the safety teams��concept examples in-

clude a hazard, an accident, a safety barrier, and so

on. The language development then proceeds by

first creating a profile, starting from the conceptual

data model. This profile is then integrated with

other preexisting profiles, such as SysML and Marte,

to import their expressive capabilities. At the model-

ing level, designers specify information on model ele-

ments via a graphical interface.

In addition to the language design technique we

have described, Imofis exploits a new conception of

a profile,13,14 which is defined by a ‘‘family’’ of related

languages. To tailor a DSL to a given point of view

(that is, to address safety analysis, temporal analysis,

and so on), the Imofis project keeps only suitable sub-

sets of each preexisting profile. This strategy poten-

tially reduces the possible semantic and syntactical

conflicts between profiles. In fact, such an approach

is already implicitly adopted by different industrial

European projects��for example, Memvatex (Meth-

odology for Modeling, Validation, and Traceability

of Requirements), Atesst (Advancing Traffic Effi-

ciency and Safety through Software Technology),

and Lambda (Libraries for Applying Model-Based

Development Approaches).15-17

Specialization for the automotive domain. With

the introduction of the Autosar standard,18 which is

an open-system software architecture, many in the au-

tomotive domain have stressed the need for solutions

to provide standardized support for the first steps in

describing an automotive application or function. To

this end, the Atesst project was launched to provide

an architecture description language for the automo-

tive domain.16 Thanks to UML profile mechanisms,

it was possible, within two years and with limited

resources, to both implement the language Electronic

Architecture and Software Technology (EAST)-ADL 2

on an existing tool and align it with the Autosar stan-

dard. The EAST-ADL 2 profile features the following

innovations:

� the introduction of domain-related vocabulary and

concepts with a focus on function descriptions

Metamodeling

42 IEEE Design & Test of Computers

Authorized licensed use limited to: UNIVERSITA TRENTO. Downloaded on July 29, 2009 at 05:05 from IEEE Xplore. Restrictions apply.

(in place of software components) by means of

communication events and mechanisms dedicated

to the domain; and

� the support of a layered development process that

distinguishes between the levels dedicated to the

vehicle, analysis, design, implementation, and op-

eration level corresponding to the Autosar execu-

tion infrastructure.

The EAST-ADL 2 language is currently being

extended to support the description of nonfunctional

properties (including safety, timing aspects, and prod-

uct line and variant definition) in new projects such as

Atesst 2 and Edona.16,19 Following the same strategy as

in Imofis, the new language is defined by importing

capabilities from existing metamodels and profiles.

For instance, designers use UML 2 for all the basic

concepts, SysML for requirements and functional

blocks with communication ports, and Marte for the

timing aspect, platform allocation, and refined com-

munication ports. Finally, a UML profile for Autosar,

provided by the Autosar consortium, describes the tar-

get architecture of the applications.

Similar work based on profile composition has

been done for the sole purpose of requirement mod-

eling and traceability in the Memvatex project.15,20

Memvatex combines three profiles: Marte for tempo-

ral analysis, SysML for requirements, and EAST-ADL

for the architecture description.

Defining formal execution descriptions. There is

a common need for formal execution descriptions to

be defined within profiles. Projects such as Imofis and

Atesst emphasize the importance of combining multi-

ple profiles. For example, designers might want to

benefit from the SysML mechanisms for requirement

specification, as well as Marte annotations and con-

cepts for timing analysis or execution resource man-

agement. However, the fact that a DSL defined as a

profile usually targets a particular application domain

does not imply that multiple profiles will necessarily

address orthogonal concerns. Concepts and rules

defined in these profiles may therefore overlap, po-

tentially raising consistency issues when they are

combined in a given model.

For example, SysML and Marte define their own

sets of concepts and modeling rules for component-

oriented design, with their own informal descriptions

of execution and interaction semantics associated

with SysML blocks or Marte components. More

generally, the problem is not only the composition

of profiles from a structural standpoint; as we have

described, tools like Papyrus already provide support

for that. The real problem concerns the ability to inte-

grate execution or behavioral semantic descriptions

into profile definitions. The formalism for describing

the encapsulated semantics should be standard, to

ease the process of combining the execution seman-

tics of multiple profiles. One step in this direction is

evident from the definition of the new Object Man-

agement Group standard on executable semantics

of a foundational UML subset (http://www.omg.org/

spec/FUML), which defines operational semantics

for a UML subset called fUML. Also, preliminary

results on the possibility of encapsulating operational

semantics descriptions into stereotype definitions

using UML are promising.21

In many of the European projects, the lightweight

approach is one answer to the problems that arise

from the continuing integration in one system of var-

ious functionalities of increasing complexity. In this

context, integration and combination of various

UML profiles will play a crucial role in the near future,

and different large industrial European research proj-

ects already require such mechanisms and advances

on this topic.12,15-17,19,22-25 One of the main challenges

with combining several UML profiles is to ensure the

consistency of the resulting modeling language.

Lagarde et al. have stressed that this research topic

requires new software engineering methods to design

good profiles, as well as specific tools for checking

the consistency of profiles or for supporting user-

defined compatibility and composition rules.26

Metamodeling in Speeds
The Speculative and Exploratory Design in System

Engineering European project is a concerted effort to

define the new generation of end-to-end methodolo-

gies, processes, and supporting tools for safety-critical

embedded-system design.27 One of the technical pil-

lars of the Speeds approach is the definition of a

semantic-based modeling method that supports the

construction of complex embedded systems by com-

posing heterogeneous subsystems, and which ena-

bles the sound integration of existing and new

tools. Underlying this approach is the definition of a

heterogeneous rich-component (HRC) model that

can represent functional as well as architectural

abstractions, such as timing, safety, and other non-

functional performance metrics. These different

43May/June 2009

Authorized licensed use limited to: UNIVERSITA TRENTO. Downloaded on July 29, 2009 at 05:05 from IEEE Xplore. Restrictions apply.

viewpoints can be developed separately in the

model, and then integrated and evaluated together

to derive the most efficient component-based imple-

mentation of the system.28,29 This custom approach

to model design is in contrast to the lightweight vari-

ant we presented earlier. This has primarily to do with

the requirement of a tight and customized integration

between tools, which is supported by the metamodel

itself.

