
Logical Neighborhoods:
A Programming Abstraction
for Wireless Sensor Networks

Luca Mottola and Gian Pietro Picco
Dipartimento di Elettronica e Informazione, Politecnico di Milano, Italy

{mottola,picco}@elet.polimi.it

Abstract. Wireless sensor networks (WSNs) typically exploit a singlebase sta-
tion for collecting data and coordinating activities. However, decentralized archi-
tectures are rapidly emerging, as witnessed by wireless sensor and actuator net-
works (WSANs), and in general by solutions involving multiple data sinks, het-
erogeneous nodes, and in-network coordination. These settings demand new pro-
gramming abstractions to tame complexity without sacrificing efficiency. In this
work we introduce the notion oflogical neighborhood, which replaces the physi-
cal neighborhood provided by wireless broadcast with a higher-level, application-
defined notion of proximity. The span of a logical neighborhood is specified
declaratively based on the characteristics of nodes, alongwith requirements about
communication costs. This paper presents the SPIDEY programming language for
defining logical neighborhoods, and a routing strategy thatefficiently supports the
communication enabled by its programming constructs.

1 Introduction

Wireless sensor networks (WSNs) typically exploit a singlebase station for collecting
data and coordinating activities. Habitat monitoring [1],a common example applica-
tion, is paradigmatic in this respect, featuring asinglebase station collecting data from
a high number ofhomogeneousnodes. Nevertheless, decentralized architectures are
rapidly emerging where multiple base stations are employed, different applications run
on the same hardware, or heterogeneous nodes are deployed. These approaches find
their extreme realization in wireless sensor and actor networks (WSANs) [2], where
nodes not only gather data from the environment, but are alsocapable of affecting it by
performing a variety of actions. Applications range from localization to control systems
in tunnels or buildings, interactive museums, and home automation [3].

In contrast with mainstream WSNs, characterized by a singleapplication gathering
and reporting data, these decentralized settings are composed of many collaborating
tasks, each affecting only a portion of the system. For instance, a WSAN for building
control and monitoring can be decomposed in at least three main tasks, i.e., structural
monitoring, in-door environment monitoring, and responseto extreme events such as
fire or earthquakes [4]. To realize the latter functionality, the nodes controlling wa-
ter sprinklers must monitor nearby temperature sensors andsmoke detectors and take
appropriate measures when andwhereneeded. Therefore, the application logic now
residesin the network: including a central base station in the control loop degrades

2

system performance and reliability without any sensible advantage [2]. Dealing with
this change of perspective demands new programming abstractions to tame complexity
without sacrificing efficiency. Indeed, the developer is concerned not only with the ap-
plication logic, but also with identifying the system portions to be involved and how to
reach them. As no dedicated programming constructs exist for the latter task, the result
is additional programming effort, increased complexity, and less reliable code.

This work tackles the aforementioned issues through the notion of logical neighbor-
hood, an abstraction replacing the conventional notion of physical neighborhood—i.e.,
the set of nodes in the communication range of a given device—with a logical notion of
proximity determined by applicative information. Logicalneighborhoods are specified
declaratively using the SPIDEY language, conceived to be a simple extension of exist-
ing WSN programming languages (e.g., nesC [5] in the case of TinyOS [6]). Using our
enhanced communication API, a message can be broadcast to a logical neighborhood,
instead of nodes within communication range. This way, application programmers still
reason in terms of neighborhood relations and broadcast messages, but can now specify
declarativelywhich nodes to consider as neighbors and, therefore, the span of com-
munication. As such, our abstraction may foster a fresh lookat existing mechanisms,
algorithms, and programming models by replacing their conventional notion of physical
neighborhood with our programmer-defined, logical one.

Clearly, our programming abstraction is ultimately of practical interest only in the
presence of an appropriate and efficient routing mechanism supporting it. In princi-
ple, existing solutions can be exploited (e.g., [7]), but they exhibit various performance
drawbacks, as they are based on different assumptions and scenarios. Therefore, in this
paper we also present a novel routing protocol that is expressly devised to support our
abstraction and leverages the kind oflocalized interactions[8, 9] characterizing the
aforementioned decentralized scenarios. The evaluation included in this paper shows
that indeed this routing protocol efficiently supports logical neighborhoods, therefore
demonstrating the feasibility of our overall approach.

The rest of the paper is organized as follows. Section 2 describes the logical neigh-
borhood abstraction and the SPIDEY language. Section 3 illustrates the novel routing
strategy supporting our communication abstraction, whileSection 4 evaluates its per-
formance. Section 5 compares our approach against related work. Finally, Section 6
ends the paper with brief concluding remarks.

2 Programming Constructs for Logical Neighborhoods

The proposed abstraction revolves around only two concepts: nodesandneighborhoods.
A (logical) node is the application-level representation of a physical node, and de-

fines which portion of its data and characteristics is made available by the programmer
to the definition of any logical neighborhood. The definitionof a logical node is en-
coded in anode template, which specifies the node’s exported attributes. This is used
to instantiate the (logical) node, by specifying the actualsource of data. To make these
concepts more concrete, Figure 1 (top) shows a SPIDEY code fragment that defines a
template for a generic device and instantiates it by bindingeach template attribute to
an expression of the target language, e.g., a constant or function. Template attributes

3

node template Device
static Function
static Type
static Location
dynamic Reading
dynamic BatteryPower

create node ts from Device
Function as "sensor"
Type as "temperature"
Location as "room1"
Reading as getTempReading()
BatteryPower as getBatteryPower()

neighborhood template HighTempSens(threshold)
with Function = "sensor" and

Type = "temperature" and
Reading > threshold

create neighborhood hts100
from HighTempSens(threshold : 100)
max hops 2
credits 30

Fig. 1: Sample node (top) and neighborhood (bottom) definition and instantiation.

can bestatic or dynamic. The former represent information assumed to be time-
invariant (e.g., the type of measurement a sensor provides), while the latter represents
information changing with time, (e.g., the current sensor reading). The decision about
whether an attribute is static or dynamic depends on the deployment scenario. Making
the distinction explicit may enable optimizations at the routing layer, as discussed in
Section 3.

