COMBINING CLASSIFIERS FOR SPOKEN LANGUAGE UNDERSTANDING

Mercan Karahan*

Computer Sciences Department,
Purdue University
West Lafayette, IN 47907
{mkarahan} @cs.purdue.edu

ABSTRACT

We are interested in the problem of understanding sponta-
neous speech in the context of human-machine dialogs. Ut-
terance classification is a key component of the understand-
ing process to determine the intent of the user. This paper
presents methods for combining different statistical classi-
fiers for spoken language understanding. We propose three
combination methods. The first one combines the scores
assigned to the call-types by individual classifiers using a
voting mechanism. The second method is a cascaded ap-
proach. The third method employs a top level learner to
decide on the final call-type. We have evaluated these com-
bination methods over three large spoken dialog databases
collected (~108 dialogs) using the AT&T natural spoken
dialog system for customer care applications. The results
indicate that it is possible to significantly reduce the error
rate of the understanding module using these combination
methods.

1. INTRODUCTION

Spoken dialog systems aim to recognize and understand the
speaker’s utterance and then take an action accordingly [1].
In a call routing system, a critical part of understanding a
speech utterance is classification into predefined types of
intents (i.e. call-types). To this end, practical natural lan-
guage understanding systems employ statistical classifiers’
since they perform reasonably well given enough training
data and do not require any human expertise. As an exam-
ple, consider the utterance “I would like to know
my account balance”,ina customer care application.
Assuming that the utterance is recognized correctly, the cor-
responding intent or the call-type would be Account Bal-
ance Request and the action would be prompting the bal-
ance to the user by getting the account number with some
further dialog or routing this call to the billing department.

*The research reported here was carried out while the author was visit-
ing at AT&T Labs — Research.

"During this paper whenever we say classifier we mean only a statisti-
cal classifier not a knowledge-based classifier

Dilek Hakkani-Tiir

Giuseppe Riccardi Gokhan Tur

AT&T Labs — Research
Florham Park, NJ 07932
{dtur,dsp3,gtur } @research.att.com

State-of-the-art classifiers are not able to achieve a per-
fect performance from a dialog task success point of view.
Usually dialog management is used to recover from the clas-
sification mistakes. In this paper, instead, we try to refine
classification accuracy by combining multiple methods or
independent sources of knowledge at a given stage of the
dialog borrowing ideas from machine learning.

A classifier is considered to be different from another
either because its training algorithm is different or its train-
ing data or features used during training are different. For
example, some algorithms are informative, some are dis-
criminative [2, 3], or a classifier trained with one view of
the data is different than the one trained with another view
of the data [4].

We propose three methods to combine different classi-
fiers. The first method combines the scores of the individual
classifiers using a voting mechanism. The second one is a
cascaded approach, where another classifier is consulted if
the current one fails to assign a call-type to the utterance
with a high enough confidence. Intuitively we begin with
the best classifier available, and then continue with weaker
ones, optionally remembering the previous ones’ output.
The third method employs a top level classifier, such as a
decision tree or regression to decide on what to do. As fea-
tures, it uses the outputs of classifiers we wish to combine.

The organization of this paper is as follows: Next sec-
tion summarizes the earlier work on combining classifiers,
especially for text categorization. Section 3 reviews the in-
dividual classification algorithms we have used in this study.
Section 4 presents the combination methods we propose, in
detail. Section 5 explains our experiments and results.

2. RELATED WORK

Combining classifiers is a well studied topic in machine
learning. It has been recently applied to text categorization
domain. In this section, we will briefly summarize what
has been done for combining classifiers in text categoriza-
tion due to the similar nature of text categorization and call
classification. More information on automated text catego-

rization can be found in [2]. The most common classifier
combination methods used in text categorization are major-
ity voting (MV) and weighted voting (WV). In MV, each
classifier votes for classes and the class that gets most votes
is taken as the combined decision. In WV, every classifiers’
vote is multiplied by its weight, combined score of a class
is the sum of the weighted scores. In both approaches, the
vote of each classifier can be its confidence on the decisions.

A version of WV is used by Larkey and Croft for com-
bining k-nearest-neighbor classifier with relevance feedback
and Bayesian classifier in medical domain for text catego-
rization. [5].