Methodological requirements for Speeds

The Speeds methodological requirements are

the drivers behind the choices made for the HRC

model design, which is targeted to the domain of

embedded and reactive systems. The first characteris-

tic to be considered, as we have discussed, is that

concurrent development of systems occurs by differ-

ent teams, which focus on functionality as well as

different aspects or viewpoints, such as safety

or reliability, timing (for example, in time-triggered

development),30 memory management to ensure seg-

regation of subsystems, and energy. Each aspect

requires specific frameworks and tools for analysis

and design. Yet, they are not totally independent

but rather interact, in ways that are sometimes not ob-

vious. In HRC, these different aspects are expressed in

the same model, which is tailored to the different

cases by ignoring the nonessential features. This

approach is justified by the interchange nature of

HRC, which is used as an integration model in the

Speeds infrastructure. In all cases, in fact, the underly-

ing composition semantics is the same, which makes

integrating the aspects easier.

Even under the same interaction model, particular

attention must be placed on developing the right

operators for composition. This is especially true

with viewpoints and the requirements they express.

Early requirement capture today still relies, for the

most part, on organized textual descriptions, with lit-

tle formal support, if any. Advancing beyond this

will require formalizing the notation used for individ-

ual requirements by relying, for example, on semifor-

mal graphical-scenario languages.31-33 Similarly, an

HRC model can serve as the underlying formal de-

scription for system requirements. No matter what

model is used, the key point is that several require-

ments can be attached to the same component.

This changes the nature of the interaction, which is

not between parallel components exchanging data,

but rather between interrelated specifications that

jointly contribute to component specification. Conse-

quently, designers need different operators when

composing viewpoints and components.

Similar problems arise during system integration.

One important prerequisite of the Speeds methodol-

ogy is that designers should be able to develop subsys-

tems in isolation, and then integrate them correctly.

This is achieved in an HRC model by including, as

part of the component specification, the needed infor-

mation regarding the possible contexts of use. Thus,

designers can establish the responsibilities of suppliers

and integrators by explicitly expressing the assump-

tions under which a component is to be used. This

separation between the assumptions and the specifi-

cation, or promise, of the component is implemented

in the form of design contracts, and it is one of the dis-

tinguishing features of the HRC approach.

Speeds principles

Several efforts have been undertaken to intercon-

nect design and analysis tools via a common semantic-

level format. Of particular interest in our context are

the Wooddes (Workshop for Object-Oriented Design

and Development of Embedded Systems) and

Omega projects.34,35 In these projects, the chosen

user-level design notation was a UML profile for

real-time component systems with a well-defined op-

erational semantics. This was then expressed in terms

of a simpler formalism based on communicating

extended state machines, enriched with timing con-

straints, which could be easily imported into different

verification and analysis tools. In Omega, an explicit

effort was made to preserve as many of the original

structuring concepts that would be useful for obtain-

ing efficient analysis. Nevertheless, the translation

process required additional components and/or the

enrichment of both the interfaces and the behavior

of existing components. This led to the well-known

problem whereby users could not interpret the anal-

ysis results, despite significant efforts dedicated to

provide this feedback in terms of the original user

concepts, whenever possible.

Also in the Speeds framework, the integration of a

set of modeling and analysis tools is based on a com-

mon intermediate format, HRC, defined in the form of

a metamodel. However, several original ideas have

been integrated in the Speeds HRC metamodel. For

instance, Speeds lets several modeling tools contribute

to the global model of a given system and use the

component-code generated by some modeling tool

Metamodeling

44 IEEE Design & Test of Computers

Authorized licensed use limited to: UNIVERSITA TRENTO. Downloaded on July 29, 2009 at 05:05 from IEEE Xplore. Restrictions apply.

as their own behavior through the hosted simulation,

described later. In addition, HRC has two distinguish-

ing features with respect to previous semantic-level

tool exchange formalisms: it provides additional struc-

turing constructs with respect to the user-level model-

ing languages of the user tools, and it is defined in a

layered manner, corresponding to different usages.

Figure 3 shows the structure of the Speeds frame-

work. The Speeds engineering bus and its repository

give direct access to multidimensional design data

in commercial-off-the-shelf tools, and analysis tools

can access the entire virtual model of the system. A

process advisor, using the results of the analysis

tools, measures design maturity and process conver-

gence, and highlights unresolved assumptions and

open design decisions.

The HRC model supports an expressive representa-

tion that rests on a semantically well-founded formal-

ism. The formalism describes the abstract behaviors of

components or the environment of differently natured

systems��software systems as well as physical subsys-

tems, or models of human behaviors, and so on. Such

behaviors are described in a form usable by a wide

range of analysis tools, as compositions of extended

automata describing constraints on discrete and

continuous behavior. For these reasons, on top of

traditional static component interfaces that define

only the interaction points of components, richer

information is exposed to designers as a set of

contracts. Contracts, associated with a component, ab-

stract constraints on the component and its environ-

ment behaviors in the form of assumption-promise

pairs. In an environment fulfilling the constraint

defined by the assumption, the component offers a

behavior that satisfies the constraint expressed by

the promise. The information in contracts can be

used for analysis before a model of the components

exists, and then used throughout the design cycle

for verifying or testing the correctness of abstract mod-

els or actual implementations. Figure 4 shows the

metamodel definition of rich components in the

HRC model, highlighting the structure of a contract

(made of an assumption-promise pair), which is in

turn expressed using a state machine formalism

abstracted by HRC blocks.

