Logical Neighborhoods:
A Programming Abstraction
for Wireless Sensor Networks

Luca Mottola and Gian Pietro Picco
Dipartimento di Elettronica e Informazione, Politecnidgdilano, Italy
{nottol a, picco}@let.polim.it

Abstract. Wireless sensor networks (WSNs) typically exploit a sirlzgse sta-

tion for collecting data and coordinating activities. Haege decentralized archi-
tectures are rapidly emerging, as witnessed by wirelessosemd actuator net-
works (WSANSs), and in general by solutions involving mukiplata sinks, het-
erogeneous nodes, and in-network coordination. Thesegettemand new pro-
gramming abstractions to tame complexity without sacrifjefficiency. In this

work we introduce the notion dbgical neighborhoodwhich replaces the physi-
cal neighborhood provided by wireless broadcast with adviggvel, application-

defined notion of proximity. The span of a logical neighbarthids specified

declaratively based on the characteristics of nodes, alithgequirements about
communication costs. This paper presents th8Y programming language for
defining logical neighborhoods, and a routing strategyeffatiently supports the
communication enabled by its programming constructs.

1 Introduction

Wireless sensor networks (WSNSs) typically exploit a sifggse station for collecting
data and coordinating activities. Habitat monitoring [AJcommon example applica-
tion, is paradigmatic in this respect, featuringiaglebase station collecting data from

a high number ohomogeneousodes. Nevertheless, decentralized architectures are
rapidly emerging where multiple base stations are emplayiéférent applications run

on the same hardware, or heterogeneous nodes are depldyesk dapproaches find
their extreme realization in wireless sensor and actor owdsv(WSANS) [2], where
nodes not only gather data from the environment, but arecalgable of affecting it by
performing a variety of actions. Applications range frorodtization to control systems

in tunnels or buildings, interactive museums, and homenraation [3].

In contrast with mainstream WSNs, characterized by a siagpdication gathering
and reporting data, these decentralized settings are ®dpaf many collaborating
tasks, each affecting only a portion of the system. For mttaa WSAN for building
control and monitoring can be decomposed in at least thrée t@sks, i.e., structural
monitoring, in-door environment monitoring, and respottsextreme events such as
fire or earthquakes [4]. To realize the latter functionalihe nodes controlling wa-
ter sprinklers must monitor nearby temperature sensorsanuke detectors and take
appropriate measures when antlere needed. Therefore, the application logic now
residesin the network including a central base station in the control loop degsad

system performance and reliability without any sensibleaathge [2]. Dealing with

this change of perspective demands new programming atistraito tame complexity
without sacrificing efficiency. Indeed, the developer isa@mmed not only with the ap-
plication logic, but also with identifying the system poris to be involved and how to
reach them. As no dedicated programming constructs exigttédatter task, the result
is additional programming effort, increased complexityd éess reliable code.

This work tackles the aforementioned issues through thiemof logical neighbor-
hood an abstraction replacing the conventional notion of ptaisieighborhood—i.e.,
the set of nodes in the communication range of a given dewvieigh-a logical notion of
proximity determined by applicative information. Logicaighborhoods are specified
declaratively using the SDEY language, conceived to be a simple extension of exist-
ing WSN programming languages (e.g., nesC [5] in the caséngfOiS [6]). Using our
enhanced communication API, a message can be broadcasidgizal Ineighborhood,
instead of nodes within communication range. This way, iappbn programmers still
reason in terms of neighborhood relations and broadcastages, but can now specify
declarativelywhich nodes to consider as neighbors and, therefore, the spanmmof co
munication. As such, our abstraction may foster a fresh ktodxisting mechanisms,
algorithms, and programming models by replacing their eatienal notion of physical
neighborhood with our programmer-defined, logical one.

Clearly, our programming abstraction is ultimately of pieal interest only in the
presence of an appropriate and efficient routing mechanigpasting it. In princi-
ple, existing solutions can be exploited (e.qg., [7]), beytlexhibit various performance
drawbacks, as they are based on different assumptions andrszs. Therefore, in this
paper we also present a novel routing protocol that is esprelevised to support our
abstraction and leverages the kindlotalized interactiong8, 9] characterizing the
aforementioned decentralized scenarios. The evaluatiduded in this paper shows
that indeed this routing protocol efficiently supports tmdineighborhoods, therefore
demonstrating the feasibility of our overall approach.

The rest of the paper is organized as follows. Section 2 thescthe logical neigh-
borhood abstraction and thee®EY language. Section 3 illustrates the novel routing
strategy supporting our communication abstraction, w8aetion 4 evaluates its per-
formance. Section 5 compares our approach against relatdd ®winally, Section 6
ends the paper with brief concluding remarks.

2 Programming Constructs for Logical Neighborhoods

The proposed abstraction revolves around only two conceptesandneighborhoods

A (logical) node is the application-level representatida @hysical node, and de-
fines which portion of its data and characteristics is maddaiie by the programmer
to the definition of any logical neighborhood. The definitimha logical node is en-
coded in anode templatewhich specifies the node’s exported attributes. This isluse
to instantiate the (logical) node, by specifying the actmlrce of data. To make these
concepts more concrete, Figure 1 (top) shows@8y code fragment that defines a
template for a generic device and instantiates it by binéiach template attribute to
an expression of the target language, e.g., a constant otidan Template attributes

node tenpl ate Device
static Function
static Type
static Location
dynami ¢ Readi ng
dynami ¢ Batt eryPower

create node ts from Device
Function as "sensor"
Type as "tenperature”
Location as "rooml"
Readi ng as get TenpReadi ng()
Batt eryPower as getBatteryPower ()

nei ghbor hood tenpl ate H ghTenpSens(t hreshol d)
with Function = "sensor" and
Type = "tenperature" and
Readi ng > threshol d

create nei ghborhood hts100
from H ghTenpSens(threshold : 100)
max hops 2
credits 30

Fig. 1: Sample node (top) and neighborhood (bottom) definition asthntiation.

can best ati ¢ ordynami c. The former represent information assumed to be time-
invariant (e.g., the type of measurement a sensor providésle the latter represents
information changing with time, (e.g., the current sensading). The decision about
whether an attribute is static or dynamic depends on theoglepnt scenario. Making
the distinction explicit may enable optimizations at thetiag layer, as discussed in
Section 3.