Van Halteren et al. analyzed performance of combin-
ing classifiers on part-of-speech (POS) tagging [6]. They
used Hidden Markov Models, maximum entropy modeling,
memory based tagging and transformation based learning
system as base classifiers. For combining these classifiers,
they analyzed the performance of various ways of voting be-
tween classifiers and a second level classifier as a combiner.
Note that the classifiers they try to combine only return the
most probable POS tag. They got best results on Wall Street
Journal and LOB data sets by using an extended version of
voting, which exploits both the context and the POS tags
assigned by taggers.

Another version of WV was used to combine classifiers
for text categorization by Kofahi et al. [7]. In their method,
every classifier assigns a similarity value to every class and
document pair. Each classifier is assigned a weight that is
learned during a tuning phase, and the combination algo-
rithm generates a combined similarity value for every class
by performing weighted sum of the similarities of the com-
ponent classifiers.

As a different approach, Li and Jain applied an adap-
tive classifier combination (ACC) and a dynamic classifier
selection (DCS) method for combining classifiers for text
categorization [8]. In DCS, given a test document D, k
training samples most similar to D is selected (e.g by k-
nearest-neighbor approach), then the decision of the classi-
fier that has highest total precision in this neighborhood is
picked. On the other hand in ACC, class based precisions of
classifiers in that neighborhood is summed up and the class
that got the highest precision in total is picked.

In the addition to the above combination methods, Boost-
ing is also a method to combine many weak classifiers to get
a strong classifier. We describe this method in Section 3.2.
However, in this work, we deal with little number of very
strong classifiers.

3. CLASSIFICATION ALGORITHMS

The aim of call-type classification for spoken language un-
derstanding is to assign a confidence score or a binary value
to each pair (F, ¢;) € F x C, where F is the set of features
extracted from the spoken utterance, and C is a predefined

set of call-types. The call-types of the pairs that are assigned
a score higher than some threshold are given to the dialog
manager, which decides on the next action. The features can
be the n-grams of the recognizer output of the spoken utter-
ance, as well as the dialog context. In this work, we com-
bined an informative (e.g. Bayesian) and a discriminative
(e.g. Boosting) classifier to improve call-type classification.

3.1. Bayesian Classifier

The Bayesian Classifier assigns the call-type ¢ which maxi-
mizes the conditional probability P(c¢;|F’) to the spoken ut-
terance, which can be computed using the Bayes’ rule:

P(F)
= argmax P(F|¢;) x P(c;)

Ci

= argmax P(¢;|F) = argmax
Ci Ci

P(F) is eliminated since it is constant for a given utterance,
and does not effect the final decision. The Naive Bayes as-
sumption is that the features used for the description are all
conditionally independent:

n
P(F|c;) zH (files)

The probability of the call-type given the features of the
utterance, P(c;|F"), can be used as the confidence score of
the classifier.

3.2. Boosting

Boosting aims to combine “weak” base classifiers to come
up with a “strong” classifier. This is an iterative algorithm,
and in each iteration, a weak classifier is learned so as to
minimize the training error.

More formally, the algorithm (for the simplified binary
(+1 and -1) classification case) is as follows:

o Given the training data from the instance space X:
(1,91), -, (Tm, ym) wherex; € X andy; € —1,+1

e Initialize the distribution Dy (i) = 1/m
e Foreach iterationt = 1,...,7 do

— Train a base learner, hy
bution D;.

— Update Dy (i) = Dy(i)e~*¥il(zi) /7,
where Z; is a normalization factor and ay is the
weight of the base learner.

: X — R, using distri-

e Then the output of the final classifier is defined as:
H(z) = sign(f(z)) where f(z) = 3/_ azhy()

The confidence of a call-type, ¢;, is then given by the
formula:
1

A more detailed explanation and analysis of this algorithm
can be found in [9].

4. COMBINATION METHODS

We propose 3 combination methods: voting, cascading and
learning a top level classifier as combiner.

4.1. Voting

We analyzed two kinds of voting, which were proposed by
van Halteren et al.[6]. The difference of our voting methods
is that, the confidence score of the classifiers are used as
their votes. In MV, the call-type that gets the maximum vote
is taken as combined decision. In WYV, each classifiers’ vote
is multiplied with its weight, combined score of a call-type
is the sum of the weighted votes. The call-type that gets the
highest combined score is assigned to the text.