The HRC metamodel consists of three levels of

increasing abstraction, as shown in Figure 5. Level

L1 defines the concepts handled by most analysis

tools and has been designed for efficient analysis. Dif-

ferent composition modes (asynchronous and syn-

chronous) are expressed here through a rich set of

connectors for which there are well-founded theoret-

ical results that can be exploited to make composi-

tional verification efficient.36 Level L1 is built atop

level L0, which provides the basic semantic notions

of the metamodel. All L1 concepts can be mapped

M
od

el
in

g
 to

ol
 X

M
od

el
in

g
 to

ol
 Y

S
im

ul
in

k

R
ha

p
so

d
y

S
ca

d
e

A
na

ly
si

s
X

A
na

ly
si

s
Y

Process
advisor

Model repository

Speeds engineering bus

Adapter

S
ca

d
e

S
im

ul
in

k

S
ca

d
e

d
is

p
la

y

Adapter

R
ha

p
so

d
y

To
ol

 Z

R
T-

B
ui

ld
er

Figure 3. Tool integration via the Speculative and Exploratory Design in System Engineering (Speeds)

bus and metamodel.

45May/June 2009

Authorized licensed use limited to: UNIVERSITA TRENTO. Downloaded on July 29, 2009 at 05:05 from IEEE Xplore. Restrictions apply.

to this semantic layer, although the translation might

in certain cases introduce a degree of syntactic or be-

havior explosion. For this reason, several analysis

tools work at layer L1. The synchronous L0 layer has

been introduced to provide the underlying interaction

mechanism based on synchronous models and is the

exchange model for those analy-

sis tools that are tailored toward

the verification of synchronous

descriptions.37 Above L1, level

L2 is used as a bridge to user-

level concepts. Thus, notions spe-

cific to certain domains need not

be directly expressed in terms of

L0 or L1 descriptions. Instead,

they are mapped to some inter-

mediate concept��often a gener-

alization of the original��which

avoids losing the original struc-

ture. These L2 concepts are

then defined as mappings to the

lower layers. Therefore, each L1-

or L0-enabled tool can handle

any user-level validation problem with some effi-

ciency, but might also choose to handle some of

them more efficiently by implementing specific meth-

ods tailored toward the L2 layer.

Comparison with other standards

A relevant question is how the HRC model relates

to other standards, and why we defined a stand-alone

metamodel rather than a profile, such as SysML and

Marte. Initially, we intended to adapt SysML to our

needs, because it embodies a general modeling

approach that is familiar to most users and is already

in use by some of them. Its main shortcomings, how-

ever, are the absence of certain structuring concepts,

such as rich interfaces, contracts, and connectors,

and our stringent requirements in terms of underlying

semantics. SysML, in fact, has no precisely defined se-

mantics, but it specifies that the interaction between

components should be asynchronous. As an interme-

diate representation, and to support tools such as

Scade and Simulink, our model had to provide

some means of expressing a synchronous execution

model. Marte, on the other hand, allows specifying

requirements in a generalized synchronous fashion,

but it cannot easily be used to represent Scade mod-

els structurally other than by using some keyword to

tag a component as ‘‘synchronous.’’ In addition, the

approach to requirement expression is radically dif-

ferent: whereas the HRC model provides a simple

and expressive formalism for constraints, Marte intro-

duces several predefined attributes for expressing

standard nonfunctional constraints. These are useful,

but each tool has to separately provide their meaning.

Metamodeling

InteractionPoint

1
assumption

1
promise

Assertion Formal

0..1

1..*

0..*

0..*

0..*

0..*1..*

1..*

Type 1

1

Port

RichComponent

Viewpoint

Contact HRCBlock Link

Informal: String

Assertion
BlockOccurrence Pin

Figure 4. Speeds metamodel: components have contracts.

Transforms to

L−2

L−1

L−0(a)

(b)

(c)

Speeds standard library

Speeds analysis metamodel

Synchronous core metamodel

Enriches

Figure 5. The Speeds-layered metamodel:

low-level semantics and concepts used for

synchronous modeling (a), abstract semantics

and high-level concepts used by analysis tools

(b), and generalizations of concepts from user

modeling (c).

46 IEEE Design & Test of Computers

Authorized licensed use limited to: UNIVERSITA TRENTO. Downloaded on July 29, 2009 at 05:05 from IEEE Xplore. Restrictions apply.

The layered definition of HRC, on the other hand,

allows introducing these concepts by giving them a

meaning in terms of the lower levels. Thus, tools

that can interface to an HRC model would automati-

cally inherit the definition of the high-level concepts.

Our choice of defining a stand-alone metamodel

had several motivations. SysML was already a profile

for UML and contains a tremendous number of addi-

tional features that could not just be eliminated, nor

in a simple way. We also deemed that it was not con-

venient to have the important concepts��in particu-

lar, rich components, contracts, and the rich set of

L1 connectors��as stereotypes. Another motivation

was to keep a certain independence from the evolu-

tion of a standard because many transformations

from and to a variety of other formats depend on

the HRC metamodel. Also, because the HRC model

is only an intermediate representation used in tools,

and the user sees models only in terms of some mod-

eling tool or in terms of some analysis or code gener-

ation tools, there was no strong need for HRC

graphical editors, all of which diminished the pres-

sure for aligning with UML.

Speeds mathematical model

An HRC model is the result of the interplay of sev-

eral different elements. Rich components are charac-

terized by contracts, which, in turn, are expressed as

pairs of assumptions and promises. Here we provide

an intuitive understanding of their relationships, illus-

trating the concepts using a notation based on set

theory. More details are available elsewhere.38,39

A component M (typically an implementation of a

rich component) consists of a set of ports and varia-

bles (in the following, for simplicity, we will refer

only to ports) and of a set of behaviors that assign

a history of values to ports. Behaviors can be repre-

sented in various ways, such as (hybrid) automata or

as the set of corresponding sequences of values

or events. Here, we consider a component as the

set of its possible runs. Components can be more or

less specific. We say that a component M refines a

component E whenever both M and E are defined

over the same set of ports and all the behaviors of

M are also behaviors of E, that is, when M � E.

We represent properties of components, or asser-

tions, as the set components that satisfy the assertions.

Exploiting refinement, an assertion E is equal to its

largest satisfying component. A contract C for a rich

component is a pair of assertions (A, G), where A

corresponds to the assumption, and G to the promise.