A (logical) neighborhood is the set of nodes satisfying ast@int on the nodes’
attributes. As with nodes, the definition of neighborhoaemcoded in a template,
which contains a predicate that essentially serves as tmebership function deter-
mining whether a node belongs to the logical neighborhood.stance, the neigh-
borhood templatéi ghTenpSens at the bottom of Figure 1 is based on bevi ce
template in the same figure, and selects nodes that host tetupesensors and are
currently reading a value higher than a given threshold.x&smplified in the $IDEY
code fragment, a neighborhood template can be parametewith the actual param-
eter values provided by expressions of the target langupge neighborhood instan-
tiation. Moreover, the instantiation of a neighborhood pdate specifies additional re-
quirements abowhereandhowthe neighborhood is to be constructed and maintained.

Fig. 2: A visualization of logical neighborhoods.

For instance, Figure 1 specifies that the predicate defindekid ghTenpSens tem-
plate is evaluated only on nodes that are at a maximum of 2 épy and by spend-
ing a maximum of 30 “credits”. The latter is an applicatiogfided measure of cost,
further detailed next, which enables the programmer tarretame control over the
resources being consumed during the distributed proagessicessary to deliver mes-
sages to members of a logical neighborhood. A pictorialesgntation of the example,
visualizing the logical neighborhood concept, is provide#igure 2. There, the black
node is the one defining the logical neighborhood, and itsighlyneighborhood (i.e.,
nodes lying in its direct communication range) is denotedH®sydashed circle. The
dark nodes are those satisfying the predicate in the nergbbd template in Figure 1
(bottom) when the threshold is set to 2@0 However, the nodes included in the actual
neighborhood instandet s100 are only those lying within 2 hops from the sending
node, as specified through theps clause during instantiation.

In essence, as graphically illustrated

i . . Neighborhood predicateson | Node
in Figure 3, templates definghat data Template Template
is relevant to the application, while the /J\
. Template Level Data Data
instantiation process constraingwthis -~ scope Source
data should be made available by the un- \TJ

i . i - Logical bel Logical
derlying system. Separating the two per e clongs to ogice

spectives has several beneficial effects.
The same template can be “customized”
through different instantiations. For in-
stance, the very same template at the bottom of Figure 1 dmuldsed to specify a
logical neighborhood with a different threshold or a diffet physical span. Moreover,
this distinction naturally maps on an implementation thaintains a neighborhood
by disseminating its template to be evaluated against theesaexported by a node
instance, and uses instead the additional constraintsfigpleat instantiation time to
direct the dissemination process.

SPIDEY provides additional simple and yet expressive constrlicigical opera-
tors such asnd, or, andnot are provided to define complex predicates on node
templates. Moreover, as logical neighborhoods essenid@htify sets of nodes, it be-
comes natural to express a neighborhood as a compositibralséady existing ones,
using conventional set operators such as union, intecsecubtraction, and inclusion.
Finally, the $IDEY language contains also features enabling the creatioirtoial
nodes built by binding node attributes to aggregation functiopgrating on a logical
neighborhood. Virtual nodes spare programmers from thddvuof directly handling
the communication needed to gather and aggregate data iemetghborhood mem-
bers, and can be used recursively to create higher-leviebatisns. More details can be
found in [10]. The complete grammar of theI®BEY language is shown in Appendix A.

Fig. 3: Templates and their instantiation.

Our language also provides the ability to control the co&ilired in communicating
towards a neighborhood, through theedi t s clause. Communication cost is defined
in terms of the basic operation of sending a broadcast megsaghysical neighbors
(the node’ssending cogt and is measured iaredits The mapping between cost and
credits is specified by the programmer on a per-node basiaghrause cost con-
struct, which delegates the computation of this mappingitexpression of the target

language, e.g., a function. Therefore, the programmer eéfineda vast array of map-
pings, from a straightforward one where the sending costéslfito sophisticated ones
where it varies dynamically to adapt to context changes, (ew battery power). More-
over, different nodes can have different functions, e.@ldyng higher costs for tiny,
battery-powered sensors, and lower costs for resourceaxtrnally-powered nodes.
The overall number of credits necessary to communicatetivélmembers of a logical
neighborhood is evaluated as the sum of the costs incurrbg @ach node involved
in routing, with each individual cost evaluated accordiaghe function specified in
theuse cost declaration. Therefore, the ability to set the maximum amodi cred-
its spent in communication in a logical neighborhood emapl@grammers to exploit
different trade-offs between accuracy and costs. Neididmds endowed with many
credits ensure a broader coverage but incur higher costie thlose with few credits
may not reach all the specified nodes but limit resource copson.

Logical neighborhoods must ultimately be used in conjumcivith communication
facilities, to enable interaction with the neighborhoodwmbers. On the other hand, the
notion of logical neighborhood is essentially a scoping Ina@ism, and therefore is in-
dependent from the specific communication paradigm chdsarinstance, one could
couple it with the tuple space paradigm to enable tuple sjamnd access only within
the realm of a logical neighborhood. In our current commatin APl we took the
minimalist—and yet most general—approach of couplingdabgneighborhoods with
the standard broadcast-based message passing facilitgt ioWWSNs. As a result, our
APl includes simplesend andr ecei ve operations mimicking those provided by the
underlying operating system. For instance, our TinyOS émpntation redefines the
operations in th&sener i cCommmodule by extending theend operation with an
additional parameter representing the logical neighbadhshere a message must to
be delivered, i.e., the scope of that particular messagerfslly, we are replacing the
broadcast facility commonly made available by the opegasiypstem with one where
message recipients are not determined by the physical comation range, rather
by membership in a programmer-defined logical neighborhbrodddition, ar epl y
primitive is also included to simplify communication froreighborhood members back
to the message sender. To enable this degree of generdlitifexibility, it is funda-
mental for our abstraction and API to be supported by effiaienting strategies. A
description of our solution to the routing problem is ddsed in the next section.

