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ABSTRACT 

The next generation of voice-based user interface 
technology will enable easy-to-use automation of new 
and existing communication services.  A critical issue 
is to move away from highly-structured menus to a 
more natural human-machine paradigm.  In recent 
years, we have developed algorithms which learn to 
extract meaning from fluent speech via automatic 
acquisition and exploitation of salient words, phrases 
and grammar fragments from a corpus.  These methods 
have been previously applied to the ’How may I help 
you?’ task for automated operator services, in English, 
Spanish and Japanese.  In this paper, we report on a 
new application of these language acquisition methods 
to a more complex customer care task.  We report on 
empirical comparisons which quantify the increased 
linguistic and  semantic complexity over the previous 
domain.  Experimental results on call-type 
classification will be reported for this new corpus of 
10K utterances from live customer traffic. 

1. INTRODUCTION 

The next generation of voice-based user interface 
technology will enable easy-to-use automation of new and 
existing communication services.  A critical issue is to 
move towards a more natural human-machine paradigm.  
By natural, we mean that the machine understands what 
people actually say, in contrast to what a system designer 
would like them to say. This approach is in contrast with 
menu-driven or strongly-prompted systems, where many 
users are unable or unwilling to navigate such highly 
structured interactions.  This research targets shifting the 
burden from human to machine, wherein the system adapts 
to peoples’ language, as contrasted with forcing users to 
learn the machine’s jargon.   

In particular, we have developed algorithms which learn to 
automatically extract meaning from fluent speech.  A key 
intuition is that some linguistic events are crucial to 
recognize and understand for a task, others not so.  We’ve 
quantified this idea via salience, which measures the 
information content of an event for a task [Go95].  
Algorithms have been developed which automatically 

acquire and exploit salient words, phrases and grammar 
fragments from a corpus [Go97][Wr97][Ar99].  These 
methods have been previously applied to the ’How may I 
help you?’ task for automated operator services, in English 
[Go97], Spanish and Japanese [Ba00].  The early 
experiments were based on excerpts from human/human 
interactions drawn from live customer traffic.  In later 
experiments, spoken language understanding (SLU) was 
then embedded in a dialog system [Ab97][Ab99] and 
experimentally evaluated [Ri00] on 20K human/machine 
transactions, again drawn from live customer traffic.   

The primary focus of SLU in these experiments has been 
call-type classification, i.e. determining which service type 
a customer is requesting.  Other researchers have reported 
on analogous experiments in other domains [Ca98][Ed99].  
In the operator services domain, we’ve also developed 
methods for extracting auxiliary information such as phone 
and credit-card numbers embedded in natural spoken 
language [Ra99]. 

In the operator services domain, the task involves placing 
telephone calls, specifying billing methods for those calls 
(e.g. collect, card, etc.), and requesting information about 
making those calls (e.g. rate, area codes, etc).  In this 
paper, we report on a new application of our language 
acquisition methods to a more complex customer care task.  
In this task, users are asking questions about their bill, 
calling-plans, etc.  This is intuitively a more complex 
domain.    

In this paper, we report on empirical comparisons which 
quantify the increased linguistic and semantic complexity 
of this new task over the previous domain.  Experimental 
results will be reported and compared for a new corpus of 
10K human/human dialogs recorded from live customer 
traffic.  In Section 2, we describe the new database and 
how it was collected.  Section 3 discusses the semantic 
complexity of this customer care task and compares it to 
the operator services domain.  In Section 4, we do the 
same for linguistic complexity.  An initial experimental 
evaluation of call-classification from speech for this 
customer care task is reported in Section 5, demonstrating 
portability and scalability of our language acquisition 
methods.  
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2. Database 
This ‘initial data collection’ for the customer care task was 
extracted from recordings of customer interactions with 
human agents.  The first few minutes of 10K transactions 
were recorded directly in digital mu-law format.  From 
each transaction, the first ‘task-oriented’ customer 
utterance was manually segmented.  This utterance was 
then transcribed and labeled.  From these, 8K utterances 
were randomly selected as a training set and 1K for testing.  
An example of a request for an account balance is as 
follows: 