Assertion A and its refinements are the acceptable

contexts (or environments) under which the rich

component might be used; conversely, G represents

the possible behaviors of the rich component under

those contexts. A component satisfies a contract

whenever it satisfies its promise, subject to the as-

sumption. This relation of refinement under context

can be formally expressed by determining whether

the composition of a component with the assump-

tions refines the composition between the promises

and the assumptions. Formally, M \ A � G \ A. We

write M � C when M satisfies a contract C.

Substitutability, or dominance, is the key concept of

our contract theory. We say that contract C dominates

contract C0 whenever the components that satisfy C

also satisfy C0 under the same or an extended set of

contexts. In other words, C can be substituted for C0

so that dominance corresponds to a notion of refine-

ment for contracts. Intuitively, dominance is ensured

by relaxing assumptions and contextually reinforcing

the promises. Formally, we say that C¼ (A, G) dominates

C0 ¼ (A0, G0), written C�C0, if and only if A � A0 and

G � G0.

The semantics of composition of different view-

points for the same component corresponds to an op-

eration of conjunction of contracts, obtained as the

greatest lower bound of the order induced by contract

dominance. For contracts C1 ¼ (A1, G1) and C2 ¼
(A2, G2), conjunction is obtained by extending the

assumptions to all acceptable contexts, and restricting

the promises to the guaranteed behaviors. Formally,

C1 uC2¼ ðA1 [A2; G1 \ G2Þ

Parallel composition of contracts is also needed to

formalize the combination of rich components. First,

the parallel composition of two contracts must guar-

antee the promises of both contracts. Second, the en-

vironment should satisfy both assumptions, except

that part of the assumptions of a component is dis-

charged by the promise of the other component.

This concurrent strengthening and weakening of

assumptions can be represented as

C1 kC2

¼ ðA; GÞ where
A ¼ ðA1 \ A2Þ [:ðG1 \ G2Þ
G ¼ ðG1 \ G2Þ

�

The availability of different composition operators

makes it possible to develop flexible system

47May/June 2009

Authorized licensed use limited to: UNIVERSITA TRENTO. Downloaded on July 29, 2009 at 05:05 from IEEE Xplore. Restrictions apply.

integration flows that focus alternatively on the

composition of components and of viewpoints, or

combinations of the two.

Hosted simulation

A common way to validate system models is by

using simulation. This approach is, however, problem-

atic when the system consists of components designed

in different tools. The Speeds project takes a hosted

simulation approach to resolve this challenge: the

HRC components are exported to a standard format,

and then imported to the composed system, which

can be simulated by a single simulation tool.

This approach has several advantages compared to

the standard cosimulation approach. First, only one

simulation tool is needed, where all animated views

are available. Second, there is no overhead associated

with the use of a message bus and with the coordina-

tion between different simulators. Finally, a designer

can simulate the interaction using an HRC component

exported from a design tool that has no simulation

capabilities. The main drawback of this approach is

that a designer can monitor the interactions only be-

tween the components, not within each component.

Hosted simulation works by exporting an execut-

able model of a component from a modeling tool,

wrapped inside an adapter that implements the

hosted simulation API and protocol. The API includes

functions dedicated to setting and reading values on

ports, executing a computation step, and advancing

the computation time. The protocol determines the

sequence of operations that must be performed for

a correct model evaluation and coordinates the inter-

action between the different components.

The hosted simulation protocol proceeds through

iterations that are substantially composed of two

nested cycles that compute a fixed point. The inner

cycle is a computation phase in which components

are executed in an arbitrary order to determine the

value on ports that are initially undefined. During this

phase, components do not update their internal state

and do not exchange data. Instead, they iteratively

recompute their output based on the additional avail-

able input. When the system is stable, the components

update their state and exchange data in the commit

phase. In addition, they provide a time stamp corre-

sponding to the availability of their next event, which

is used to compute the time advance of the simulation.

The outer cycle simply iterates these two phases to

make the simulation progress until termination.

Hosted simulation works transparently through the

Speeds infrastructure by taking advantage of the com-

mon HRC metamodel. The HRC being exchanged be-

tween the tools has two parts. The first is a description

of the component based on an HRC model, and con-

tains the interfaces and abstractions describing the

component in terms of the metamodel. The second

is an implementation generated by the tool that

exported the component, either as a set of source

files or as a compiled DLL (dynamic link library)

accompanied with header files.

Functional-safety concepts

Functional safety can be expressed in an HRC

model by specifying safety goals by contracts. We

assume we have identified the safety goal for the sys-

tem, and we need to derive functional-safety require-

ments for the subsystems. We allocate functional-

safety requirements to subsystems by associating the

corresponding contracts with the system’s subcompo-

nents. By using contracts, we ensure that for each

subcomponent the safety requirements are structured

into a promise for the safety function provided by the

component and an assumption describing the con-

text in which the function is (safely) provided. This

context is determined by either the system environ-

ment or other components. Thus, either the context

should already be contained in the safety goal or

it should be traceable to (promises of) other compo-

nents. In fact, in many situations, only the environ-

ment and the other components together ensure

that the assumptions underlying a particular safety

function of a component hold. Thus, a nontrivial de-

pendency structure usually exists between the indi-

vidual contracts of the components on one side,

and between these and the system contracts on the

other side.

The requirement decomposition can be validated

by a dominance check: if the check succeeds, the re-

quirement decomposition complies with the original

safety goal. If it fails, counterexamples are produced

that satisfy all allocated requirements, and do not

(fully) satisfy the safety goal defined for the system.

These counterexamples pinpoint flaws in the safety

concept and provide effective guidance on how to

redefine or adapt the safety concept.