3 Routing for Logical Neighborhoods

The logical neighborhood abstraction is essentially iraelent of the underlying rout-
ing layer. Nevertheless, its characteristics cannot bityesscommodated by existing
data-centric routing approaches. Indeed, these are ysgaiteived to solve the prob-
lem of data collection from a homogeneous nodes, thus fogusn how to collect
efficiently the data from many sensors to a single node—tite &n our approach the
perspective is reversed: routing must efficiently transmiapplication message from a
single node (the sender) to those matching the neighborbpecification. Moreover,
logical neighborhoods are a scoping mechanism, and thereém be used in conjunc-

tion with several mechanisms other than data collectian, & direct code updates
only towards nodes with obsolete versions. As such, somieeofeichniques exploited
by these protocols (e.qg., route reinforcement based orrates as in [7]) not only can-
not be directly applied, but are actually complementaryucsoMoreover, our goal is to
devise a protocol that captures the localized interactioasshould characterize com-
munication in decentralized, multi-sink WSNs and WSANSsisTitules out solutions
exploiting system-wide tree overlays as in TinyDB [11]. &g, credit management is
a distinctive feature of our approach that would anyway irecappropriate integration.

Motivated by these considerations, this section descaleating strategy designed
to support efficiently and effectively the logical neighbood abstraction. Our routing
approach istructure-lesgi.e., no overlay is explicitly maintained) and is based loa t
notion oflocal search12]. Nodes advertise thefrofile, i.e., the list of attribute-value
pairs specified by their template, and in doing so build aritlisted state space con-
taining information about the cost of reaching a node witkegidata. This information
dissemination is localized and governed by the density witds with similar profiles.
Messages sent to a neighborhood contain its template, wleitelimines a projection of
the state space, i.e., the part to be considered for matclmirgnutshell, the message
“navigates” towards members of a neighborhood by followpaghs along which the
cost associated with a given neighborhood template is dsitrg. The proposed rout-
ing approach is therefore composed of two parts:sta¢ée space generaticend the
search algorithm

3.1 Building the State Space

In our scheme, whenever a new node is added to the systemaititasts a Ro-
FILEADV message containing the node identifier, a (logical) timeptathe node’s
profile containing attributes and their values, and a co#t figtialized to zero. The
first two message fields are used to discriminate stale irdtbam, as the ROFILEADV
message is periodically re-broadcast (possibly with tiffié content) by the node. An
example ROFILEADV is reported in Figure 4.

In addition, each node in the system storesourc Timestamp| Node Profle [Cost
a State Space Descript¢8SD) containing a F e‘ [Atiribute _[Value |

; Funct i on]sensor
summary of the reC(-.Z‘IvedFR)FI!_EA.DV mes- NS4 72 [Type tomperatiie 2
sages. An example is shown in Figure 5. The Locat | on|room123

Attribute and Valuefields store information
previously received through aR®FILEADV
message. For each ent@pst contains the minimum cost to reach a node with the
corresponding information, arfSlourcecontains the identifier of such node. Thieks
field allows to store information more compactly, by retagmassociations among en-
tries instead of duplicating them in the SSD. In Figure 5 eawtny is linked to the
others as they all come from the samrd®ILEADV advertised by node N®ecPath
andIncPathscontain routing information to direct the search processjescribed in
Section 3.2. Finally, each entry in an SSD is associatedaJi¢fase (not shown), whose
expiration causes the removal of the entry not refreshedrianaPROFILEADV.

Upon receiving a ROFILEADV message, a node first updates the cost field in the
message by adding its own sending cost, obtained by evadutite expression in the

Fig. 4: An example oPROFILEADV.

[[dJAttribute [Value [Cost[Links [DecPatH IncPaths[Source]
Functionfsensor [5 | 2,3 N37 [N98,N99 N8
2|Type acoustic] 5 | 1,3 N37 [N98,N99 N8
Location{room123 5 | 1,2 N37 [N98,N99 N8

=

wj

Fig. 5: An example ofState Space Descriptor (SSD)

use cost statement described in Section 2. Then, it compares eadbugdtvalue
pair in the message against the content of the local SSD. Afitatibn (entry inser-
tion or update) of the SSD is performed if an attribute-vada@: i) does not exist in
the local SSD, or ii) it exists with a cost greater than the ionthe message (after the
local update above). The update (or insertion) of an SSI¥y émtolves establishing the
proper values in theinksfield to keep track of the rest of theRBFILEADV message,
updating theDecPathfield with the identifier of the physical neighbor that serg th
PROFILEADV, and setting th&ourcefield to the identifier of the node whose informa-
tion has been inserted in the&kBFILEADV. For instance, assume the node storing the
SSD in Figure 5 has a sending costlofind receives theHDFILEADV in Figure 4. Its
local SSD is then updated as described in Figure 6 (changessh bold). Note how
theLinksfields are updated so that only the minimum cost to reach ax isritept, and
yet the information about which entry came with which profl@ot lost.

After a PROFILEADV has been processed locally, it is rebroadoaétif at least one
SSD entry was inserted or updated, to propagate the statgehan example is shown
in Figure 7(a). The ROFILEADV is rebroadcast as received, except for the updated
and Sourcefields. Interestingly, the propagation oRBFILEADV messages enables a
node to determine if it lies, for some attribute-value pair,a path where costs are
increasing. This occurs when &EFILEADV is overheard, through passive listening,
with a cost greater than the corresponding pivot entry inSB®. In this case, the
identifier of the broadcasting node is inserted inlthePathsfield of the pivot entry.

Thus far, we assumed thaRBFILEADV messages contain the whole node profile.
Nevertheless, if some dynamic attribute changes frequéndre is a trade-off between
the network load necessary to refresh the advertisemedtharaccuracy of the infor-
mation being propagated. A straightforward alternatiyerapch is to disseminate only
part of the profile (e.g., static attributes) and performitigigial matching at the receiver.
These trade-offs are ultimately solved based on the claistits of the deployment
scenario, e.g., by considering information about the sizeelogical neighborhood or
the network density.

Finally, note how, as shown in Figure 7(a), profile adventisats donot flood the
entire network, as amOFILEADV is rebroadcast only upon an SSD update. Flooding
occurs only for the first advertisement, or more generallgrmvbnly one node contains
a given attribute-value pair—a rather unusual case in thaa@os we target. Instead,

[Id]Attribute [Value [Cost]Links [DecPath[IncPaths[Source
1|Functi on|sensor 3 34 N77 |N98, N99 N54
2 |Type acoustic 5 1,3 N37 |N98,N99 N8
3[Locat i on|room123 3 14 N77 |N98, N99 N54
I [Type temperature| 3 | 1,3 | N77 - NG54

Fig. 6: The SSD of Figure 5 at a node with a sending cost, affter receiving théPROFILEADV
message in Figure 4.

for a given set of attribute-value pairs, the state spacemgion builds a set of non-
overlappingegions each containing a node with the considered informatiohWia
region, each node knows how to route a message addressedighbaorhood template
that includes attributes matching those of a node, alongdhees stored iflDecPath
Each region can be regarded as a “concavity” defined by co8SDs, with the target
node at the bottom (cost to reach it is zero) and nodes witleé&sing costs around it.
This is illustrated in Figure 7(b), where we show the SSDarafll the nodes performed
at least one profile advertisement. Next we describe howdikisbuted state space is
exploited for routing.