A (logical) neighborhood is the set of nodes satisfying a constraint on the nodes’
attributes. As with nodes, the definition of neighborhoods is encoded in a template,
which contains a predicate that essentially serves as the membership function deter-
mining whether a node belongs to the logical neighborhood. For instance, the neigh-
borhood templateHighTempSens at the bottom of Figure 1 is based on theDevice
template in the same figure, and selects nodes that host temperature sensors and are
currently reading a value higher than a given threshold. As exemplified in the SPIDEY

code fragment, a neighborhood template can be parameterized, with the actual param-
eter values provided by expressions of the target language upon neighborhood instan-
tiation. Moreover, the instantiation of a neighborhood template specifies additional re-
quirements aboutwhereandhowthe neighborhood is to be constructed and maintained.

Fig. 2: A visualization of logical neighborhoods.

4

For instance, Figure 1 specifies that the predicate defined intheHighTempSens tem-
plate is evaluated only on nodes that are at a maximum of 2 hopsaway and by spend-
ing a maximum of 30 “credits”. The latter is an application-defined measure of cost,
further detailed next, which enables the programmer to retain some control over the
resources being consumed during the distributed processing necessary to deliver mes-
sages to members of a logical neighborhood. A pictorial representation of the example,
visualizing the logical neighborhood concept, is providedin Figure 2. There, the black
node is the one defining the logical neighborhood, and its physical neighborhood (i.e.,
nodes lying in its direct communication range) is denoted bythe dashed circle. The
dark nodes are those satisfying the predicate in the neighborhood template in Figure 1
(bottom) when the threshold is set to 100oC. However, the nodes included in the actual
neighborhood instancehts100 are only those lying within 2 hops from the sending
node, as specified through thehops clause during instantiation.

In essence, as graphically illustrated

Fig. 3: Templates and their instantiation.

in Figure 3, templates definewhat data
is relevant to the application, while the
instantiation process constrainshowthis
data should be made available by the un-
derlying system. Separating the two per-
spectives has several beneficial effects.
The same template can be “customized”
through different instantiations. For in-
stance, the very same template at the bottom of Figure 1 couldbe used to specify a
logical neighborhood with a different threshold or a different physical span. Moreover,
this distinction naturally maps on an implementation that maintains a neighborhood
by disseminating its template to be evaluated against the values exported by a node
instance, and uses instead the additional constraints specified at instantiation time to
direct the dissemination process.

SPIDEY provides additional simple and yet expressive constructs.Logical opera-
tors such asand, or, andnot are provided to define complex predicates on node
templates. Moreover, as logical neighborhoods essentially identify sets of nodes, it be-
comes natural to express a neighborhood as a composition with already existing ones,
using conventional set operators such as union, intersection, subtraction, and inclusion.
Finally, the SPIDEY language contains also features enabling the creation ofvirtual
nodes, built by binding node attributes to aggregation functionsoperating on a logical
neighborhood. Virtual nodes spare programmers from the burden of directly handling
the communication needed to gather and aggregate data from the neighborhood mem-
bers, and can be used recursively to create higher-level abstractions. More details can be
found in [10]. The complete grammar of the SPIDEY language is shown in Appendix A.

Our language also provides the ability to control the cost involved in communicating
towards a neighborhood, through thecredits clause. Communication cost is defined
in terms of the basic operation of sending a broadcast message to physical neighbors
(the node’ssending cost), and is measured incredits. The mapping between cost and
credits is specified by the programmer on a per-node basis through ause cost con-
struct, which delegates the computation of this mapping to an expression of the target

5

language, e.g., a function. Therefore, the programmer can define a vast array of map-
pings, from a straightforward one where the sending cost is fixed, to sophisticated ones
where it varies dynamically to adapt to context changes (e.g., low battery power). More-
over, different nodes can have different functions, e.g., yielding higher costs for tiny,
battery-powered sensors, and lower costs for resource rich, externally-powered nodes.
The overall number of credits necessary to communicate withthe members of a logical
neighborhood is evaluated as the sum of the costs incurred inby each node involved
in routing, with each individual cost evaluated according to the function specified in
theuse cost declaration. Therefore, the ability to set the maximum amount of cred-
its spent in communication in a logical neighborhood enables programmers to exploit
different trade-offs between accuracy and costs. Neighborhoods endowed with many
credits ensure a broader coverage but incur higher costs, while those with few credits
may not reach all the specified nodes but limit resource consumption.

Logical neighborhoods must ultimately be used in conjunction with communication
facilities, to enable interaction with the neighborhood members. On the other hand, the
notion of logical neighborhood is essentially a scoping mechanism, and therefore is in-
dependent from the specific communication paradigm chosen.For instance, one could
couple it with the tuple space paradigm to enable tuple sharing and access only within
the realm of a logical neighborhood. In our current communication API we took the
minimalist—and yet most general—approach of coupling logical neighborhoods with
the standard broadcast-based message passing facility found in WSNs. As a result, our
API includes simplesend andreceive operations mimicking those provided by the
underlying operating system. For instance, our TinyOS implementation redefines the
operations in theGenericComm module by extending thesend operation with an
additional parameter representing the logical neighborhood where a message must to
be delivered, i.e., the scope of that particular message. Essentially, we are replacing the
broadcast facility commonly made available by the operating system with one where
message recipients are not determined by the physical communication range, rather
by membership in a programmer-defined logical neighborhood. In addition, areply
primitive is also included to simplify communication from neighborhoodmembers back
to the message sender. To enable this degree of generality and flexibility, it is funda-
mental for our abstraction and API to be supported by efficient routing strategies. A
description of our solution to the routing problem is described in the next section.