We propose three WV methods. In the first method, Toz-
Prec, we assign total precisions of classifiers as their weight,
and compute the overall confidence of call-type c¢; as fol-
lows:

K
confe, =Y o TPr X confyc,

where T P, is the total precision of classifier £ and con f.,
is the confidence score of call-type c; assigned by classifier
k. Total precision values are obtained from the training data
by doing n-fold cross validation.

Second method, CTPrec, is very similar to the first one,
but takes into consideration the precision of classifiers on
individual classes. So, the final confidence of call-type c; is
computed as follows:

K
confe, = 1o Pryei X confr.c,

where P, .; is the call-type based precision of classifier &
on training data obtained by n-fold cross validation. This
method favors the diversity of classifiers. A classifier can
be more successful on detecting on some of the call-types,
while others fail on them.

The third WV method, PrecRec, merges features of first

and second method. Here is the pseudo-code for this method:

for all classifiers
if ¢; is the top scoring call-type of classifier k
confe;+ = (Pre; X confiec;)
else
confe;+ = ((1 — Rg,c;) X confrc;)

where Ry ., is the call-type based recall of classifier £ on
training data, obtained by n-fold cross validation.

4.2. Cascading

In cascading, the decisions of classifiers are combined in
a stepwise fashion such that if the base classifier can not
assign a confidence score above a threshold Oy, to any of
the call-types, another classifier is consulted. If the same
call-type, c;, has also been picked by second classifier as a
top scoring call-type, confidence score of c; is raised to a
value above the rejection threshold. ©y, is learned from the
training data by doing n-fold cross validation. Below is the
algorithm of combining a pair of classifiers k and k + 1.

if confr,c; < Op,Ve;
if (TSy == TSky1)
confy.c; = O +a

TS} is the top scoring call-type assigned to an utterance by
classifier k; a is some positive constant. This cascade can
be generalized up to K classifiers by looping over all clas-
sifiers. While combining classifiers with cascading, we aim
to boost-up scores of some call-types which always get low
scores even if they are top scoring call-type of an utterance.
It also provides a mechanism to recover in rejection” cases.
The order of classifiers employed impacts the performance.
Ideally one should employ first the stronger classifiers then
the weaker ones.

4.3. Learning a Combiner

In addition to voting and cascading, it is possible to train a
top level classifier to make a final decision using the outputs
of the classifiers to be combined. For this purpose we have
employed well-known machine learning methods, such as
linear and logistic regression, decision trees, and Boosting.

4.3.1. Linear Regression

Linear regression fits a line to a set of points in d-dimen-
sional space. In our case, each classifier forms a different
dimension. We performed regression based on call-types,
this way at the end of regression we have learned separate
regression parameters, ay,.; for each classifier, k, on each
call-type, ¢;. Linear regression then becomes a combiner
where we use these parameters to compute combined confi-
dence score of the call-types as in the below formula:

K

conf., =b+ E Qk,c; X CONfi c;
k=1

Here conf,; is the confidence score of call-type c¢; as-
signed by classifier k. Further information on linear regres-
sion can be found in [10].

2Explained in detail in Section 5.2.

4.3.2. Logistic Regression

Logistic regression is similar to linear regression; only the
regression formula is different:

1
K
(b-f—X:k=1 ag,c; Xconfr ;)

confe; =
1+exp

As it can be understood from the formula, logistic regres-
sion fits a curve instead of a line to a set of points. In our
experiments we have used the Newton-Raphson Method to
learn the regression parameters [11].

4.3.3. Decision Trees

Decision trees (DTs) classify instances by sorting down the
tree from the root to some leaf node following a set of if-
then-else rules using the predefined features [12]. The dif-
ference of decision trees from regression methods is that
the continuous features (such as the confidences of the call-
types) are automatically discretized (or quantized) during
the decision tree training and it is possible to augment them
by additional features, such as the length of the utterance to
be classified. For our purpose, we have tried various fea-
ture sets, such as using only the top scoring call-types of all
classifiers or all the call-types along with their confidences.

4.3.4. Boosting

Actually Boosting is a method to combine many weak clas-
sifiers to get a strong classifier. So, it makes sense to com-
bine multiple classifiers using the Boosting algorithm. How-
ever in this work, we deal with little number of very strong
classifiers. Still we employ Boosting to combine the out-
puts of the individual classifiers like we employ the decision
trees. We have used similar features as in decision trees.