3.2 Finding the Members of a Logical Neighborhood

Local search procedures proceed step by step with subsemomesexploring the
state space [12]. At each step, a set of further local movasé#able to proceed in
the search process. Among them, some moves are acceptedraardtg further moves,
while the remaining ones are simply discarded. In genecaggting moves depends on
the heuristics one decides to employ given the particulablpm tackled. In our case,
amoveis simply the sending of an application message contaitiagheighborhood
template. Upon receiving a message, the move is acceptefdidher send operations
are performed if the maximum number of hops, if any, has nehlveached (as per the
hops construct), and either i) the move proceeds along a deagpsih, or ii) enough
unreserved credits are available on an exploring path. ©tiens ofdecreasing path
exploring pathand credit reservationare at the core of our routing solution and are
described next.

Decreasing paths A path isdecreasingf it gets the message closer to nodes whose
profile matches the neighborhood template. To do so, megsageeds towards min-
ima of the state space by traversing nodes that report arysisvaaller cost to reach a
potential neighborhood member.

To determine decreasing paths, a node must identify the spatce projection de-
termined by a neighborhood template. To this end, the nodis fim the local SSD
the entry matching the neighborhood template with the gstatost, if any. This en-
try is calledpivot If a pivot exists and is associated, via the SBibks field, to a
set of other entries matching the neighborhood template ctist associated to the
pivot represents the number of credits needed to reach tisestl matching node via
the path indicated by thBecPathfield. For instance, imagine the application issues a
send(m n) operation through our enhanced communication API, to demdpplica-
tion messagento the neighborhood, and assuma is defined to address all acoustic
sensors. This neighborhood hasateotin entry 2 of the SSD in Figure 6, and its pred-
icate Function = sensor and Type = acoustic) is matched via the link pointing
from entry 2 to entry 1. Consequently, the node evaluatesdketo reach the closest
acoustic sensor as 5 and forwards the message towards N&87oDhe state space
generation process, messages following a decreasing patedainly forwarded to-
wards nodes matching the neighborhood template. Indeesde thaths simply follow
the reverse paths previously setup tgdRILEADV messages originating from nodes
whose profile contains information matching the neighbothiemplate. Additionally,

Cclo] - Cclo] -
Aa|3|N1 Aa|3|N1
Bb[O]| - N32 : Bb[O]| -
Aa|8|N3 A Aa|6|N5
[aaf3] . [Aa]o]
N
N1 N1
6) » ,
(2N e &1)
! = 7 Aa / Aa
! Aa|2 Aalo 0 / 0
/ =1 /
s ‘, Ccclo]f - N5 Cclo] -
(2) Aa |2 |N1f @[Aa|2|N1f
Aa|o Aajo| -

(a) Building the state space (time goes from left to rightyofv labels denote send-
ing of PROFILEADV messages, showing only the attribute-value (éAga), and
Cost fields. SSDs are shown with only attribute-value, CodtlecPath fields. Af-
ter N1 disseminated its profile, NS'sR®FILEADV neednot be propagated system-
wide, but only where updates in SSDs are needed to make #emre known.

Cclo] - Cclo] -
Aa|3|N1 Aa|3|N1
Bb[3|N4 Bb[3|N4
BblO| - N32 . Bb 0] - N;
Aa|6|Ns 5) Aa|6|Ns G)
Ccl6|n3 Ccl6|n3
Na g
b Rafo - Cei i [R3]e] -
Bb|3|N3 ; Accl1]- Bb|3|N3
o ccl1|N2) el ccl1|N2
@ oA
5 Cclo] - |, B Cclo] -
(2) Aa |2 N1 (2) Aa|2|N1
Aalol - Bb|2|N4 Aalo]| - Bb|2|N4
Bb[2|N4 Bb[2|N4
Cc|2|N3 § Cc|2|N3

(b) After all the nodes performed at least(c) A message navigating the state space:

one profile advertisement, the SSDs con-dashed lines represent exploring di-

tain the costs to reach the closest nodeaections, solid lines denote decreasing

with a given attribute-value pair. paths. Arrow labels represent application
messages showing only the unreserved
credits and the intended recipient.

Fig. 7: Building and navigating the state space.

note how the reply feature provided by our communication A& be implemented
trivially by keeping track of the reverse path along which@ssage is received.

Exploring paths. If a message were to follow decreasing paths only, it woukilya
get trapped into local minima of the state space. To avog] thé allow messages to be
propagated also alorgxploring pathsi.e., directions where the cost to reach the closest
node with a particular attribute-value pair is non-dedreasExploring paths include
directions where the cost does not change (e.g., at the bbateeen two regions)

10

or where it increases. The latter are stored inltiePathsSSD field, as discussed in
Section 3.1.

Activating multiple exploring paths at each hop is ineffeet as it is likely to gen-
erate many routes that are shortly after rejoined. Theeetxploration proceeds along
a single increasing path, if available. Exploration on rpldt paths, achieved through
physical broadcast, is activated only when the messaghesameighborhood member
(i.e., a minima of the state space), or after the messageawadiéd forE hops, withE
being a tunable protocol parameter. This design choicessteam the observation that
increasing paths are key in enabling the message to “est@gs'minima by directing
it towards the boundary where a region confines with a diffeome, and a different
decreasing path may become available.

Credit reservation. The instantiation of a neighborhood template may specéctied-
its to be spent for communicating with neighborhood membesiscussed in Sec-
tion 2. To support this feature, the number of credits is agpd by the sender to every
application message sent to a given neighborhood. A nodedeeigle to split these
credits in two: one pareservedo be spent along decreasing paths and the other along
exploring ones. The splitting occurs at the first node thabiifies a decreasing path
for the message being routed, and is effected by removingetberved credits from
the amount in the message, therefore effectively resethiegredits along the entire
decreasing path. For instance, Figure 7(c) shows a messagbysN5 with6 credits,
targeting a neighborhood defined by a single predicatec. Neighborhood members
are shown in white. As the pivot in N5's SSD reports a cos? tf reach the node N3
matching the predicate, the message is forwarded to N34witireserved credits.