3 Routing for Logical Neighborhoods

The logical neighborhood abstraction is essentially independent of the underlying rout-
ing layer. Nevertheless, its characteristics cannot be easily accommodated by existing
data-centric routing approaches. Indeed, these are usually conceived to solve the prob-
lem of data collection from a homogeneous nodes, thus focusing on how to collect
efficiently the data from many sensors to a single node—the sink. In our approach the
perspective is reversed: routing must efficiently transmitan application message from a
single node (the sender) to those matching the neighborhoodspecification. Moreover,
logical neighborhoods are a scoping mechanism, and therefore can be used in conjunc-

6

tion with several mechanisms other than data collection, e.g., to direct code updates
only towards nodes with obsolete versions. As such, some of the techniques exploited
by these protocols (e.g., route reinforcement based on datarates as in [7]) not only can-
not be directly applied, but are actually complementary to ours. Moreover, our goal is to
devise a protocol that captures the localized interactionsthat should characterize com-
munication in decentralized, multi-sink WSNs and WSANs. This rules out solutions
exploiting system-wide tree overlays as in TinyDB [11]. Finally, credit management is
a distinctive feature of our approach that would anyway require appropriate integration.

Motivated by these considerations, this section describesa routing strategy designed
to support efficiently and effectively the logical neighborhood abstraction. Our routing
approach isstructure-less(i.e., no overlay is explicitly maintained) and is based on the
notion of local search[12]. Nodes advertise theirprofile, i.e., the list of attribute-value
pairs specified by their template, and in doing so build a distributed state space con-
taining information about the cost of reaching a node with given data. This information
dissemination is localized and governed by the density of devices with similar profiles.
Messages sent to a neighborhood contain its template, whichdetermines a projection of
the state space, i.e., the part to be considered for matching. In a nutshell, the message
“navigates” towards members of a neighborhood by followingpaths along which the
cost associated with a given neighborhood template is decreasing. The proposed rout-
ing approach is therefore composed of two parts: thestate space generationand the
search algorithm.

3.1 Building the State Space

In our scheme, whenever a new node is added to the system it broadcasts a PRO-
FILEADV message containing the node identifier, a (logical) timestamp, the node’s
profile containing attributes and their values, and a cost field initialized to zero. The
first two message fields are used to discriminate stale information, as the PROFILEADV

message is periodically re-broadcast (possibly with different content) by the node. An
example PROFILEADV is reported in Figure 4.

In addition, each node in the system storesSource Timestamp Node Profile Cost
Attribute Value

Function sensor
N54 72 Type temperature 2

Location room123

Fig. 4: An example ofPROFILEADV.

a State Space Descriptor(SSD) containing a
summary of the received PROFILEADV mes-
sages. An example is shown in Figure 5. The
Attribute andValuefields store information
previously received through a PROFILEADV

message. For each entry,Cost contains the minimum cost to reach a node with the
corresponding information, andSourcecontains the identifier of such node. TheLinks
field allows to store information more compactly, by retaining associations among en-
tries instead of duplicating them in the SSD. In Figure 5 eachentry is linked to the
others as they all come from the same PROFILEADV advertised by node N8.DecPath
andIncPathscontain routing information to direct the search process, as described in
Section 3.2. Finally, each entry in an SSD is associated witha lease (not shown), whose
expiration causes the removal of the entry not refreshed by anew PROFILEADV.

Upon receiving a PROFILEADV message, a node first updates the cost field in the
message by adding its own sending cost, obtained by evaluating the expression in the

7

Id Attribute Value Cost Links DecPath IncPaths Source

1 Function sensor 5 2,3 N37 N98, N99 N8
2 Type acoustic 5 1,3 N37 N98, N99 N8
3 Location room123 5 1,2 N37 N98, N99 N8

Fig. 5: An example ofState Space Descriptor (SSD).

use cost statement described in Section 2. Then, it compares each attribute-value
pair in the message against the content of the local SSD. A modification (entry inser-
tion or update) of the SSD is performed if an attribute-valuepair: i) does not exist in
the local SSD, or ii) it exists with a cost greater than the onein the message (after the
local update above). The update (or insertion) of an SSD entry involves establishing the
proper values in theLinksfield to keep track of the rest of the PROFILEADV message,
updating theDecPathfield with the identifier of the physical neighbor that sent the
PROFILEADV, and setting theSourcefield to the identifier of the node whose informa-
tion has been inserted in the PROFILEADV. For instance, assume the node storing the
SSD in Figure 5 has a sending cost of1, and receives the PROFILEADV in Figure 4. Its
local SSD is then updated as described in Figure 6 (changes shown in bold). Note how
theLinksfields are updated so that only the minimum cost to reach an entry is kept, and
yet the information about which entry came with which profileis not lost.

After a PROFILEADV has been processed locally, it is rebroadcastonly if at least one
SSD entry was inserted or updated, to propagate the state change. An example is shown
in Figure 7(a). The PROFILEADV is rebroadcast as received, except for the updatedCost
andSourcefields. Interestingly, the propagation of PROFILEADV messages enables a
node to determine if it lies, for some attribute-value pair,on a path where costs are
increasing. This occurs when a PROFILEADV is overheard, through passive listening,
with a cost greater than the corresponding pivot entry in theSSD. In this case, the
identifier of the broadcasting node is inserted in theIncPathsfield of the pivot entry.

Thus far, we assumed that PROFILEADV messages contain the whole node profile.
Nevertheless, if some dynamic attribute changes frequently, there is a trade-off between
the network load necessary to refresh the advertisements and the accuracy of the infor-
mation being propagated. A straightforward alternative approach is to disseminate only
part of the profile (e.g., static attributes) and perform additional matching at the receiver.
These trade-offs are ultimately solved based on the characteristics of the deployment
scenario, e.g., by considering information about the size of the logical neighborhood or
the network density.

Finally, note how, as shown in Figure 7(a), profile advertisements donot flood the
entire network, as a PROFILEADV is rebroadcast only upon an SSD update. Flooding
occurs only for the first advertisement, or more generally when only one node contains
a given attribute-value pair—a rather unusual case in the scenarios we target. Instead,

Id Attribute Value Cost Links DecPath IncPaths Source

1 Function sensor 3 3,4 N77 N98, N99 N54
2 Type acoustic 5 1,3 N37 N98, N99 N8
3 Location room123 3 1,4 N77 N98, N99 N54
4 Type temperature 3 1,3 N77 - N54

Fig. 6: The SSD of Figure 5 at a node with a sending cost of1, after receiving thePROFILEADV

message in Figure 4.