To illustrate this, we consider the ISO CD 26262

standard, which allows exploiting redundancy in a

process called ASIL (Automotive Safety Integrity

Level) decomposition. The first step to validate a

Metamodeling

48 IEEE Design & Test of Computers

Authorized licensed use limited to: UNIVERSITA TRENTO. Downloaded on July 29, 2009 at 05:05 from IEEE Xplore. Restrictions apply.

simple redundancy concept is to

identify the function to be imple-

mented redundantly. The typical

corresponding contract is

CSys ¼ ðhcontexti; y ¼ f ðxÞÞ

where hcontexti is some assertion

about the behavior of the envir-

onment that Sys operates in, and

f is the function to be imple-

mented. The underlying black-

box view is given in Figure 6a as

a SysML block diagram. A typical

redundant implementation re-

fines this black-box view as

shown in Figure 6b. There are

three redundant components h1, h2, and h3 (each

implementing the function f), and a majority voter

Vote, which checks for agreement of two output

values. For these, we have contracts

Ch1
¼ ðhcontexti; y1 ¼ f ðxÞÞ

Ch2
¼ ðhcontexti; y2 ¼ f ðxÞÞ

Ch3
¼ ðhcontexti; y3 ¼ f ðxÞÞ

CVote ¼ ðtrue; ðy ¼ y1 ^ y1 ¼ y2Þ _ ðy ¼ y2 ^ y2 ¼ y3Þ
_ ðy ¼ y3 ^ y3 ¼ y1ÞÞ

Three dominance checks yield that

Chi
k Chj

� CSys i; j 2 f1;2;3g; i 6¼ j

This demonstrates that contracts of only two

components are required to ensure that the system

contract holds.

MODEL-BASED DESIGN METHODOLOGIES are increas-

ingly finding acceptance in the development of elec-

tronics systems, thanks to their flexibility and the

availability of tools for their analysis and implementa-

tion. Metamodeling techniques have consequently

emerged to organize the landscape of models, and

to provide theories and methods for the development

of coordinated representations more suitable for

the heterogeneous environment in which modern

embedded systems operate.

Several new initiatives and funded projects show

that much work is still needed, from both a tool sup-

port point of view and a fundamental-understanding

point of view. Of particular interest are the studies

that extend the heterogeneous model integration

from the structural to the semantics standpoint

while ensuring consistency.21,25 The application of

compositional techniques across domains, together

with joint performance evaluation and design, will

be the building blocks for new methodologies able

to address and solve the design problems in the

emerging area of cyber-physical systems. �

Acknowledgments
We sincerely thank all our colleagues who contrib-

ute to the projects presented here and acknowledge

the contributions of the European Union for funding

many of the initiatives presented in this article. The

work has been supported in particular by the follow-

ing project contracts: Artist NoE 004527, Atesst

2004�026976, Combest 215543, Imofis ANR-PREDIT-

2008, Lambda System@tic 2008, Memvatex ANR-

RNTL-2005, and Speeds 033471.

�References
1. F. Terrier and S. Gérard, ‘‘Model-Driven Engineering and

Prototyping of Real Time Embedded Applications,’’ Proc.

IFIP Working Conf. Distributed and Parallel Embedded

Systems (DIPES 06), Springer, 2006.

2. J.-B. Raclet et al., ‘‘Why Are Modalities Good for Inter-

face Theories?’’ Proc. 9th Int’l Conf. Application of Con-

currency to System Design (ACSD 09), IEEE CS Press,

2009 (to appear).

3. B. Selic, ‘‘From Model-Driven Development to Model-

Driven Engineering,’’ keynote talk at Euromicro Conf.

Real-Time Systems (ECRTS 07), 2007; http://feanor.

sssup.it/ecrts07/keynotes/k1-selic.pdf.

« block,rootBlock »
Sys

« block,rootBlock »
Sys

x: 1 h1

1 h2 1 vote

1 h3

(a) (b)

x:x:

x:

y2:

y1:

y3:

x:

y1:

y:

y:

y: y:

y:

Figure 6. Black-box view (a) and redundant implementation (b).

49May/June 2009

Authorized licensed use limited to: UNIVERSITA TRENTO. Downloaded on July 29, 2009 at 05:05 from IEEE Xplore. Restrictions apply.

4. D. Schmidt, ‘‘Model-Driven Engineering,’’ Computer,

vol. 39, no. 2, 2006, pp. 25-31.

5. A.L. Sangiovanni-Vincentelli, ‘‘Defining Platform-Based

Design,’’ EE Design of EE Times, Feb. 2002; http://www.

gigascale.org/pubs/141.html.

6. H. Espinoza, ‘‘An Integrated Model-Driven Framework for

Specifying and Analyzing Non-functional Properties of

Real-Time Systems, doctoral dissertation, CEA LIST, 2007.

7. H. Espinoza et al., Challenges in Combining SysML and

MARTE for Model-Based Design of Embedded Systems,

tech. report, Center of Nuclear Energy, CEA-LIST, 2008.

8. OMG, Semantics of a Foundational Subset for Execut-

able UML Models (Beta 1); http://www.omg.org/spec/

FUML/1.0/Beta1.

9. Papyrus, Open Source Tool for Graphical UML2 Model-

ing; http://www.papyrusuml.org.

10. Rational Software Architecture (RSA); https://www.ibm.

com/developerworks/rational/library/05/510_svc/.

11. LISE, Laboratoire d’ingénierie dirigée par les modéles

pour les systémes embarqués (LISE) [Laboratory of

Model-Driven Engineering for Embedded Systems], proj-

ect leader: F. Terrier. LISE is part of CEA LIST [Atomic

Energy Commission, Software-Intensive Systems R&D]

(in French).

12. IMOFIS Project, Ingénierie des Modéle Fonctions Sécuri-

taires [Model-Driven Engineering for Safety Functions];

http://www.imofis.org (in French).

13. B. Selic, ‘‘On the Semantic Foundations of Standard

UML 2.0,’’ Formal Methods for the Design of Real-Time

Systems, LNCS 3185, M. Bernardo and F. Corradini,

eds., Springer-Verlag, 2004, pp. 181-199.

14. C. André, ‘‘Time Modeling in MARTE,’’ Proc. Forum

Specification and Design Languages (FDL 07),

CD-ROM, European Electronic Chips & Systems

Design Initiative, 2007.