To deal with credit reservation, a node checks whetheréstifler is inserted in the
message by the sender node as the next hop along a decreatbitgwards a matching
node. If so, the node simply forwards the message to the g h the decreasing path
(found in its SSD) without modifying the credit field, sindeetnecessary credits have
already been reserved by the first node on the decreasing@thirwise, if exploring
paths are to be followed, the node “charges” the messagbdarumber of credits as-
sociated to the node sending cost, as peruthe cost declaration. The remaining
(unreserved) credits are assigned to the exploring pathltal node decides to pro-
ceed on. Normally, all these credits are assigned to théesingssage forwarded along
the increasing path. However, if multiple paths are exmlaneparallel through broad-
cast, according to the heuristics described above, thesenred credits are divided by
the number of neighbors before broadcasting the messagégune 7(c), N3 receives
a message witlh remaining credits. Since it is a neighborhood member, thesage
must be broadcast along all the available exploring pather&fore, N3 charges the
message for its own sending co8j énd divides the remaining credits by the number
of its physical neighbors. This results in activating twglexing directions, each with
a 1-credit budget.

4 Evaluation

This section reports about an evaluation of our routingqaolt for logical neighbor-
hoods. To this end, we implemented it on top of TinyOS [6] avalated it using the

11

0000000 o0
000 000 o0
0000000 00
0000000 00000
0000000 00000060 0000000

Fig. 8: State space generation. The fiBROFILEADV message spreads throughout the system
as no node disseminated its profile yet. Profiles advertigedtier nodes propagate only until

a smaller cost is encountered, partitioning space in regioantered on neighborhood members.
Note how the white node does not receive the message in thEdipagation—due to collisions—
but eventually receives it in later retransmissions.

TOSSIM [13] simulator. Our goals were to verify that the jpail behaved as expected
for what concerns the generation of the state space and #fi@ws@re routing of mes-
sages, and to characterize its performance. Clearly,ghisy to assess the feasibility
of our approach and abstraction. The deployment scenarsinugated is a grid where
each node can communicate with its four neighbors. Thisoghodt only simplifies the
interpretation of results by removing the bias induced byenmstructured scenarios,
but also models well some of the settings we target, e.godn@SN deployments [14].

Analyzing the Routing Behavior. Before characterizing the performance of our rout-
ing protocol, we analyze whether its behavior matches osigdecriteria. First, we
verify separately the two basic mechanisms underlying outimg, i.e., the state space
generation and its “navigation” by applicative messagefested to a logical neigh-
borhood. As for the former, the key property we want to veisfghat the propagation
of PROFILEADV messages is localized and partitions the system in norlapgeng
regions, each with routing information towards a neighlbbochmember.

To simplify the analysis of results we developed a simplaafization tool that,
given a simulation log and a neighborhood template, displlag propagation of ®o-
FILEADV as well as applicative messages. Figure 8 shows a sampletadtpur tool
where the logical neighborhood we consider selects threebaes (represented as cir-
cled nodes) based on their profiles, and the node sendingscegtial for all devices.
The three shapshots correspond to the points in time wherea §ROFILEADV, gen-
erated by one of the neighborhood members, has ceased tagattep As it can be
observed, the first ROFILEADV is propagated in the whole system, as no other profile
information exists yet. However, when the second membegyagates its profile, this is
spread only until it reaches a node where the cost is lesglieaone in ROFILEADV.
This process partitions the state space in two non-overigppgions. Eventually, the
system reaches a stable situation where the number of eigiequal to the number of
neighborhood members, as shown in Figure 8—right.

For what concerns routing of applicative messages, Figwsleds the output of
our visualization tool when a message is sent to the samélmaigood of Figure 8.
The credits associated to the neighborhood are set as arappeyximation of the

12

credits needed to reach the same three nodes along thesthmath. (More details
about setting credits are reported later.) Note how the iotied picture is a worst-case
scenario where the sender belongs to the same neighbotateissage is addressed
to. In this situation, the message starts from a minimum efthate space, i.e., without
any decreasing path. Therefore, the initial moves must parg ones, until a region
different from the one where the message originated is eghdespite this unfavorable
initial situation, the message reaches all the intendeigiezts by alternating moves
along decreasing paths with exploration steps.

The effectiveness of our mechanisms in reduc- .
ing communication costs is unveiled when hetero-
geneous devices with different sending costs are de-
ployed. Figure 10 shows a situation with a single
neighborhood member and a message sender placed . . v
at the opposite corners of the grid, and where send-: :
ing costs are assigned according to an integer ap"‘..
proximation of a bi-dimensional Gaussian distribu- .
tion. The figure shows the message dutifully steer-g r
ing away from the network center, where sending.... ..
costs are higher, and striking a balance between tpe o

. . Ig. 9: An applicative message nav-
length of its route and the sending cost of the no- -

- . igates the state space. Solid lines
des on it. Thanks to the way our state space is ge & decreasing paths, dashed lines
erated through profile advertisements and SSD ugg, exploring paths. ’
dates, this path is guaranteed to be, within a region,
the one with the minimum cumulative sending cost.

Performance Characterization and Comparative
Evaluation. Next, we wanted to study the perfor-
mance of our protocol. Therefore, we defined a set
of synthetic scenarios with a variable number of no-
des placed 35 ft apart and with a communication
rangeé of 50 ft. Each run lasted 1000 s—a value for
which we verified all the measures exhibit a variance
less thanl%. In dynamic scenarios, this approach senger
provides more precise results than only averaging
over multiple runs [15].

Each node is configured with a single (static) at-
tribute whose value is randomly chosen from a pre-
defined set4 at system start-up. This profile is dis-
seminated by ROFILEADV messages once everyrig.10: A message navigating a
15 s. A single sender node is placed in the centefate space where sending costs fol-
of the grid, generating applicative messages at thmv the distribution at the bottom.
rate of 1 msg/s towards a single neighborhood defined wittgaality predicate over
the node profiles. In this setting, the number of receivedetermined by.4|, and in
our case yields a number of neighborhood members of aboutaf@Be nodes in the
system. The node sending cost is constant and identicalghout the system.

o
000NN
S

! We used the TinyOSLossyBui | der to generate topology files with transmission error
probabilities taken from real testbeds.