8

for a given set of attribute-value pairs, the state space generation builds a set of non-
overlappingregions, each containing a node with the considered information. Within a
region, each node knows how to route a message addressed to a neighborhood template
that includes attributes matching those of a node, along theroutes stored inDecPath.
Each region can be regarded as a “concavity” defined by costs in SSDs, with the target
node at the bottom (cost to reach it is zero) and nodes with increasing costs around it.
This is illustrated in Figure 7(b), where we show the SSDs after all the nodes performed
at least one profile advertisement. Next we describe how thisdistributed state space is
exploited for routing.

3.2 Finding the Members of a Logical Neighborhood

Local search procedures proceed step by step with subsequent movesexploring the
state space [12]. At each step, a set of further local moves isavailable to proceed in
the search process. Among them, some moves are accepted and generate further moves,
while the remaining ones are simply discarded. In general, accepting moves depends on
the heuristics one decides to employ given the particular problem tackled. In our case,
a moveis simply the sending of an application message containing the neighborhood
template. Upon receiving a message, the move is accepted andfurther send operations
are performed if the maximum number of hops, if any, has not been reached (as per the
hops construct), and either i) the move proceeds along a decreasing path, or ii) enough
unreserved credits are available on an exploring path. The notions ofdecreasing path,
exploring pathandcredit reservationare at the core of our routing solution and are
described next.

Decreasing paths.A path isdecreasingif it gets the message closer to nodes whose
profile matches the neighborhood template. To do so, messageproceeds towards min-
ima of the state space by traversing nodes that report an always smaller cost to reach a
potential neighborhood member.

To determine decreasing paths, a node must identify the state space projection de-
termined by a neighborhood template. To this end, the node finds in the local SSD
the entry matching the neighborhood template with the greatest cost, if any. This en-
try is calledpivot. If a pivot exists and is associated, via the SSDLinks field, to a
set of other entries matching the neighborhood template, the cost associated to the
pivot represents the number of credits needed to reach the closest matching node via
the path indicated by theDecPathfield. For instance, imagine the application issues a
send(m,n) operation through our enhanced communication API, to send the applica-
tion messagem to the neighborhoodn, and assumen is defined to address all acoustic
sensors. This neighborhood has itspivot in entry 2 of the SSD in Figure 6, and its pred-
icate (Function = sensor and Type = acoustic) is matched via the link pointing
from entry 2 to entry 1. Consequently, the node evaluates thecost to reach the closest
acoustic sensor as 5 and forwards the message towards N37. Due to the state space
generation process, messages following a decreasing path are certainly forwarded to-
wards nodes matching the neighborhood template. Indeed, these paths simply follow
the reverse paths previously setup by PROFILEADV messages originating from nodes
whose profile contains information matching the neighborhood template. Additionally,

9

(a) Building the state space (time goes from left to right). Arrow labels denote send-
ing of PROFILEADV messages, showing only the attribute-value (e.g.,A a), and
Cost fields. SSDs are shown with only attribute-value, Cost and DecPath fields. Af-
ter N1 disseminated its profile, N5’s PROFILEADV neednot be propagated system-
wide, but only where updates in SSDs are needed to make its presence known.

(b) After all the nodes performed at least
one profile advertisement, the SSDs con-
tain the costs to reach the closest node
with a given attribute-value pair.

(c) A message navigating the state space:
dashed lines represent exploring di-
rections, solid lines denote decreasing
paths. Arrow labels represent application
messages showing only the unreserved
credits and the intended recipient.

Fig. 7: Building and navigating the state space.

note how the reply feature provided by our communication APIcan be implemented
trivially by keeping track of the reverse path along which a message is received.

Exploring paths. If a message were to follow decreasing paths only, it would easily
get trapped into local minima of the state space. To avoid this, we allow messages to be
propagated also alongexploring paths, i.e., directions where the cost to reach the closest
node with a particular attribute-value pair is non-decreasing. Exploring paths include
directions where the cost does not change (e.g., at the border between two regions)

10

or where it increases. The latter are stored in theIncPathsSSD field, as discussed in
Section 3.1.

Activating multiple exploring paths at each hop is ineffective, as it is likely to gen-
erate many routes that are shortly after rejoined. Therefore, exploration proceeds along
a single increasing path, if available. Exploration on multiple paths, achieved through
physical broadcast, is activated only when the message reaches a neighborhood member
(i.e., a minima of the state space), or after the message has travelled forE hops, withE
being a tunable protocol parameter. This design choice stems from the observation that
increasing paths are key in enabling the message to “escape”local minima by directing
it towards the boundary where a region confines with a different one, and a different
decreasing path may become available.

Credit reservation. The instantiation of a neighborhood template may specify the cred-
its to be spent for communicating with neighborhood members, as discussed in Sec-
tion 2. To support this feature, the number of credits is appended by the sender to every
application message sent to a given neighborhood. A node maydecide to split these
credits in two: one partreservedto be spent along decreasing paths and the other along
exploring ones. The splitting occurs at the first node that identifies a decreasing path
for the message being routed, and is effected by removing thereserved credits from
the amount in the message, therefore effectively reservingthe credits along the entire
decreasing path. For instance, Figure 7(c) shows a message sent by N5 with6 credits,
targeting a neighborhood defined by a single predicateC = c. Neighborhood members
are shown in white. As the pivot in N5’s SSD reports a cost of2 to reach the node N3
matching the predicate, the message is forwarded to N3 with4 unreserved credits.