5. EXPERIMENTS AND RESULTS

In order to evaluate these combination methods, we carried
out experiments using human-machine dialogs as collected
by the AT&T How May I Help You?>™ (HMIHYSM) natu-
ral spoken dialog system. We first describe our test domain
and data, and define the evaluation metrics. We then give
the results obtained by combining multiple classifiers.

5.1. Data

In order to evaluate the proposed combination methods, we
have used the utterances collected from 3 different applica-
tions, namely 77, T», and T3. In all these applications, the
users of the system are greeted by the open ended prompt of
How May I Help You?. Then according to their responses
the users are either routed to specific sub-systems or are re-
prompted for clarification or confirmations.

| | & [T []
Training Data Size 35551 | 9094 | 29561
Test Data Size 5000 | 5171 | 5537
Number of Call-Types 65 84 97
Call-Type Perplexity | 15.95 | 32.64 | 32.81
Average Length 8.97 | 10.66 | 10.13

Table 1. Data characteristics used in the experiments.

Table 1 summarizes the amount of data used for train-
ing and testing for these 3 applications along with the to-
tal number of call-types, average utterance length, and call-
type perplexity. Perplexity is computed using the prior dis-
tribution of the call-types in the training data.

5.2. Evaluation Metrics

While evaluating the classification performance, we used
mainly 2 metrics both using micro-averaging allowing mul-
tiple call-types. The first one is the fop class error rate
(TCER), which is the fraction of utterances in which the
call-type with maximum probability was not one of the true
call-types. Inspired by the information retrieval community,
the second metric we have used is the F-Measure (F-M),
which is a combination of recall and precision:

2 x recall x precision
F — Measure =

recall + precision

where recall is defined as the proportion of all the true call-
types that are correctly deduced by the classifier. It is ob-
tained by dividing the number of true positives by the sum
of true positives and false negatives. Precision is defined
as the proportion of all the accepted call-types that are also
true. It is obtained by dividing true positives by the sum of
true positives and false positives. True (False) positives are
the number of call-types for an utterance for which the de-
duced call-type has got a confidence above a given thresh-
old, hence accepted, and is (not) among the correct call-
types. False negatives are the number of call-types for an
utterance for which the deduced call-type has got a confi-
dence less than a threshold, hence rejected, but is among
the true call-types.

As seen, the F-Measure changes with respect to the given
confidence threshold. For lower thresholds, the precision is
lower but recall is higher, and vice versa for higher thresh-
olds. In order to optimize the F-Measure we check its value
for all thresholds between 0 and 1, and use the best one as
the F-Measure of that system, since it is always possible to
change the operational threshold of the system.

One difference between these two evaluation metrics is
that, the top class error rate only evaluates the top scoring
call-type for an utterance, whereas the F-Measure evaluates

all the call-types exceeding the given threshold. So, when
the threshold is 0, the recall is 100%, but precision is low.

5.3. Results

Basically we have tried two sets of experiments:

e Combining the classifiers whose training algorithms
are different

o Combining the classifiers whose training data are dif-
ferent

For the first set, we have combined the two classifiers ex-
plained in the previous section, namely, Bayesian and Boost-
ing classifiers, using the same training data. For the second
set, we have partitioned our training data with respect to ut-
terance features (such as length) and using just Boosting,
we have trained multiple classifiers from each data partition
and combined their outputs on the test set.

In our experiments we have always used n-grams as fea-
tures while training the classifiers, and did not employ any
feature selection. For Boosting, we used the AdaBoost algo-
rithm using Boostexter [13]. For the decision tree system,
we have used YaDT tools of Ruggieri which is an imple-
mentation of the EC4.5 algorithm [14].

5.3.1. Combining the Classifiers with Different Algorithms

Before trying any of the combination methods, we have
computed the baseline performances of the Bayesian and
Boosting classifiers on our test data. Table 2 presents these
baseline results, when the two classifiers are trained using
all the training data available for each task. In all the exper-
iments with the Naive Bayes classifier we only used word
unigrams as features. Adding word bigrams and trigrams to
the feature set did not result in a significantly different per-
formance, and increased the run-time of the classification.
This may be due to the lack of a feature selection step, and
data sparseness for higher order n-grams. Note that, about
half of the features Boosting has selected are also unigrams.