13

Credits are assigned by computing the average cost to reabmede in the system
along the shortest path and weighing this value by the piitityadsf the node being a
receiver. Then, we increased this minimal value by aboutloing, to give each message
some extra credits to spend on exploratory paths. This approlearly overestimates
the actual cost to reach a receiver, e.g., because it doe®nsider that two receivers
may share part of the path from the sender. The definition obdainsupporting fine-
tuning of credit assignment to neighborhoods deservebduihvestigation based on
the large body of literature on ad-hoc network density amdloan graph theory, and is
our immediate research goal.

In the absence of directly applicable solutions to compgaérest, we chose a gossip
approach as a baseline, because it is general enough tsadlieeharacteristics of our
scenarios (e.qg., lack of knowledge about the nature of eqple data) and yet generates
less traffic than a straightforward flooding protocol. Wetketprotocol parameters so
that gossip rebroadcasts a packet received for the firsttithea probabilityP? = 0.75,
and our solution triggers new exploring directions oncergVe = 4 hops. This latter
choice is a reasonable trade-off between generating toy melundant exploratory
paths E too small) and never activating exploratory paths withiegion (£ > d, with
d the region diameter).

We based our evaluation on three metrics, namely i)niessage delivery ratjo
defined as the ratio between the messages received by neigioidonembers and those
that have actually been sent; ii) thetwork overheadlefined as the overall number of
messages exchanged at the MAC layer, thus includiRgHRLEADV messages; and
(i) the average number afiodes involvedn routing. This figure is further divided
into the nodes processing a message at the MAC layer, and titosessing one at
the application layer. Message delivery is a measure of Hfagtevely a protocol steers
messages towards the intended recipients. On the otherihahd absence of a precise
model to evaluate a node’s power consumption, ii) and iigvjte a sense of how a
protocol exploits communication and computational resesiyrespectively.

Figure 11 illustrates our simulation results along the afeentioned metrics and
w.r.t. the network size. Each chart is the average resultdifférent runs. As it is clear
from the figures, our protocol outperforms gossip in all iestrMessage delivery is
consistently higher than in gossip, and is even signifigdatls sensitive to an increase
of the network size. As for network overhead, we provide toldal insights by show-
ing the results for our protocol with and withouRBFILEADV advertisements, and by
comparing against the ideal lower bound provided by rowiogg the minimum span-
ning tree rooted at the sender and connecting all neighleorheembers (computed
with a global knowledge of network topology). The chart @ndes that we generate
almost half of the overhead of gossip and yet deliver sicgnifily more messages. The
gap between the two is even more evident in the curve withmuBROFILEADV mes-
sages, which essentially highlights how efficient is theepnauting mechanism, once
the routing information is in place. This is particularlgsificant because the dissem-
ination of RROFILEADV during state space generation is a fixed cost that is paid once
and for all. In other words, adding another sender—regasdbé the neighborhood it
addresses—doemtincrement the overhead due to state space generation. itioacd
the chart shows how the performance of our protocol in thé® és closer to the ideal

[EnY
SN

Z\ Goss\p Prcpagaﬂon P=0.75)) J— Cossip P‘ropaga{i‘on P=0.75
g Spldey Routing E=4 ---x--—- Spidey Routing E=4
E 08 08
]
o £ osf 2 06
5] g s
> =
2 :
O 8 o4r 8 o4
02 1 02
0 0
50 100 150 200 250 300 350 400 50 100 150 200 250 300 350 400
Network Size Network Size
—— Gossip Propagation P=0.75 j j —— Gossip Propagation P=0.75
e] 100 | —-- Spidey Routing E=4 1 100 | -~ Spidey Routing E=4
® . - Spidey Routing E=4 (excludmg ProfAdv) *-- Spidey Routing E=4 (excluding ProfAdv)
() v = Minimum Spanning Tree ’ﬂwj = Minimum Spanning Tree
e 2 2
= & sof g 80l
(SR 4
> E g
° S
O g e0r T 60
< - g
S 3 2
= 40t S 40t
E El - K]
L 9 2
© 5
z 3 2t 3 20}
o
0 0
50 100 150 200 250 300 350 400 50 100 150 200 250 300 350 400
Network Size Network Size
100 T T 100 T
—— Gossip Propagation P=0.75 —— Gossip Propagation P=0.75
---x--—- Spidey Routing E=4 (physical layer) ---x--—- Spidey Routing E=4 (physical layer)
- x-- Spidey Routing E=4 (application layer) - x- Spidey Routing E=4 (application layer)
he} S 80 = Minimum Spanning Tree (physical layer) S 80 = Minimum Spanning Tree (physical layer)
) g [Minimum Spanning Tree (application layer) $ [--=-- Minimum Spanning Tree (application layer)
E H
[=) @ @
S £ eof £ eof
[© ©
- < <
@ 3
3 40f 3 40f
g ;
z ¢ £
2 20t g 20t
8 B
0 0
50 100 150 200 250 300 350 400 50 100 150 200 250 300 350 400
Network Size Network Size
(a) Static Network (b) Dynamic Network (failures)

Fig. 11: Evaluation against gossip and ideal multicast, in statid alynamic scenarios.

lower bound than to gossip. Finally, for what concerns théasanvolved in process-
ing, Figure 11 shows that our performance at MAC layer is itwieen gossip and the
minimum spanning tree, while at the application layer owtirg requires only about
half of the nodes exploited by gossip to process applicatiessages and exhibits a
performance closer to the minimum spanning tree. Thergéaneprotocol is likely to
provide a considerably longer network lifetime, althougbrecise characterization of
the energy consumption is beyond the scope of this papes. fEsult is due to our
guided exploration process, which privileges unicast mgss (that, unlike broadcast,
do not reach the application layers at all nodes in range) faving processing. In
contrast, gossip explores the system in a completely “blived,.