15. MeMVATEX French Project, Méthodologie pour la Modé-

lisation, la Validation et la Tracabilité des Exigences

[Methodology for Modeling, Validation, and Traceability

of Requirements]; http://www.memvatex.org (in French).

16. ATESST Project, ‘‘Advancing Traffic Efficiency and

Safety through Software Technology,’’ ATESST Specific

Targeted Research or Innovation Project (STREP), 6th

Framework Programme; http://www.atesst.org.

17. Lambda Project, Lambda Libraries for Applying Model

Based Development Approaches; http://www.

usine-logicielle.org/lambda/index_FR.html.

18. Autosar Development Partnership, ‘‘Automotive Open Sys-

tem Architecture,’’ Autosar, Munich; http://www.autosar.org.

19. EDONA Project, Environnements de Développement

Ouverts aux Normes de l’Automobile [Open Development

Platform for Automotive Standards]; http://www.edona.org

(in French).

20. A. Albinet et al., ‘‘The MeMVaTEx Methodology: From

Requirements to Models in Automotive Application Design,’’

Proc. 4th European Congress Embedded Real Time Soft-

ware (ERTS 08), Societe des Ingenieurs de L’automobile.

21. A. Cuccuru et al., ‘‘Enhancing UML Extensions with

Operational Semantics: Behaviored Profiles with Tem-

plates,’’ Proc. 10th Int’l Conf. Model Driven Engineering

Languages and Systems (MODELS 07), LNCS 4735,

Springer, 2007, pp. 271-285.

22. Interested FP7 IP: Interoperable Embedded Systems

Tool-Chain for Enhanced Rapid Design, Prototyping and

Code Generation; http://www.interested-ip.eu.

23. Genesys Project, Generic Embedded System Platform, a

7th Framework program; http://www.genesys-platform.eu.

24. CESAR Project, ‘‘Cost-efficient methods and processes

for safety relevant embedded systems,’’ funded project

from Artemis Joint Undertaking (JU); http://www.

cesarproject.eu.

25. COMBEST, Component-Based Embedded Systems

Design Techniques project, Information Society Technol-

ogies, STREP 215543, a 7th Framework program; http://

www.combest.eu.

26. F. Lagarde et al., ‘‘Leveraging Patterns on Domain

Models to Improve UML Profile Definition,’’ Proc. Funda-

mental Approaches to Software Engineering (FASE 08),

LNCS 4961, Springer Verlag, 2008, pp. 116-130.

27. Speculative and Exploratory Design in Systems Engi-

neering, European Union 6th Framework Project in

Embedded Systems Development, IP contract 033471;

http://www.speeds.eu.com.

28. A. Benveniste, B. Caillaud, and R. Passerone, ‘‘Multi-

viewpoint State Machines for Rich Component Models,’’

Model-Based Design of Heterogeneous Systems, CRC

Press, 2009 (to appear).

29. A. Benveniste et al., ‘‘Multiple Viewpoint Contract-Based

Specification and Design,’’ Proc. 6th Int’l Symp. Formal

Methods for Components and Objects (FMCO 07),

LNCS 5382, Springer Verlag, 2008, pp. 200-225.

30. H. Kopetz, ‘‘The Time-Triggered Model of Computation,’’

Proc. 19th IEEE Real-Time Systems Symp., IEEE CS

Press, 1998, pp. 168-177.

31. J.F.M. Burg, Linguistic Instruments in Requirements

Engineering, IOS Press, 1997.

32. W. Damm and D. Harel, ‘‘LSCS: Breathing Life into

Message Sequence Charts,’’ Formal Methods in System

Design, vol. 19, no. 1, 2001, pp. 45-80.

33. ITU-TS, ITU-TS Recommendation Z.120: Message

Sequence Chart (MSC), ITU-TS, Geneva, Sept. 1999.

Metamodeling

50 IEEE Design & Test of Computers

Authorized licensed use limited to: UNIVERSITA TRENTO. Downloaded on July 29, 2009 at 05:05 from IEEE Xplore. Restrictions apply.

34. WOODDES Consortium, WOODDES project; http://

wooddes.intranet.gr.

35. OMEGA Consortium, Information Society Technologies

(IST) Omega project for Correct Development of Real-

Time Embedded Systems; http://www-omega.imag.fr.

36. S. Bliudze and J. Sifakis, ‘‘The Algebra of Connectors:

Structuring Interaction in BIP,’’ Proc. 7th ACM & IEEE

Int’l Conf. Embedded Software (EMSOFT 07), ACM

Press, 2007, pp. 11-20.

37. A. Benveniste et al., ‘‘The Synchronous Languages

Twelve Years Later,’’ Proc. IEEE, vol. 91, no. 1, 2003,

pp. 64-83.

38. A. Benveniste, B. Caillaud, and R. Passerone,

‘‘A Generic Model of Contracts for Embedded Systems,’’

tech. report 6214, INRIA, June 2007.

39. L. Benvenuti et al., ‘‘A Contract-Based Formalism for the

Specification of Heterogeneous Systems,’’ Proc. Forum

Specification and Design Languages (FDL 08), CD-

ROM, European Electronic Chips & Systems Design

Initiative, 2008, pp. 142-147.

Roberto Passerone is an assistant professor at the

University of Trento. His research interests include het-

erogeneous modeling, contract-based reasoning, and

system-level design methodologies. He has a PhD in

electrical engineering and computer sciences from

the University of California, Berkeley. He is a member

of the IEEE.

Imene Ben Hafaiedh is a PhD fellow at Verimag lab-

oratory and Université Joseph Fourier. Her research inter-

ests include embedded systems design, verification,and

validation within a component-based framework. She

received a master’s degree in computer science (sys-

tems and software) from Université Joseph Fourier.

Albert Benveniste is director of research at INRIA

Rennes. His research interests include embedded sys-

tems development and network and Web services

management. He has a PhD in mathematics from

Paris 6. He is a Fellow of the IEEE.

Daniela Cancila is a research engineer at CEA

LIST. Her research interests include processes and

methodologies for safety engineering of embedded

systems. She has a PhD in computer science from

the University of Udine.