To deal with credit reservation, a node checks whether its identifier is inserted in the
message by the sender node as the next hop along a decreasing path towards a matching
node. If so, the node simply forwards the message to the next hop on the decreasing path
(found in its SSD) without modifying the credit field, since the necessary credits have
already been reserved by the first node on the decreasing path. Otherwise, if exploring
paths are to be followed, the node “charges” the message for the number of credits as-
sociated to the node sending cost, as per theuse cost declaration. The remaining
(unreserved) credits are assigned to the exploring paths the local node decides to pro-
ceed on. Normally, all these credits are assigned to the single message forwarded along
the increasing path. However, if multiple paths are explored in parallel through broad-
cast, according to the heuristics described above, the unreserved credits are divided by
the number of neighbors before broadcasting the message. InFigure 7(c), N3 receives
a message with4 remaining credits. Since it is a neighborhood member, the message
must be broadcast along all the available exploring paths. Therefore, N3 charges the
message for its own sending cost (2) and divides the remaining credits by the number
of its physical neighbors. This results in activating two exploring directions, each with
a 1-credit budget.

4 Evaluation

This section reports about an evaluation of our routing protocol for logical neighbor-
hoods. To this end, we implemented it on top of TinyOS [6] and evaluated it using the

11

Fig. 8: State space generation. The firstPROFILEADV message spreads throughout the system
as no node disseminated its profile yet. Profiles advertised by other nodes propagate only until
a smaller cost is encountered, partitioning space in regions centered on neighborhood members.
Note how the white node does not receive the message in the first propagation—due to collisions—
but eventually receives it in later retransmissions.

TOSSIM [13] simulator. Our goals were to verify that the protocol behaved as expected
for what concerns the generation of the state space and the cost-aware routing of mes-
sages, and to characterize its performance. Clearly, this is key to assess the feasibility
of our approach and abstraction. The deployment scenario wesimulated is a grid where
each node can communicate with its four neighbors. This choice not only simplifies the
interpretation of results by removing the bias induced by more unstructured scenarios,
but also models well some of the settings we target, e.g., indoor WSN deployments [14].

Analyzing the Routing Behavior.Before characterizing the performance of our rout-
ing protocol, we analyze whether its behavior matches our design criteria. First, we
verify separately the two basic mechanisms underlying our routing, i.e., the state space
generation and its “navigation” by applicative messages addressed to a logical neigh-
borhood. As for the former, the key property we want to verifyis that the propagation
of PROFILEADV messages is localized and partitions the system in non-overlapping
regions, each with routing information towards a neighborhood member.

To simplify the analysis of results we developed a simple visualization tool that,
given a simulation log and a neighborhood template, displays the propagation of PRO-
FILEADV as well as applicative messages. Figure 8 shows a sample output of our tool
where the logical neighborhood we consider selects three members (represented as cir-
cled nodes) based on their profiles, and the node sending costis equal for all devices.
The three snapshots correspond to the points in time when a given PROFILEADV, gen-
erated by one of the neighborhood members, has ceased to propagate. As it can be
observed, the first PROFILEADV is propagated in the whole system, as no other profile
information exists yet. However, when the second member propagates its profile, this is
spread only until it reaches a node where the cost is less thanthe one in PROFILEADV.
This process partitions the state space in two non-overlapping regions. Eventually, the
system reaches a stable situation where the number of regions is equal to the number of
neighborhood members, as shown in Figure 8—right.

For what concerns routing of applicative messages, Figure 9shows the output of
our visualization tool when a message is sent to the same neighborhood of Figure 8.
The credits associated to the neighborhood are set as an over-approximation of the

12

credits needed to reach the same three nodes along the shortest path. (More details
about setting credits are reported later.) Note how the one in the picture is a worst-case
scenario where the sender belongs to the same neighborhood the message is addressed
to. In this situation, the message starts from a minimum of the state space, i.e., without
any decreasing path. Therefore, the initial moves must be exploring ones, until a region
different from the one where the message originated is reached. Despite this unfavorable
initial situation, the message reaches all the intended recipients by alternating moves
along decreasing paths with exploration steps.

The effectiveness of our mechanisms in reduc-

Fig. 9: An applicative message nav-
igates the state space. Solid lines
are decreasing paths, dashed lines
are exploring paths.

Fig. 10: A message navigating a
state space where sending costs fol-
low the distribution at the bottom.

ing communication costs is unveiled when hetero-
geneous devices with different sending costs are de-
ployed. Figure 10 shows a situation with a single
neighborhood member and a message sender placed
at the opposite corners of the grid, and where send-
ing costs are assigned according to an integer ap-
proximation of a bi-dimensional Gaussian distribu-
tion. The figure shows the message dutifully steer-
ing away from the network center, where sending
costs are higher, and striking a balance between the
length of its route and the sending cost of the no-
des on it. Thanks to the way our state space is gen-
erated through profile advertisements and SSD up-
dates, this path is guaranteed to be, within a region,
the one with the minimum cumulative sending cost.

Performance Characterization and Comparative
Evaluation. Next, we wanted to study the perfor-
mance of our protocol. Therefore, we defined a set
of synthetic scenarios with a variable number of no-
des placed 35 ft apart and with a communication
range1 of 50 ft. Each run lasted 1000 s—a value for
which we verified all the measures exhibit a variance
less than1%. In dynamic scenarios, this approach
provides more precise results than only averaging
over multiple runs [15].

Each node is configured with a single (static) at-
tribute whose value is randomly chosen from a pre-
defined setA at system start-up. This profile is dis-
seminated by PROFILEADV messages once every
15 s. A single sender node is placed in the center
of the grid, generating applicative messages at the
rate of 1 msg/s towards a single neighborhood defined with an equality predicate over
the node profiles. In this setting, the number of receivers isdetermined by|A|, and in
our case yields a number of neighborhood members of about 10%of the nodes in the
system. The node sending cost is constant and identical throughout the system.

1 We used the TinyOS’LossyBuilder to generate topology files with transmission error
probabilities taken from real testbeds.

13

Credits are assigned by computing the average cost to reach each node in the system
along the shortest path and weighing this value by the probability of the node being a
receiver. Then, we increased this minimal value by about onethird, to give each message
some extra credits to spend on exploratory paths. This approach clearly overestimates
the actual cost to reach a receiver, e.g., because it does notconsider that two receivers
may share part of the path from the sender. The definition of a model supporting fine-
tuning of credit assignment to neighborhoods deserves further investigation based on
the large body of literature on ad-hoc network density and random graph theory, and is
our immediate research goal.