As shown in the right column of Figure 11, the evaluation wasied out also in a
more dynamic scenario where 10% of the nodes are randormgduwff for 30 s and

15

then reactivated without allowing any settling time in beem. Clearly, we excluded
from this random selection the intended message recipiaathis would irremediably
impact the message delivery ratio. A similar setting hasaaly been used in existing
works on routing for WSNs (e.g. [7]) to simulate node faikigr the addition of new
nodes. As Figure 11 shows, our protocol still provides highadivery than gossip at
lower communication and computational costs, despite faitlees. In particular, al-
though nodes joining or leaving the system generate additiorofile advertisements
to change the shape of the state space, the network overreadhs far from the one
of gossip. This result is due to the ability of the state spacehange its shape very
rapidly in response to network topology changes. For irtgtaa single ROFILEADV
message dissemination among nodes in close proximity tohtheging one is usually
all it is needed to restore a stable situation.

Finally, the results illustrated in this section should bgarded as worst-case. In-
deed, not only the credit assignment can likely be fine-tunesaste less resources,
but also our choice of neighborhood predicates (singleidétg) is restrictive. Indeed,
it forces each message to follow at most a single decreasitiggt a time: neighbor-
hood templates containing multiple elementary disjunettead can be routed more
accurately by exploiting multiple decreasing paths, tfeeeefurther increasing deliv-
ery. Moreover, setting uniform costs throughout the sysilees not leverage the ability
of our protocol to route in a cost-aware fashion. Nevertd®lave chose these settings
to be fair to gossip, which does not provide these advangeahiiities.

5 Related Work

Only few works propose distributed abstractions for WSNd gupport some notion of
scoping. Moreover, unlike the strongly decentralized acies we target in this work,
many assume a single data sink.

The work closer to ours is the neighborhood abstractionrdest in Hood [16],
where each node has access to a local data structure whidnata#i of interest provided
by (physical) neighbors are cached. However, only homogenaodes are assumed.
Moreover, data collection is built into the constructs ahdréfore, as stated in Sec-
tion 3, communication is expected to flow only according toangrto-one paradigm.
Finally, the currentimplementation considers only 1-hefghbors and is mainly based
on broadcasting all attributes and performing filteringluareceiver’s side. Clearly, our
framework is much more flexible as it provides a general apfiin-defined neighbor-
hood abstraction, which is decoupled from the applicatiorcfionality and therefore
can be used for purposes other than data collection (efgvpriereprogramming), as
well as in conjunction with it to support efficiently hetemrgeous scenarios.

The work on Abstract Regions [17], instead, proposes a mellete<key,value-
pairs are shared among the nodes belonging to a gegéan The span of a region is
based mainly on physical characteristics of the network (physical or hop-count dis-
tance between sensors), and its definition requires a dedicaplementation. There-
fore, each region is somehow separated from others, anoihregannot be combined.
This results in a much lower degree of orthogonality and lfiéigy with respect to
our approach. Moreover, the concepttohing interfaceprovides access to a region’s

16

implementation, enabling the tweaking of low-level partene (e.g., the number of
retransmissions). Instead, our approach provides a highel, user-defined notion of
cost that can be used to control resource consumption. kDBrj11], materialization
points create views on a subset of the system. In this seasanon to our work is the
effort in providing the application programmer with higHevel network abstractions.
However, the approach is totally different, as TinyDB fartiee programmer to a spe-
cific style of interaction (i.e., a data-centric model witQISlike language) and targets
scenarios where a single base station is responsible fodio@bing all the application
functionality. SpatialViews [18] is a programming langedgr mobile ad-hoc networks
wherevirtual networkscan be defined depending on the physical location of a node and
the services it provides. Computation is distributed axrosdes in a virtual network
by migrating code from node to node. Common to our work is thigon of scoping
virtual networks provides. However, SpatialViews targi#dgsices much more capable
than ours, focuses on migrating computation instead of @uing an enhanced com-
munication facility as we do, and yet provides less gendastractions. Finally, in [19],
the authors propose a language and algorithms supportimgrigeole assignment in
WSNSs with an approach that, in a sense, is dual to ours. In flagir approachm-
pose<ertain characteristics on nodes in the system so that specefied requirements
are met, while in our approach the notion of logical neighibadselectsnodes in the
system based on their characteristics.

As for our routing protocol, we were influenced by Directedf@ion [7]in using a
soft-state approach based on periodic refresh for stoaages. However, our solution
is radically different as it targets much more general siesaWe do not assume data
collection as the main communication functionality, andréiore we cannot rely on
any knowledge about message content, required in Diredffusion for interpolation
along failing paths. Similarly, we take into account an @iphotion of communication
cost without relying on an application-defined notion ofedgtte. Moreover, an impor-
tant difference is that our profile advertisements do nopagate to the whole network,
unlike interests in Directed Diffusion. Finally, routing Directed Diffusion is entirely
determined by gradients, while we make the system moreaesib changes by allow-
ing exploratory steps, whose use is nevertheless undeiotiteot of the programmer
through the credit mechanism.

6 Conclusions and Future Work

This paper presented thee®EY language and a routing protocol supporting logical
neighborhoods, a novel programming abstractions for W&HNgical neighborhoods
capture sets of nodes with functionally related charasties. $)IDEY constructs en-
able the programmer to specify neighborhoods declargtiaald yet control the trade-
off between accuracy and resource consumption using aicapph-defined notion of
cost. This latter information is used by our dedicated rayuprotocol, which supports
efficiently our abstraction.

The benefits of our proposal impact two orthogonal aspeatst, Hevelopers can
concentrate on the actual application goals while relyim¢gpgical neighborhoods as a
way to logically partition the system and interact with ite\dbnjecture that applications

17

built on top of our abstraction result in cleaner, simplex aore reusable implemen-
tations. A qualitative and quantitative evaluation of tdeantages our approach brings
to the development task is currently being carried on. Sécoar routing protocol
achieves a longer system lifetime and a better resourdeatiiin, by focusing only on
the nodes that actually need to be involved.

In this paper, we coupled logical neighborhoods with thedoast-based primitives
typically provided by the operating system. As we pointet] this choice simplifies the
programmer’s task, and opens up opportunities for adagtigiing techniques by re-
placing physical with logical neighborhoods. Our futursaarch goals involve the cou-
pling of logical neighborhoods with different servicegyeto support code deployment
only in given portions of the system) as well as alternativemunication paradigms.
In particular, we plan to integrate logical neighborhoodthwur tuple space middle-
ware TiNY LIME [20] supporting scenarios with multiple mobile sinks, topawer
sinks with the ability to restrain data sharing to the dekset of nodes. Interestingly,
this scenario is easily encompassed by our routing protasotoutes are determined
by the profiles of (static) sensors rather than the requésgtsabile) sinks. Finally, our
immediate research goal is to devise an analytical modalofauting protocol, to pro-
vide the programmer with the ability to properly dimensibe allocated credits based
on the characteristics of the network, e.g., in terms of ilgasd connectivity.