In the baseline experiments, Boosting outperforms the
simple Naive Bayes classifier on all three tasks. However
there is still a big room for improvement by using the com-
bination of the classifiers. In the 7% task, the performance
of the classifiers is worse than the other tasks, mostly due to
the lack of training data and relatively higher call-type per-
plexity. Naive Bayes suffers more from this scarcity, as the
difference between the performance of the two classifiers is
the highest on this task.

We have also computed an upper bound for the perfor-
mance of the combination classifier, assuming that the com-
bination algorithm can only select one of the top scoring
call-types of the two classifiers. In order to compute this
upper bound, we performed a cheating experiment and se-
lected the correct call-type if it is selected as the top scor-
ing call-type by any of the classifiers. As seen from these

App. T Ts T3
TCER | F-M TCER | F-M TCER | F-M
Boost 16.52 | 80.40 30.28 | 66.99 19.00 | 78.43
Bayes 19.44 | 77.12 3539 | 6L.74 22.50 | 74.84
Bound 11.18 24.88 14.89
MV 15.58 | 81.61 3048 | 67.79 18.93 | 79.36
TotPrec 1536 | 81.49 30.17 | 67.88 18.55 | 79.43
CTPrec 1534 | 81.50 30.15 | 68.07 18.82 | 79.49

PrecRec 15.32 | 81.44 30.21 | 67.79 18.87 | 79.41
Cascade 16.56 | 81.03 30.28 | 67.66 19.00 | 78.95
Lin. Reg. 14.92 | 81.49 29.36 | 67.89 18.11 | 79.82
Log. Reg. 15.70 | 81.24 29.74 | 68.31 18.87 | 79.41
Boost 16.28 | 81.07 2990 | 67.21 19.41 | 78.79
DT 16.72 30.15 20.17

Table 2. Top class error rates (TCER) and F-Measures (F-
M) for combining different learners using 3 different appli-
cations, namely, 77, T5, and T3. All numbers are in percent-

ages. The best combination performances are marked with
boldface.

bounds, using a combination of the two classifiers, there is
a significant room of improvement for all tasks.

As also listed in Table 2, we have tried the proposed
combination methods, namely voting, cascading, and train-
ing a top level classifier. More specifically, we have tested
MYV, and 3 versions of WV as explained in Section 4.1,
cascading, and four different top level learners, linear re-
gression, logistic regression, Boosting, and decision trees,
as explained in Section 4.3. The best combination perfor-
mances are marked with boldface fonts in the table. One
impressive result is that, regardless of the method used we
have got some improvement in the performance of the clas-
sifier. Furthermore using a top level classifier, namely re-
gression, is found to be the best combination method in
our experiments. In F-Measure, we have observed signif-
icant’ improvements for all applications (1%-1.5% abso-
lute increase). Using decision trees or Boosting as top level
learners have not helped. Features of Boosting were the ut-
terance and top scoring call-type of Bayesian classifier for
that utterance. We have used only top scoring calltypes of
Boosting and Bayes as features of decision tree. Note that
for the decision tree, we do not have the F-Measure since
we do not get a confidence score for all possible call-types.

5.3.2. Combining the Classifiers with Different Training Data

Another approach is combining classifiers trained with dif-
ferent partitions of the training data. The optimum would
be using partitions that are separable. As a preliminary step,
we divided the data into two, using the length of the utter-
ances, with the assumption that some intents (i.e, call-types)
are usually expressed by short utterances and others by long
ones. We created two partitions from the data, one has ut-
terances that are shorter than or equal to average number

3Based on a 95% confidence interval

T Ty T3
TCER | F-M || TCER | F-M || TCER | F-M
All 1652 | 80.40 || 3028 | 66.99 || 19.00 | 78.43
Long 19.60 | 76.93 || 36.63 | 58.88 || 26.58 | 71.57
Short 22.28 | 76.10 || 34.04 | 63.07 || 23.26 | 7536
[Bound [1092] [2285] [1374] I
MV 16.98 [80.44 [2992 | 67.97]| 19.20 | 79.40

TotPrec 15.72 | 81.48 28.97 | 67.80 18.58 | 79.20
CTPrec 15.80 | 81.55 29.16 | 67.94 18.46 | 79.29
Cascade 16.62 | 80.66 3036 | 67.32 19.02 | 78.68
Lin Reg 15.80 | 81.55 29.78 | 67.90 18.10 | 79.87
Log Reg 16.24 | 81.70 31.06 | 68.21 19.67 | 79.41
Boost 16.00 | 80.95 30.19 | 66.87 19.54 | 78.48
DT 17.16 30.40 19.07