In the absence of directly applicable solutions to compare against, we chose a gossip
approach as a baseline, because it is general enough to address the characteristics of our
scenarios (e.g., lack of knowledge about the nature of applicative data) and yet generates
less traffic than a straightforward flooding protocol. We setthe protocol parameters so
that gossip rebroadcasts a packet received for the first timewith a probabilityP = 0.75,
and our solution triggers new exploring directions once every E = 4 hops. This latter
choice is a reasonable trade-off between generating too many redundant exploratory
paths (E too small) and never activating exploratory paths within a region (E > d, with
d the region diameter).

We based our evaluation on three metrics, namely i) themessage delivery ratio,
defined as the ratio between the messages received by neighborhood members and those
that have actually been sent; ii) thenetwork overhead, defined as the overall number of
messages exchanged at the MAC layer, thus including PROFILEADV messages; and
(iii) the average number ofnodes involvedin routing. This figure is further divided
into the nodes processing a message at the MAC layer, and those processing one at
the application layer. Message delivery is a measure of how effectively a protocol steers
messages towards the intended recipients. On the other hand, in the absence of a precise
model to evaluate a node’s power consumption, ii) and iii) provide a sense of how a
protocol exploits communication and computational resources, respectively.

Figure 11 illustrates our simulation results along the aforementioned metrics and
w.r.t. the network size. Each chart is the average result of 5different runs. As it is clear
from the figures, our protocol outperforms gossip in all metrics. Message delivery is
consistently higher than in gossip, and is even significantly less sensitive to an increase
of the network size. As for network overhead, we provide additional insights by show-
ing the results for our protocol with and without PROFILEADV advertisements, and by
comparing against the ideal lower bound provided by routingalong the minimum span-
ning tree rooted at the sender and connecting all neighborhood members (computed
with a global knowledge of network topology). The chart evidences that we generate
almost half of the overhead of gossip and yet deliver significantly more messages. The
gap between the two is even more evident in the curve without the PROFILEADV mes-
sages, which essentially highlights how efficient is the pure routing mechanism, once
the routing information is in place. This is particularly significant because the dissem-
ination of PROFILEADV during state space generation is a fixed cost that is paid once
and for all. In other words, adding another sender—regardless of the neighborhood it
addresses—doesnot increment the overhead due to state space generation. In addition,
the chart shows how the performance of our protocol in this case is closer to the ideal

14

N
od

es
In

vo
lv

ed
N

et
w

or
k

O
ve

rh
ea

d
M

es
sa

ge
D

el
iv

er
y

 0

 0.2

 0.4

 0.6

 0.8

 1

 50 100 150 200 250 300 350 400

D
el

iv
er

y
ra

tio

Network Size

Gossip Propagation P=0.75
Spidey Routing E=4

 0

 20

 40

 60

 80

 100

 50 100 150 200 250 300 350 400

O
ve

rh
ea

d
(t

ho
us

an
ds

 o
f m

es
sa

ge
s)

Network Size

Gossip Propagation P=0.75
Spidey Routing E=4
Spidey Routing E=4 (excluding ProfAdv)
Minimum Spanning Tree

 0

 20

 40

 60

 80

 100

 50 100 150 200 250 300 350 400

%
 n

od
es

 in
vo

lv
ed

 in
 a

 m
es

sa
ge

 s
en

d

Network Size

Gossip Propagation P=0.75
Spidey Routing E=4 (physical layer)
Spidey Routing E=4 (application layer)
Minimum Spanning Tree (physical layer)
Minimum Spanning Tree (application layer)

(a) Static Network

 0

 0.2

 0.4

 0.6

 0.8

 1

 50 100 150 200 250 300 350 400

D
el

iv
er

y
ra

tio

Network Size

Gossip Propagation P=0.75
Spidey Routing E=4

 0

 20

 40

 60

 80

 100

 50 100 150 200 250 300 350 400

O
ve

rh
ea

d
(t

ho
us

an
d

of
 m

es
sa

ge
s)

Network Size

Gossip Propagation P=0.75
Spidey Routing E=4
Spidey Routing E=4 (excluding ProfAdv)
Minimum Spanning Tree

 0

 20

 40

 60

 80

 100

 50 100 150 200 250 300 350 400

%
 n

od
es

 in
vo

lv
ed

 in
 a

 m
es

sa
ge

 s
en

d

Network Size

Gossip Propagation P=0.75
Spidey Routing E=4 (physical layer)
Spidey Routing E=4 (application layer)
Minimum Spanning Tree (physical layer)
Minimum Spanning Tree (application layer)

(b) Dynamic Network (failures)

Fig. 11: Evaluation against gossip and ideal multicast, in static and dynamic scenarios.

lower bound than to gossip. Finally, for what concerns the nodes involved in process-
ing, Figure 11 shows that our performance at MAC layer is in between gossip and the
minimum spanning tree, while at the application layer our routing requires only about
half of the nodes exploited by gossip to process applicationmessages and exhibits a
performance closer to the minimum spanning tree. Therefore, our protocol is likely to
provide a considerably longer network lifetime, although aprecise characterization of
the energy consumption is beyond the scope of this paper. This result is due to our
guided exploration process, which privileges unicast messages (that, unlike broadcast,
do not reach the application layers at all nodes in range), thus saving processing. In
contrast, gossip explores the system in a completely “blind” way.

As shown in the right column of Figure 11, the evaluation was carried out also in a
more dynamic scenario where 10% of the nodes are randomly turned off for 30 s and

15

then reactivated without allowing any settling time in between. Clearly, we excluded
from this random selection the intended message recipients, as this would irremediably
impact the message delivery ratio. A similar setting has already been used in existing
works on routing for WSNs (e.g. [7]) to simulate node failures or the addition of new
nodes. As Figure 11 shows, our protocol still provides higher delivery than gossip at
lower communication and computational costs, despite nodefailures. In particular, al-
though nodes joining or leaving the system generate additional profile advertisements
to change the shape of the state space, the network overhead remains far from the one
of gossip. This result is due to the ability of the state spaceto change its shape very
rapidly in response to network topology changes. For instance, a single PROFILEADV

message dissemination among nodes in close proximity to thechanging one is usually
all it is needed to restore a stable situation.