Acknowledgements.The work described in this paper is partially supported gy th
Italian Ministry of Education, University, and ResearchI(MR) under the VICOM
project, by the National Research Council (CNR) under thRMIFINET project, and by
the European Union under the 1IST-004536 RUNES project.

References

1. Mainwaring, A., Culler, D., Polastre, J., Szewczyk, Rnda&rson, J.: Wireless sensor net-
works for habitat monitoring. In: Proc. of thg® ACM Int. Workshop on Wireless sensor
networks and applications. (2002) 88—97

2. Akyildiz, I.F., Kasimoglu, I.H.: Wireless sensor and @chetworks: Research challenges.
Ad Hoc Networks Journ&2(4) (2004) 351-367

3. Petriu, E., Georganas, N., Petriu, D., Makrakis, D., @roZ: Sensor-based information
appliances. IEEE Instrumentation and Measurement 1842000) 31-35

4. Dermibas, M.: Wireless sensor networks for monitoring lafge public buildings
(2005) Tech. Report, University of Buffalo. Available aiwv. cse. buf f al 0. edu/
tech-reports/2005- 26. pdf.

5. Gay, D., Levis, P., von Behren, R., Welsh, M., Brewer, &lll&, D.: The nesC language: A
holistic approach to networked embedded systems. In: Bfdbe ACM SIGPLAN Conf.
on Programming Language Design and Implementation (PLI)I'2003) 1-11

6. Hill, J., Szewczyk, R., Woo, A., Hollar, S., Culler, D. sir, K.: System architecture direc-
tions for networked sensors. In: ASPLOS-IX: Proc. of §& Int. Conf. on Architectural
Support for Programming Languages and Operating Syst@®80) 93—104

7. Intanagonwiwat, C., Govindan, R., Estrin, D., HeidemahnSilva, F.: Directed diffusion
for wireless sensor networking. IEEE/ACM Trans. Netwogkiri(1) (2003) 2-16

8. Estrin, D., Govindan, R., Heidemann, J., Kumar, S.: Nextary challenges: scalable co-
ordination in sensor networks. In: Proc. of t8& Int. Conf. on Mobile computing and
networking (MobiCom). (1999)

18

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

A

. Qi, H., P.T. Kuruganti: The development of localized aitjons in wireless sensor networks.

Sensors Journ&(7) (2002)

Mottola, L., Picco, G.: Programming Wireless Sensomideks with Logical Neighbor-
hoods. In: Proc. of the the® Int. Conf. on Integrated Internet Ad hoc and Sensor
Networks (InterSense 2006), Nice (France) (2006) (Shquepa To appear. Available at
www. el et . polim.it/upload/picco.

S.R. Madden, M.J. Franklin, J.M. Hellerstein, Hong, WinyDB: an acquisitional query
processing system for sensor networks. ACM Trans. DataBgsie30(1) (2005) 122-173
L.A. Wosley: Integer Programming. Wiley (1998)

Levis, P., Lee, N., Welsh, M., Culler, D.: Tossim: acterand scalable simulation of entire
tinyos applications. In: Proc. of thig? Int. Conf. on Embedded Networked Sensor Systems
(SenSys). (2003) 126-137

Stoleru, R., J.A. Stankovic: Probability grid: A loaati estimation scheme for wireless
sensor networks. In: Proc. of thé® Int. Conf. on Sensor and Ad-Hoc Communication and
Networks (SECON). (2004)

Yoon, J., Liu, M., Noble, B.: Sound mobility models. Irmoe. of ACM MobiCom. (2003)
205-216

Whitehouse, K., Sharp, C., Brewer, E., Culler, D.: Hoadieighborhood abstraction for
sensor networks. In: Proc. of tB&? Int. Conf. on Mobile systems, applications, and services
(MobiSys). (2004)

Welsh, M., Mainland, G.: Programming sensor networkisgugbstract regions. In:
Proc. of thel** USENIX-ACM Symp. on Networked Systems Design and Impleraéon
(NSDI04). (2004)

Ni, Y., Kremer, U., Stere, A., Iftode, L.. Programming-lagc networks of mobile and
resource-constrained devices. In: Proc. of the ACM SIGPL@adwf. on Programming lan-
guage design and implementation. (2005) 249-260

Frank, C., Rdmer, K.: Algorithms for generic role assignt in wireless sensor networks.
In: Proc. of the3"® ACM Conf. on Embedded Networked Sensor Systems (SenSy)5)2
Curino, C., Giani, M., Giorgetta, M., Giusti, A., A.L. Mohy, G.P. Picco: TNYLIME:
Bridging Mobile and Sensor Networks through Middleware: Rnoc. of the3™® IEEE Int.
Conf. on Pervasive Computing and Communications (PerC(ap5) 61-72

SPIDEY Grammar

<node_tenpl ate> ::= node tenpl ate <node_tenpl _id>

<node_i nstance> ::= create node <node_i d> from <node_t enpl _i d>

<nhood_t enpl at e> :: = nei ghbor hood tenpl ate <nhood_t enpl _i d>

<nhood_i nstance> ::= create nei ghborhood <nhood_i d>[<par _bi ndi ngs>]

<par _bi ndi ngs> ::

<cost_function> ::= use cost <target_|ang_expr>

({static | dynamc} <field_name>)™*

(<field_name> as {<target_| ang_expr> |
<functi on_name>(<nhood_i d>) every <time_period>})*

[(<par _name>(, <par _nane>) *)]
[with <node_predicates>]
[[{mn | max}] cardinality <integer_val ue>]
[{union | intersect | mnus | on}

<nhood_t enpl _i d> [<par _bi ndi ngs>]] *

from <nhood_t enpl _i d>
[[{mMn | nax}] hops <integer_val ue>]
[credits <nuneric_val ue>]

(<par_nanme>: <t ar get _| ang_expr>
(, <par _nane>: <t ar get _| ang_expr>) *)