“[uh] I need to check how much I owe [.brth] I 
apparently didn't mail a payment again I want to 
see what [uh] what you have there" 

While these utterances are extracted from human/human 
interactions, we are of course eventually interested in 
human/machine interactions.  For the operator services 
domain, we similarly started with human/human 
interactions in [Go97] as a precursor to constructing an 
automated spoken dialog system.  From that system we 
then collected the human/machine interactions analyzed in 
[Ri00].  In this paper, when comparing complexities 
between the two domains, we will of course use the 
human/human utterances from the operator services task.   

Intuitively, one expects users’ language to simplify when 
talking with a machine.  This expectation was validated 
and quantified in the comparisons between spoken 
language in  human/human and human/machine transaction 
in the operator services domain [Ri00].  

3. Semantic Complexity 
We recall that in the operator services task, there were 15 
call-types [Go97] with auxiliary information such as phone 
and card numbers [Ra99].  Initially, it was convenient to 
view these call-types as an unstructured list. and the task 
simply as classification [Go97].  It became clear, however, 
that there was additional structure and relationships 
amongst these labels.  For example, collect is a kind of 
billing method.  In addition, any call has a forward-number 
(the number being called), and a card call furthermore has 
a card-number to be billed.  We then quantified these ‘is-a‘ 
and ‘has-a’ relationships in an objected oriented 
inheritance hierarchy [Ab97][Ab99] for the dialog 
manager.  This inheritance hierarchy was reflected in the 
task structure graph of [Wr98], so that the original 
classification problem evolved into mapping an utterance 
onto a probability distribution over a graph. 

In the customer care task, we defined 19 call-types and 12 
auxiliary elements.  There are a multitude of ‘I- a’ and 
‘has-a’ relationships amongst these labels, many more than 
in the operator services domain.  For example, the 

following utterance would be labeled as a general billing 
query: 

“I have a question about my bill”  

Consider then the account balance example given 
previously, which is a kind of billing query.  An example 
of a query regarding unrecognized numbers is as follows: 

" [ um ] I was just calling in regards to some [ uh ] 
couple of phone numbers that I do not recognize" 

Such an unrecognized-number query is a kind of question 
about a charge on the bill.  Given the complexity of a bill, 
there are furthermore many auxiliary elements which are 
associated to any particular item or charge.  An item being 
questioned has a date, item number, page number, etc. 

Although we do not yet have a method of quantifying the 
complexity of such inheritance hierarchies, we do observe 
that the number of nodes and arcs is more than doubled as 
compared to the operator services task. 

A second dimension of semantic complexity is multiplicity 
of labels.  This was a rare phenomena in operator services, 
comprising less than 2% of the utterances.  In customer 
care, 12% of the utterances involve multiple call-types, a 
6-fold increase.  A third dimension is the open set 
component of the task.  As discussed in [Go97], in any 
real-world task, there are always utterances which do not 
match any of the defined call-types, which we then denote 
other and need to be routed to a human agent for handling.  
A crucial feature of the SLU is thus rejection, i.e. knowing 
what it knows.  In the operator services task, other 
comprised  12% of the utterances, while in customer care it 
is 26% using the current label set.  I.e., more than twice the 
open-set component.   

 

0 2 4 6 8 10 12 14 16 18 20
0

0.05

0.1

0.15

0.2

0.25

0.3

Customer Care

entropy = 3.3

call−type rank

re
la

tiv
e 

fr
eq

ue
nc

y

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0

0.05

0.1

0.15

0.2

0.25

0.3

Operator Services 

entropy = 3.1

call−type rank

re
la

tiv
e 

fr
eq

ue
nc

y

other 

other 

 

Figure 1.   Semantic Rank-Frequency Distribution 
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Given the 19 call type labels for this task, we can measure 
the skewness of their distribution.  In Figure 1, we plot the 
rank frequency distribution of these 19 call types, which 
have an entropy of 3.3.  For comparison, we include the 
corresponding distribution for the 15 call-types from 
operator services [Go97], which has an entropy of 3.1.   