Finally, the results illustrated in this section should be regarded as worst-case. In-
deed, not only the credit assignment can likely be fine-tunedto waste less resources,
but also our choice of neighborhood predicates (single disjuncts) is restrictive. Indeed,
it forces each message to follow at most a single decreasing path at a time: neighbor-
hood templates containing multiple elementary disjuncts instead can be routed more
accurately by exploiting multiple decreasing paths, therefore further increasing deliv-
ery. Moreover, setting uniform costs throughout the systemdoes not leverage the ability
of our protocol to route in a cost-aware fashion. Nevertheless, we chose these settings
to be fair to gossip, which does not provide these advanced capabilities.

5 Related Work

Only few works propose distributed abstractions for WSNs that support some notion of
scoping. Moreover, unlike the strongly decentralized scenarios we target in this work,
many assume a single data sink.

The work closer to ours is the neighborhood abstraction described in Hood [16],
where each node has access to a local data structure where attributes of interest provided
by (physical) neighbors are cached. However, only homogeneous nodes are assumed.
Moreover, data collection is built into the constructs and therefore, as stated in Sec-
tion 3, communication is expected to flow only according to a many-to-one paradigm.
Finally, the current implementation considers only 1-hop neighbors and is mainly based
on broadcasting all attributes and performing filtering on the receiver’s side. Clearly, our
framework is much more flexible as it provides a general application-defined neighbor-
hood abstraction, which is decoupled from the application functionality and therefore
can be used for purposes other than data collection (e.g., network reprogramming), as
well as in conjunction with it to support efficiently heterogeneous scenarios.

The work on Abstract Regions [17], instead, proposes a modelwhere<key,value>
pairs are shared among the nodes belonging to a givenregion. The span of a region is
based mainly on physical characteristics of the network (e.g., physical or hop-count dis-
tance between sensors), and its definition requires a dedicated implementation. There-
fore, each region is somehow separated from others, and regions cannot be combined.
This results in a much lower degree of orthogonality and flexibility with respect to
our approach. Moreover, the concept oftuning interfaceprovides access to a region’s

16

implementation, enabling the tweaking of low-level parameters (e.g., the number of
retransmissions). Instead, our approach provides a higher-level, user-defined notion of
cost that can be used to control resource consumption. In TinyDB [11], materialization
points create views on a subset of the system. In this sense, common to our work is the
effort in providing the application programmer with higher-level network abstractions.
However, the approach is totally different, as TinyDB forces the programmer to a spe-
cific style of interaction (i.e., a data-centric model with SQL-like language) and targets
scenarios where a single base station is responsible for coordinating all the application
functionality. SpatialViews [18] is a programming language for mobile ad-hoc networks
wherevirtual networkscan be defined depending on the physical location of a node and
the services it provides. Computation is distributed across nodes in a virtual network
by migrating code from node to node. Common to our work is the notion of scoping
virtual networks provides. However, SpatialViews targetsdevices much more capable
than ours, focuses on migrating computation instead of supporting an enhanced com-
munication facility as we do, and yet provides less general abstractions. Finally, in [19],
the authors propose a language and algorithms supporting generic role assignment in
WSNs with an approach that, in a sense, is dual to ours. In fact, their approachim-
posescertain characteristics on nodes in the system so that some specified requirements
are met, while in our approach the notion of logical neighborhoodselectsnodes in the
system based on their characteristics.

As for our routing protocol, we were influenced by Directed Diffusion [7] in using a
soft-state approach based on periodic refresh for storing routes. However, our solution
is radically different as it targets much more general scenarios. We do not assume data
collection as the main communication functionality, and therefore we cannot rely on
any knowledge about message content, required in Directed Diffusion for interpolation
along failing paths. Similarly, we take into account an explicit notion of communication
cost without relying on an application-defined notion of data rate. Moreover, an impor-
tant difference is that our profile advertisements do not propagate to the whole network,
unlike interests in Directed Diffusion. Finally, routing in Directed Diffusion is entirely
determined by gradients, while we make the system more resilient to changes by allow-
ing exploratory steps, whose use is nevertheless under the control of the programmer
through the credit mechanism.

6 Conclusions and Future Work

This paper presented the SPIDEY language and a routing protocol supporting logical
neighborhoods, a novel programming abstractions for WSNs.Logical neighborhoods
capture sets of nodes with functionally related characteristics. SPIDEY constructs en-
able the programmer to specify neighborhoods declaratively, and yet control the trade-
off between accuracy and resource consumption using an application-defined notion of
cost. This latter information is used by our dedicated routing protocol, which supports
efficiently our abstraction.

The benefits of our proposal impact two orthogonal aspects. First, developers can
concentrate on the actual application goals while relying on logical neighborhoods as a
way to logically partition the system and interact with it. We conjecture that applications

17

built on top of our abstraction result in cleaner, simpler, and more reusable implemen-
tations. A qualitative and quantitative evaluation of the advantages our approach brings
to the development task is currently being carried on. Second, our routing protocol
achieves a longer system lifetime and a better resource utilization, by focusing only on
the nodes that actually need to be involved.

In this paper, we coupled logical neighborhoods with the broadcast-based primitives
typically provided by the operating system. As we pointed out, this choice simplifies the
programmer’s task, and opens up opportunities for adaptingexisting techniques by re-
placing physical with logical neighborhoods. Our future research goals involve the cou-
pling of logical neighborhoods with different services (e.g., to support code deployment
only in given portions of the system) as well as alternative communication paradigms.
In particular, we plan to integrate logical neighborhoods with our tuple space middle-
ware TINY L IME [20] supporting scenarios with multiple mobile sinks, to empower
sinks with the ability to restrain data sharing to the desired set of nodes. Interestingly,
this scenario is easily encompassed by our routing protocol, as routes are determined
by the profiles of (static) sensors rather than the requests of (mobile) sinks. Finally, our
immediate research goal is to devise an analytical model of our routing protocol, to pro-
vide the programmer with the ability to properly dimension the allocated credits based
on the characteristics of the network, e.g., in terms of density and connectivity.