Arnaud Cuccuru is a research engineer at CEA

LIST. His research interests include model-driven

engineering techniques and their application for real-

time and embedded systems development. He has a

PhD in computer science from Université des Sciences

et Technologies de Lille.

Werner Damm holds the Chair for Safety Critical

Embedded Systems at Oldenburg University. His re-

search interests include methods and processes for

the development of embedded applications in trans-

portation. He has a PhD in computer science from

the RWTH Aachen.

Alberto Ferrari is deputy director of Parades, in

Rome. His research interests focus on the design and

architectures of safety-critical and real-time distributed

systems. He has a PhD in electrical engineering and

computer science from the University of Bologna, Italy.

Susanne Graf is research director at CNRS, and she

works in the Verimag laboratory. Her research interests

include design and verification technologies for

embedded and distributed systems. She has a PhD

from the Institut Polytechnique de Grenoble.

Sébastien Gérard is leader of the Accord/UML

group within CEA LISE at LIST. His research interests in-

clude correct-by-construction and model-based design

of real-time and embedded systems. He has a PhD in

computer science from ENSMA [French Superior School

of Mechanics and Aeronautics at Poitiers]. He is cochair

of the UML 2 and Marte standardization task forces.

Bernhard Josko is director of the R&D Division of

Transportation at OFFIS in Oldenburg. His research inter-

ests include development methods for embedded-

system design, especially formal specification and anal-

ysis techniques. He has a PhD in sciences from RWTH

Aachen.

Leonardo Mangeruca is a senior research scientist

at Parades in Rome. His research interests include de-

sign methodologies, safety-critical hardware-software

architectures, and formal methods for embedded sys-

tems design. He has a PhD in electrical engineering

from the University of Genova, Italy.

Thomas Peikenkamp is manager of the Safety Anal-

ysis & Verification Group at OFFIS in Oldenburg. His re-

search interests include model-based safety analysis

methods and formal specification techniques. He has a

diploma in computer science from the RWTH Aachen.

51May/June 2009

Authorized licensed use limited to: UNIVERSITA TRENTO. Downloaded on July 29, 2009 at 05:05 from IEEE Xplore. Restrictions apply.

Alberto Sangiovanni-Vincentelli holds the Butt-

ner Chair of Electrical Engineering and Computer

Science at the University of California, Berkeley. His

research interests include system-level design, em-

bedded and hybrid systems, and EDA. He has a

Dr Eng in electrical engineering and computer sciences

from Politecnico di Milano. He is a Fellow of the IEEE,

and is a member of the National Academy of Engineer-

ing and the ACM.

Francois Terrier is leader of the CEA LISE, a part of

LIST. His research interests include model-based

development and verification of embedded systems.

He has a PhD in electronics�artificial intelligence

from Université Paris Sud.

�Direct questions and comments about this article to

Roberto Passerone, Dept. Engineering and Computer

Science, University of Trento, via Sommarive 14, 38100

Povo di Trento, Italy; roberto.passserone@unitn.it.

For further information on this or any other computing

topic, please visit our Digital Library at http://www.

computer.org/csdl.

Metamodeling

52 IEEE Design & Test of Computers

Authorized licensed use limited to: UNIVERSITA TRENTO. Downloaded on July 29, 2009 at 05:05 from IEEE Xplore. Restrictions apply.

Advertising Sales
Representatives

Recruitment:

Mid Atlantic
Lisa Rinaldo
Phone: +1 732 772 0160
Fax: +1 732 772 0164
Email: lr.ieeemedia@
ieee.org

New England
John Restchack
Phone: +1 212 419 7578
Fax: +1 212 419 7589
Email: j.restchack@
ieee.org

Southeast
Thomas M. Flynn
Phone: +1 770 645 2944
Fax: +1 770 993 4423
Email: flynntom@
mindspring.com

Midwest/Southwest
Darcy Giovingo
Phone: +1 847 498 4520
Fax: +1 847 498 5911
Email: dg.ieeemedia@
ieee.org

Northwest/Southern CA
Tim Matteson
Phone: +1 310 836 4064
Fax: +1 310 836 4067
Email: tm.ieeemedia@
ieee.org

Japan
Tim Matteson
Phone: +1 310 836 4064
Fax: +1 310 836 4067
Email: tm.ieeemedia@
ieee.org

Europe
Hilary Turnbull
Phone: +44 1875 825700
Fax: +44 1875 825701
Email: impress@
impressmedia.com

Product:

US East
Joseph M. Donnelly
Phone: +1 732 526 7119
Email: jmd.ieeemedia
@ieee.org

US Central
Darcy Giovingo
Phone: +1 847 498 4520
Fax: +1 847 498 5911
Email: dg.ieeemedia@ieee.org

US West
Lynne Stickrod
Phone: +1 415 931 9782
Fax: +1 415 931 9782
Email: ls.ieeemedia@ieee.org

Europe
Sven Anacker
Phone: +49 202 27169 11
Fax: +49 202 27169 20
Email: sanacker@
intermediapartners.de

Advertising Personnel
Marion Delaney
IEEE Media, Advertising Dir.
Phone: +1 415 863 4717
Email: md.ieeemedia@ieee.org

Marian Anderson
Sr. Advertising Coordinator
Phone: +1 714 821 8380
Fax: +1 714 821 4010
Email: manderson@computer.org

Sandy Brown
Sr. Business Development Mgr.
Phone: +1 714 821 8380
Fax: +1 714 821 4010
Email: sb.ieeemedia@ieee.org