Table 3. Top class error rates (TCER) and F-Measures (F-
M) for combining learners trained with different data for
three applications. All numbers are in percentages.

of words (about two thirds of the data), the other has the
rest, and trained two classifiers using them (which we call as
Long and Short), and another using all the data (All). Since
Boosting performed better in the previous experiments, we
used Boosting as the base classifier in these experiments.
We classified the test utterances using all the three classi-
fiers, and combined their output with the various combina-
tion approaches. Table 3 summarizes the baseline results
of the individual classifiers, as well as the upper bounds for
the combination classifier, and the performance of the com-
bination methods.

Similar to the results in Table 2, we have observed im-
provements over the baseline (i.e. “All” row) using most of
the combination methods. Regression methods improve the
F-Measure (1%-1.5%) whereas in this case using total pre-
cision (first method of WV) gave better top class error rates
for 2 applications. For cascading, if the All model fails, we
tried the Long or Short model depending on the length of
the utterance, since we observed that Long performs better
on long utterances and Short performs better on short ut-
terances. In this experiment, features of Boosting are the
utterance and top scoring call-types of Long and Short for
that utterance. Features of decision tree are top scoring call-
types of the three classifiers.

6. CONCLUSIONS

We have presented three methods, namely voting, cascad-
ing, and learning a top level classifier, for combining differ-
ent statistical classifiers for spoken language understanding.
We have evaluated them using the AT&T natural spoken di-
alog for customer care applications. We combined classi-
fiers whose algorithms or training data are different. One
impressive result of this study is that, regardless of the com-
bination method used we have got some improvement in the
performance of the classifier, even when the performance of
individual classifiers are not comparable. Moreover, using

a top level classifier, and especially regression, is found to
be the best combination method in our experiments and re-
sulted in significant improvements for all applications.

7. REFERENCES

[1] A. L. Gorin, G. Riccardi, and J. H. Wright, “Auto-
mated natural spoken dialog,” IEEE Computer Maga-
zine, vol. 35, no. 4, pp. 51-56, April 2002.

[2] F. Sebastiani, “Machine learning in automated text
categorization,” ACM Computing Surveys, vol. 34, no.
1, pp. 1-47, 2002.

[3] Y. D. Rubinstein and T. Hastie, “Discriminative vs in-
formative learning,” in Proceedings of the KDD, 1997.

[4] A. Blum and T. Mitchell, “Combining labeled and
unlabeled data with co-training,” in Proceedings
of the Workshop on Computational Learning Theory
(COLT), Madison, WI, July 1998.

[5] L. S. Larkey and W. B. Croft, “Combining classifiers
in text categorization,” in Proceedings of the SIGIR,
Zurich, Switzerland, August 1996.

[6] H. van Halteren, J. Zaviel, and W. Daelemans, “Im-
proving accuracy in word class tagging through com-
bination of machine learning systems,” Computational
Linguistics, vol. 27, no. 2, pp. 199-230, 2001.

[7] K. Al-Kofahi, A. Tyrrell, A. Vachher, T. Travers, and
P. Jackson, “Combining multipleclassifiers for text
categorization,” in Proceedings of the CIKM, Atlanta,
GA, November 2001.

[8] Y. H. Li and A. K. Jain, “Classification of text doc-
uments,” The Computer Journal, vol. 14, no. 8, pp.
537-546, 1998.

[9] R. E. Schapire, “The boosting approach to machine
learning: An overview,” in Proceedings of the MSRI
Workshop on Nonlinear Estimation and Classification,

2002.

[10] C.D. Manning and H. Schutze, Foundations of Statis-
tical Natural Language Processing, MIT Press, 1999.

[11] A. Agresti, Categorical Data Analysis, chapter 4, pp.
84-117, John Wiley and Sons, 1990.

[12] J. R. Quinlan, C4.5: Programs for machine learning,
Morgan Kaufmann, 1993.

[13] R. E. Schapire and Y. Singer, “Boostexter: A boosting-
based system for text categorization,” Machine Learn-
ing, vol. 39, no. 2/3, pp. 135-168, 2000.

[14] S. Ruggieri, “YaDT - Yet another Decision Tree
builder,” http://kdd.di.unipi.it/YaDT/.