Acknowledgements.The work described in this paper is partially supported by the
Italian Ministry of Education, University, and Research (MIUR) under the VICOM
project, by the National Research Council (CNR) under the IS-MANET project, and by
the European Union under the IST-004536 RUNES project.

References

1. Mainwaring, A., Culler, D., Polastre, J., Szewczyk, R., Anderson, J.: Wireless sensor net-
works for habitat monitoring. In: Proc. of the1st ACM Int. Workshop on Wireless sensor
networks and applications. (2002) 88–97

2. Akyildiz, I.F., Kasimoglu, I.H.: Wireless sensor and actor networks: Research challenges.
Ad Hoc Networks Journal2(4) (2004) 351–367

3. Petriu, E., Georganas, N., Petriu, D., Makrakis, D., Groza, V.: Sensor-based information
appliances. IEEE Instrumentation and Measurement Mag.3 (2000) 31–35

4. Dermibas, M.: Wireless sensor networks for monitoring oflarge public buildings
(2005) Tech. Report, University of Buffalo. Available atwww.cse.buffalo.edu/
tech-reports/2005-26.pdf.

5. Gay, D., Levis, P., von Behren, R., Welsh, M., Brewer, E., Culler, D.: The nesC language: A
holistic approach to networked embedded systems. In: Proc.of the ACM SIGPLAN Conf.
on Programming Language Design and Implementation (PLDI’03). (2003) 1–11

6. Hill, J., Szewczyk, R., Woo, A., Hollar, S., Culler, D., Pister, K.: System architecture direc-
tions for networked sensors. In: ASPLOS-IX: Proc. of the9

nt Int. Conf. on Architectural
Support for Programming Languages and Operating Systems. (2000) 93–104

7. Intanagonwiwat, C., Govindan, R., Estrin, D., Heidemann, J., Silva, F.: Directed diffusion
for wireless sensor networking. IEEE/ACM Trans. Networking 11(1) (2003) 2–16

8. Estrin, D., Govindan, R., Heidemann, J., Kumar, S.: Next century challenges: scalable co-
ordination in sensor networks. In: Proc. of the5

th Int. Conf. on Mobile computing and
networking (MobiCom). (1999)

18

9. Qi, H., P.T. Kuruganti: The development of localized algorithms in wireless sensor networks.
Sensors Journal2(7) (2002)

10. Mottola, L., Picco, G.: Programming Wireless Sensor Networks with Logical Neighbor-
hoods. In: Proc. of the the 1st Int. Conf. on Integrated Internet Ad hoc and Sensor
Networks (InterSense 2006), Nice (France) (2006) (Short paper). To appear. Available at
www.elet.polimi.it/upload/picco.

11. S.R. Madden, M.J. Franklin, J.M. Hellerstein, Hong, W.:TinyDB: an acquisitional query
processing system for sensor networks. ACM Trans. DatabaseSyst.30(1) (2005) 122–173

12. L.A. Wosley: Integer Programming. Wiley (1998)
13. Levis, P., Lee, N., Welsh, M., Culler, D.: Tossim: accurate and scalable simulation of entire

tinyos applications. In: Proc. of the1st Int. Conf. on Embedded Networked Sensor Systems
(SenSys). (2003) 126–137

14. Stoleru, R., J.A. Stankovic: Probability grid: A location estimation scheme for wireless
sensor networks. In: Proc. of the1st Int. Conf. on Sensor and Ad-Hoc Communication and
Networks (SECON). (2004)

15. Yoon, J., Liu, M., Noble, B.: Sound mobility models. In: Proc. of ACM MobiCom. (2003)
205–216

16. Whitehouse, K., Sharp, C., Brewer, E., Culler, D.: Hood:a neighborhood abstraction for
sensor networks. In: Proc. of the2nd Int. Conf. on Mobile systems, applications, and services
(MobiSys). (2004)

17. Welsh, M., Mainland, G.: Programming sensor networks using abstract regions. In:
Proc. of the1st USENIX-ACM Symp. on Networked Systems Design and Implementation
(NSDI04). (2004)

18. Ni, Y., Kremer, U., Stere, A., Iftode, L.: Programming ad-hoc networks of mobile and
resource-constrained devices. In: Proc. of the ACM SIGPLANConf. on Programming lan-
guage design and implementation. (2005) 249–260

19. Frank, C., Römer, K.: Algorithms for generic role assignment in wireless sensor networks.
In: Proc. of the3rd ACM Conf. on Embedded Networked Sensor Systems (SenSys). (2005)

20. Curino, C., Giani, M., Giorgetta, M., Giusti, A., A.L. Murphy, G.P. Picco: TINY L IME:
Bridging Mobile and Sensor Networks through Middleware. In: Proc. of the3rd IEEE Int.
Conf. on Pervasive Computing and Communications (PerCom).(2005) 61–72

A SPIDEY Grammar
<node_template> ::= node template <node_templ_id>

({static | dynamic} <field_name>)+

<node_instance> ::= create node <node_id> from <node_templ_id>
(<field_name> as {<target_lang_expr> |

<function_name>(<nhood_id>) every <time_period>})+

<nhood_template> ::= neighborhood template <nhood_templ_id>
[(<par_name>(,<par_name>)∗)]

[with <node_predicates>]
[[{min | max}] cardinality <integer_value>]
[{union | intersect | minus | on}

<nhood_templ_id> [<par_bindings>]]∗

<nhood_instance> ::= create neighborhood <nhood_id>[<par_bindings>]
from <nhood_templ_id>

[[{min | max}] hops <integer_value>]
[credits <numeric_value>]

<par_bindings> :: = (<par_name>:<target_lang_expr>
(,<par_name>:<target_lang_expr>)∗)

<cost_function> ::= use cost <target_lang_expr>