ADVERTISER INFORMATION
MAY/JUNE 2009 • IEEE DESIGN & TEST

53May/June 2009

Authorized licensed use limited to: UNIVERSITA TRENTO. Downloaded on July 29, 2009 at 05:05 from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /None
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /None
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /None
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A0648062706410642062900200644064406370628062706390629002006300627062A002006270644062C0648062F0629002006270644063906270644064A06290020064506460020062E06440627064400200627064406370627062806390627062A00200627064406450643062A0628064A062900200623064800200623062C06470632062900200625062C06310627062100200627064406280631064806410627062A061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0020064506390020005000440046002F0041060C0020062706440631062C062706210020064506310627062C063906290020062F0644064A0644002006450633062A062E062F06450020004100630072006F006200610074061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d044204380020043704300020043a0430044704350441044204320435043d0020043f04350447043004420020043d04300020043d043004410442043e043b043d04380020043f04400438043d04420435044004380020043800200443044104420440043e043904410442043204300020043704300020043f04350447043004420020043d04300020043f0440043e0431043d04380020044004300437043f0435044704300442043a0438002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b0020006e0061002000730074006f006c006e00ed006300680020007400690073006b00e10072006e00e100630068002000610020006e00e1007400690073006b006f007600fd006300680020007a0061015900ed007a0065006e00ed00630068002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006c006100750061002d0020006a00610020006b006f006e00740072006f006c006c007400f5006d006d006900730065007000720069006e0074006500720069007400650020006a0061006f006b00730020006b00760061006c006900740065006500740073006500740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003b303b903b1002003b503ba03c403cd03c003c903c303b7002003c003bf03b903cc03c403b703c403b103c2002003c303b5002003b503ba03c403c503c003c903c403ad03c2002003b303c103b103c603b503af03bf03c5002003ba03b103b9002003b403bf03ba03b903bc03b103c303c403ad03c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f006200650020005200650061006400650072002000200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005E205D105D505E8002005D405D305E405E105D4002005D005D905DB05D505EA05D905EA002005D105DE05D305E405E105D505EA002005E905D505DC05D705E005D905D505EA002005D505DB05DC05D9002005D405D205D405D4002E002005DE05E105DE05DB05D9002005D4002D005000440046002005E905E005D505E605E805D905DD002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV <FEFF005a00610020007300740076006100720061006e006a0065002000410064006f00620065002000500044004600200064006f006b0075006d0065006e0061007400610020007a00610020006b00760061006c00690074006500740061006e0020006900730070006900730020006e006100200070006900730061010d0069006d006100200069006c0069002000700072006f006f006600650072002000750072006501110061006a0069006d0061002e00200020005300740076006f00720065006e0069002000500044004600200064006f006b0075006d0065006e007400690020006d006f006700750020007300650020006f00740076006f00720069007400690020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006b00610073006e0069006a0069006d0020007600650072007a0069006a0061006d0061002e>
 /HUN <FEFF004d0069006e0151007300e9006700690020006e0079006f006d00610074006f006b0020006b00e90073007a00ed007400e9007300e900680065007a002000610073007a00740061006c00690020006e0079006f006d00740061007400f3006b006f006e002000e9007300200070007200f300620061006e0079006f006d00f3006b006f006e00200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c002c00200068006f007a007a006f006e0020006c00e9007400720065002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00610074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002c00200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002000e9007300200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c00200020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b007500720069006500200073006b00690072007400690020006b006f006b0079006200690161006b0061006900200073007000610075007300640069006e007400690020007300740061006c0069006e0069006100690073002000690072002000620061006e00640079006d006f00200073007000610075007300640069006e007400750076006100690073002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200069007a0076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e0074007500730020006b00760061006c0069007400610074012b0076006100690020006400720075006b010101610061006e00610069002000610072002000670061006c006400610020007000720069006e00740065007200690065006d00200075006e0020007000610072006100750067006e006f00760069006c006b0075006d0075002000690065007300700069006500640113006a00690065006d002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f3007700200050004400460020007a002000770079017c0073007a010500200072006f007a0064007a00690065006c0063007a006f015b0063006901050020006f006200720061007a006b00f30077002c0020007a0061007000650077006e00690061006a0105006301050020006c006500700073007a01050020006a0061006b006f015b0107002000770079006400720075006b00f30077002e00200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000700065006e007400720075002000740069007001030072006900720065002000640065002000630061006c006900740061007400650020006c006100200069006d007000720069006d0061006e007400650020006400650073006b0074006f00700020015f0069002000700065006e0074007200750020007600650072006900660069006300610074006f00720069002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043f044004350434043d04300437043d043004470435043d043d044b044500200434043b044f0020043a0430044704350441044204320435043d043d043e04390020043f043504470430044204380020043d04300020043d043004410442043e043b044c043d044b04450020043f04400438043d044204350440043004450020043800200443044104420440043e04390441044204320430044500200434043b044f0020043f043e043b044304470435043d0438044f0020043f0440043e0431043d044b04450020043e0442044204380441043a043e0432002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e00200020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f00620065002000500044004600200070007200650020006b00760061006c00690074006e00fa00200074006c0061010d0020006e0061002000730074006f006c006e00fd0063006800200074006c0061010d00690061007201480061006300680020006100200074006c0061010d006f007600fd006300680020007a006100720069006100640065006e0069006100630068002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e000d000a>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f0062006500200050004400460020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020006e00610020006e0061006d0069007a006e006900680020007400690073006b0061006c006e0069006b0069006800200069006e0020007000720065007600650072006a0061006c006e0069006b00690068002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF004d00610073006100fc0073007400fc002000790061007a013100630131006c006100720020007600650020006200610073006b01310020006d0061006b0069006e0065006c006500720069006e006400650020006b0061006c006900740065006c00690020006200610073006b013100200061006d0061006301310079006c0061002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043404400443043a04430020043d04300020043d0430044104420456043b044c043d043804450020043f04400438043d044204350440043004450020044204300020043f04400438044104420440043e044f044500200434043b044f0020043e044204400438043c0430043d043d044f0020043f0440043e0431043d0438044500200437043e04310440043004360435043d044c002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /BleedOffset [
 9
 9
 9
 9
]
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /ClipComplexRegions true
 /ConvertStrokesToOutlines false
 /ConvertTextToOutlines false
 /GradientResolution 300
 /LineArtTextResolution 1200
 /PresetName ([High Resolution])
 /PresetSelector /HighResolution
 /RasterVectorBalance 1
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MarksOffset 6
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