4. Linguistic Complexity 
We now address the linguistic complexity of these two 
tasks.  Not surprisingly, these measures reflect the 
increased semantic complexity of the task.  In Figure 2, we 
plot the number of words per utterance in the two tasks, 
observing that the customer care  utterances are much 
longer than the operator services task.  In particular, the 
average number of words per utterance for customer care 
is 39, more than double that of operator services which 
was 19 [Go97]. 
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Figure 2.  Utterance Length Distribution 
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Figure 3.  Vocabulary Growth 

Next, we measure the vocabulary growth for the 8K 
training utterances in both tasks, as shown in Figure 3.  
The vocabulary size after 8K utterances from customer 
care is 5.2K, compared to only 3.6K for operator services.  
This is not surprising, given the longer utterances and 
greater semantic complexity.  We also observe that the 
OOV rate (per utterance) is similar (as seen from the 
slopes of the vocabulary plots).  We then computed the test 
set perplexity of each using VNSA phrase-bigram 
language models [Ri96], observing that the perplexity of 
the customer care language is 39, more than double that of 
operator services, which was 16 [Go97]. 

5. Call Classification from Speech 

We now report on baseline experimental results evaluating 
call classification from speech on this new task.  All 
components of training are on the 8K training utterances, 
and testing is on a separate 1K test-set. 

First, off-the-shelf telephony acoustic models were adapted 
with this training data.  Then, VNSA phrase-bigram 
language models [Ri96], salient grammar fragments 
[Wr98] and a classifier were then trained.  These salient 
fragments are then detected in the ASR output and 
exploited for classification [Go97].  In Figure 4, we plot 
the number of salient fragments detected per utterance for 
both tasks.  Observe that although the utterances are twice 
as long, there are less than half as many salient fragments 
detected in customer care versus operator services.   
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Figure 4.  Number of Salient Fragments Detected per Utterance 

 

In Figure 5, we plot the percentage of each utterance which 
is covered by salient fragments.  We observe that the 
coverage in these longer customer care utterances is only 
13%, less than half of the 31% coverage in operator 
services. 



4 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35 Customer Care, from Speech

mean = 0.13

0.39 have 0 detection

coverage with salient fragments

re
la

tiv
e 

fr
eq

ue
nc

y

Comparison of coverage with Salient Fragments for speech (1K test sets)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35 Operator Services, from Speech

mean = 0.31

0.20 have 0 detection

coverage with salient fragments

re
la

tiv
e 

fr
eq

ue
nc

y

 

Figure 5.  Coverage of Utterances by Salient Fragments 

Finally, in Figure 6, we plot the ROC for call-classification 
on the customer care task.  Recall [Go97] that False Reject 
Rate FRR) is the percentage of rejected utterances which 
were labeled as one of the non-other call-types.  Such 
rejected calls are routed to a human agent, so the cost of 
such an error is a missed opportunity for automation.  FRR 
can be traded off against Probability Correct by varying 
the rejection threshold.  Results are shown for rank 1 and 
rank 2 from both text and speech.   
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Figure 6.  Call Classification Performance  

6. Conclusions 

Although the entropy and number of call-types in the two 
tasks are similar, there are still several dimensions in which 
customer care is more complex:  number of auxiliary 
elements, number of relationships amongst labels, 
multiplicity of labels, and open set component.  Linguistic 
complexity is more than double in several dimensions.  
Remarkably, given the increased complexity and sparse 
coverage, one can still achieve over 90% correct 
classification from speech, albeit with a FRR of 30%. 
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